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A class of bound-state problems which represent the interaction between a systemvoflevel atoms and

an electromagnetic radiation via an-photon process is studied, with = 1,2,3,.... We also evaluate

some nonlinear effects usually related with the polarisability of the medium and with the dependence on the
intensity of the radiation field on the matter-radiation interaction. We obtain exact values for the eigenstates
and eigenvalues for all values of total angular momentum of the system and all possible mumbeinotons
involved in the interaction. We give explicit analytic expressions for small numbers of atoms and discuss some
aspects of the composition of the eigenstates and of the spectra obtained in these cases.

1 Introduction obtained in these cases.

This paper is organized in the following way, in Section
A standard model most used in quantum optics idealizesll we introduce the multiatom Hamiltonian with multipho-
the interaction of the matter with the radiation by a simple ton interaction and its solution; in Section Il we do the same
Hamiltonian of a two-level atom coupled to a single bosonic for an intensity-dependent radiation interaction; application
mode [1]. This Hamiltonian is a central ingredient in the are presented in Section IV and some numerical results with
quantized description of any optical system involving the its discussion are presented in section V. Finally, conclusion
interaction between light and atoms. For this Hamiltonian, and brief remarks close the paper in Section VI.
mostly the single-particle situation has been studied [2-13].
The purpose of this paper is to give the exact and complete . . .
solut?onpfor this modgl vi\)/hen We%onsiderthe presendygf 2 Multi-atom model with multi-
tvyo—le\{el systems which ?nteract with a single-mode radi- photon interaction
ation via a single or multi-photon process, that take place
when the energy separation between the atomic levels isthe Hamiltonian describing the interaction between a
close to the energyoﬁ rgdle}tlon gquanta. In thIS. case the ef- single-mode radiation an®y two-level systems via am-
fects of the spatial distribution of the paches it is not taken photon process, when we include nonlinear effects, can be
into account and the spin angular momentsinof each par-  \ritten as
ticle contributes to form a total angular momentdof the
system. We consider in this study the effects due to the non-
I!near radla'qon polarlsgblht_y with the _|ncl_u5|on of anon- gy _ )£ R & . where { A X A
linear term in the Hamiltonian [8]. This kind of nonlinear =H, +k—hA J,
effect is usually considered in the study of micromasers. (2.1)

Another nonlinear extension of our study takes the cou- with m = 1,2,3,...,

pling between matter and the radiation to depend on the in-
tensity of the radiation field [4-6,9]. It is interesting since . N . .
this kind of interaction means that effectively the coupling ~ Hint = A2 (&mJJr + &TmJ—) and k = hO a'?a®.
is proportional to the amplitude of the field, corresponding (2.2)
to a more realistic physical situation. We obtain exact val- Here Q) is the matter-radiation interaction parameterjs
ues for the eigenstates and eigenvalues for all valugaoél the nonlinear medium parameter, related to the third-order
for any numbern of photon involved in the atom-radiation nonlinear susceptibilityA = mw — w, is a constant re-
interaction. We give explicit analytic expressions for small lated to the detuning of the system andw,) is the field
numbers of atoms and discuss some aspects of the spectri@tomic transition) frequency. In the above expressions,

1 = hwata + mhwd,
I:I(l)
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where

Ji=J +id,, (2.3) s —ata 2.8)

whereJ; (with i = 1, 2, and 3) are the components of the
total angular momentum of the system, obtained by the sumthen we can rewrite the components of the total Hamiltonian
of the spin angular momentum of tfhé two-level atoms. (2.1) as

To obtain the eigenstates and eigenvalues for the Hamil-
tonian (2.1) we first remember that the bosonic operators,
when applied to the number states, satisfy the following

properties H  =mhw (N +, ) :
Hi = mhQ (A I+ A;J_) , (2.9)
aln) = valn—1), and afjn) = va+1|n+1), (2.4) k = m?ho ( - 27) (N - %) .

where the excited bosonic states are written as
Note that form = 1 the new operators reproduce the stan-

(ah)” dard bosonic commutation relations, a] = —a, [n,af] =
In) = NG 10) - (2.5) at, [a,a’] = 1, characteristic of the Heisenberg-Wey! al-
) gebra, and form = 2 these commutationAreIatiops, which
can be written asi\V,, A,] = —A,, [N, Al] = Al, and

Now, if we introduce the operators

G L gtm [A,, Al] = 2N, represent the bosonic realization of the
A =— Al = — 1
m T e m SU(1,1) algebra.
and With the new form (2.9) of the total Hamiltonian ele-
9 1 A at ments it is easy to show that the two terms in the Hamil-
m = (a a+aa ) ) (2.6) 0) (1)
2m tonian (2.1) commute with each otheél  , H = 0,

that satisfy the following commutation relations therefore it is possible to find a common set of eigenstates
for them. The simplest way to determine the eigenstates and
eigenvalues of that Hamiltonian is by calculating the eigen-

states and eigenvaluesﬁ]‘“). Taking into account that the
and J, operators can be represented(By + 1) x (25 + 1) ma-
trices, then by using the form of these matrices we can write

the operatoﬂ(l) as a tridiagonal matrix with these same

A=A, [

Al =4, @n

S 5 | o -
[A VAT } L (A + LOL ~ n' , dimensions ofl; and whose elements can be written as
mrTm m?2 o (A —m)!
|
A0 _ [ hA (i—j—1)+k, if k=i; (2.10)
i* hmﬂ\/k—1)2j—z+1),4m, if k=i+1, ‘

with the propertyf{:) = (I?IEZ))T . By considering the properties (2.4) of the bosonic operators and the matrix form of th
operatorﬂ(l), we introduce the following vector for its eigenstates

C,|n)
CWL n+m)
)= |” +2m) n=0,1,2,3 (2.11)
C7L+2j'm n + 2-]m> )

where theC' coefficients are to be determined by the eigenvalue equation

a'w, )=¢

nm

v, (2.12)
which also determines the eigenvalugs, . Basically the vectof¥ ) corresponds to the state of the system with total
angular momentum/2? = j(j + 1)h? and each vector component represents onejof- 1 possible values af .. In other
words, the componenin + km) of the vector statél ) represents the quantum stdte j, m; = j — k}. By considering

that A |k) =0 if k<m and
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Amk>;,/(kflm)!|km>, if k>m, (2.13)

(k4 m)!
k!
then, by substituting Egs. (2.10) and (2.11) into Eq. (2.12) we obtain the $2j af 1) coupled algebraic equations which

can be written in a compact form as

and also
i 1 St 1 1
Al kY = — |k +m), Nk == [k+2)|k), (2.14)

(1 - 6k,1) h(k—l)k On+(k72)m + hkk Cn+(k71)m + (1 - 6k,2j+1) hk(k+1) Cn+km = gnrn Cn+(k—l)m ) (215)
where k =1,2,3,...,25 + 1 and the h-coefficients are defined as

QVE-1)@ -kt [t (E—Dm/[n+(kE—2mll, if i=k—1. (2.16)

hik:h{@[n+(k—1)m][n—|—(k—1)m—1]—A G—k+1), if i=k

With this set of (25 + 1) equations plus the normaliza-

tion condition for the eigenstate it is possible to obtain the c,

(27 +2) variables that appear in (2.15). This set of equations Crim

can be written in a matrix form as c=| Ciizn (2.18)
h-& TC=0, (2.17) c

n+2jm °
where the tridiagonah-matrix has its elements given by The secular equation associated to Eq. (2.17) gives us the

Eq. (2.16) with the symmetry conditioh,, = h,, and be- algebraic equation to calculate thg+ 1 possible values for
ing C the column matrix the eigenvalue§

& yp, e’ + D, & '+...4+D,E +DE _+D,=0, (2.19)

nm 2] “nm 2j—=1"nm nm 1% nm

251
where theD coefficients are related to thematrix elements. Finally, by using Egs. (2.1), (2.11) and (2.12) we have

HY, )=F |V ), where FE  =(n+imhw+é,, . (2.20)
[

So far we have only discussed about the possibility of —2j < n < 0 the vector statél ) corresponds to states
havingn > 0. By considering that corresponds to the in which there are not enough photons to excite the higher
smallest number of photons we might measure in the vectorm; values even if all of them are absorbed. In this case,
state| ¥ ), then whenn > 0, it means that we can find the vector state (2.11) that represents this situation will be
all values ofm; from —j to j. Therefore when we have written as

]
- 0 -
0
_ ,10) {—r null components},
.. = ' lm) (2.21)
C,, |2m) {(2j + r+1) nonzerocomponents},
L C(2j+r)m, |(2J + T)m> d
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where —2j < r < 0. In particular, the case = —2j, that for the interaction Hamiltonian

corresponds to the vacuum combined with all particles in

their lowest state, represents the ground state of the system. R o o

The determination of the eigenstates and eigenvalues of the Hine = mh{2 (B Ji + B 'L) ; (3.1)
Hamiltonian (2.1) for thes@; possiblen negative values

corresponds to a particular application of the general treat-Where the new operators are defined as

ment presented before and it will be studied and analyzed

for each particulay value in the applications below. B —A (m/([ _ 1)
. . . . nd
3 Multi-atom model with intensity- A T
: : Bl =,[(mN, — =) A . (3.2)
dependent multi-photon interac- m 2 ) tm
tion The other terms in the total Hamiltonian (2.1) keep the

same forms as used in the previous Section. These facts im:
We now introduce an intensity-dependent interaction be- ply that the diagonal elements of the total Hamiltonln
tween matter, constituted by two-level particles, and radi-  are still given by Eq. (2.10) and the non diagonal matrix el-
ation via anm-photon process by using the following form ements now are written as

]

0, =0 =mQ/k-0)2j—i+ 0B, , if k=i+l, (3.3)

with i,k = 1,2,3,...,2j + 1, and with the property,, = Hf . Again, those both termgI, andH,, in the total
Hamiltonian (2.1) commute with each other. Therefore, it is possible to use the same technique as used in the prec
Section to obtain the eigenstates and eigenvalues for the total Hamiltonian. Now, by considerifg fthat= 0 if & < m

and

. 1 k k! . .
Bm k> = % m |I€ - m> = \/EAm k> 5 if k 2 m, (34)
and also
. ! R
Bi |k) = ;\/W’”)}W k+m) = Vi +m AT |k, (3.5)

then using Egs. (3.3) and (2.11) into Eq. (2.12) we obtain a new s@jof 1) coupled algebraic equations which can be
written in a compact form as

(1 - 6k,1) h(k—l)k Cn+(k—2)m + hkk C‘n.+(k—1)m + (1 - 6k,2j+1) hk(k+1) Cn+km = g'rnn Cn+(k—1)m ’ (36)

where k =1,2,3,...,2j +1 and the neV\Elk_ coefficients, withi # k, are related with the previous onie () by

ues ofn for this case can be done in the same way as in-
dicated in the previous Section. However, in contrast with
=yn+(k—-1)mh,  with i=k-1,(37)  whatwe have for the previous case, the effects of the in-
tensity dependence on the eigenstates and eigenvalues for

and the symmetry property:,, = b, ,. The diagonah,, negative values will only be observed fgr> 1.
coefficients remain given by Eq. (2.16). Again, the above

set of equations can be written in a matrix form as given
by Eq. (2.17), except that the non diagonal matrix elements4 Applications
of h appear now substituted by thelse new elements. In
this case, to have the spectra we need to resolve Eq. (2.19)a, Single-particle system
where theD coefficients take into account the changes in
Eq. (3.6). In this casg = 1/2 and the Hamiltonia®I" will be a
It is important to note that the inclusion of negative val- 2 x 2 matrix. Applying this Hamiltonian to the eigenstate

ik
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equation (2.12), we obtain the matrix equation (2.17) with

. h h { }ﬁllgn + }ﬁngn,+7n, i gnmccn (42)
h= |: 11 12 ] , (4_1) 12~n + 22 n4m = Ynm Tndm
h12 h22 . .
and, from Eg. (2.19), we have an algebraic quadratic equa-
being the b, coefficients given by Eq. (2.16). Then the sys- tion with coefficients D, = —(h,, + h,,) andD, =
tem of equations (2.15) becomes h, h,, —h? for the eigenvalues which will be given by

]

402 (n + m)!
n!

£ = g {6 [2n? + (2n 4+ m)(m — 1)] £ \/ +[Om2n+m—1)+ Am]Q} : (4.3)
From Egs. (4.3), (4.2) and the eigenstate normalization condition we can determiGecthefficients and show that the

eigenstates for the total Hamiltonih can be written as

1 n)
By —
50 ) \2 [ j:’yr(bfzn\n+m> ' (4.4)
1+ (7n+m)
with n=0,1,2,..., m=1,2,3,..., where
1 Om(2 —1 A
E) = and 4, = m(2n + m )|+' m (4.5)
1462, F6,.. 2Q4/(n 4+ m)!/n!
with eigenvalues given by

EE) =t (n+ ) + 2. (4.6)

For the case of intensity-dependent interaction, we obtain (with the chiange Bik, 1 # k), the following eigenvalues

of H"

EW) = lh@ [2n® 4+ (2n 4+ m)(m — 1)]

nm f:

+[Om@2n+m—1)+A, ], 4.7)

n!

while the eigenstates for the total Hamiltoni&h can be system. Considering this fact and using Egs. (2.21), (4.1)
written in the same form given by Esq. (4.4) and (4.5), but and (4.2) it is easy to show that

with
=[]

—h [(m 1w — %} . (4.9)

In the case of the intensity dependent interaction we have
these same results for the eigenvalues and eigenstates as
avritten in Egs. (4.9).

em2n+m—1)+A
o 2Q\/(n+m)(n—|—m)!/n! ’ (4.8) E

—1m

The eigenvalues for the total intensity-dependent Hamilto-

nian will be written as in Eq. (4.6) but, now, wit) given

by Eq. (4.7). These results can be reduced to the standar

model and to the intensity dependent interaction standard

model results [13, 14] when we assume the value= 1

and turn off the nonlinearity term takirg = 0. In this case we can haye= 1/2 or j = 3/2. We have
For j = 1/2 the only possible negative value is already studied the first possibility. For the secgnglue,

r = —2j = —1 that corresponds to the ground state of the the HamiltonianEL " is a4 x 4 matrix that applying to

B. Three-particle system
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the eigenstate equation (2.12), give us the matrix equation

(2.17) with

llcn
C

wCrim =E...C,
C

h
12~ n h22 n+m + h23 Cn+27n = gnm On+7n (4.11)

, (4‘10) 23 C’n«#?n + h33 C'n+27n + h34 C71+37n = g'rwn n+2m
0 (_2)3 }}133 }}134 34Cn,+2m =+ h44cn+3m = gnm Cn+3m )
34
being the b coefficients given by Eq. (2.16). Then the sys- and Eq. (2.19) is an algebraic quartic equation with coeffi-
tem of equations (2.15) becomes cients

+
+

o BB
o

= =a =
N
M
=
)

=R =R ==

44

- (hll + h22 + h33 + h44)
b, h,, +h, by, +h by + bbby, hy, +hy by, — (B2, + b2 4+ h?))

D, =
D2 = 117722 117733 117744 227733 227744 337744
D, =
D, =

— (,,hy,h,, +h, hy,h,, +h, by by, +hy,h by, (4.12)

11 227733 11 227744 11 337744 2277337744
+ (b, +h,, ) b2, + (b, +h,,)hZ + (b, +h,,)h2
h, h,,h,,hy, — (hyhy, b2, +hy by b2 +h by h? —h% h?)

1177227733744 337744712 117744723 1177227734 127734

(1,2,3,4)

and the eigenvalues, can be obtained by its roots, as shown in Appendix Il. From Egs. (6.8), (4.11), (2.20) and tt
eigenstate normalization condition we can determin&tloeefficients and show that the eigenstates for the total Hamiltonian
can be written as

<k;y" In)
\\Il(k) )= 1 Yoy [T M) (4.13)
” 1 k)2 ® )? w )2 In + 2m) 7 .
+ (fyn ) + (’yn+1n) + (’yn+37n> 'ysi:‘sm ‘n + 3m>
where
) ONO) () e ) (k)
k k k k k k
,Yn = F ’-yn m? ,yn m = ?k) (k) ? "}/n 3m = F (4.14)
' * + 1-— Fl F2 8 4
with ¥ =1,2,3,4 and
(k) h.. (%) h (%) h () h,.
' = 12 T = 12 T — 28 , r =-—12 (415)
' g::y)l —h, 7 ’ 57(1]:7)7. —h,, ’ ’ 57(2 —hy, ! 5:2 —h,, ’

and its associated eigenvalues can be written as

andD, coefficients of the algebraic quartic equation for the
eigenvalues and in the-terms for the eigenstates.
For this value ofj, the possiblen negative values are
r=-2j4+2=—-1,r=—-2j4+1=—2andr = —2j = —3,
Again, the results for the intensity-dependent interaction the last one being the ground state of the system. First, us-
are obtained with the changk,, — h,,, with i # k. Ba- ing Egs. (2.21) and (4.10) for= —1, we find the following
sically this change implies in a modification in tfig, D, system of equations

]

B = <n + Zm) ho+€". (4.16)

C

0

—3hA, C, + 2RV mIC, =€,
2ROW/mICy + B [Om(m — 1) + 1A JC, +hQy /2, —¢  C (4.17)
hQ\/2Cm o R [20m(2m —1) + 3A, ] C,, =€

2m

—1m ~“2m ?

and from Eg. (2.19) we have an algebraic cubic equation with coefficients
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D =—h [®m(5m 3)+32A,]

= h? {&m(m ) [20m(2m — 1) AW ] — 1A% — Q2 [4m! +3 (Zm)'/m']}
=R {4%m! + LA [Om(m — 1) + 3A

|} [26m(2m — 1)+ 2A ]
—%hBQQAm (Zm)!/m! ,

1

(4.18)

0 m

for the eigenvalueéill’:s), that can be obtained by using the recipe presented in Appendix |. From Egs. (4.17), the normaliza-

tion condition and with the eigenvalueisfl’:?’)

HamiltonianH in this case can be written as

we can calculate th€' coefficients and show that the eigenstates for the total

0
(k)
v kY (4.19)
,1m \/1 _|_ (k) (k)) (J)Tn>
2m . |2m>
where
2ROV m! hQ+/3(2m)!/m!
e e LU -
g—lm + EhAm E—lm - h [2@77L(2m — 1) —+ §AM]
with k£ = 1,2,3 and the eigenvalues given by
(k)
i = g SBm - hw e (4.21)

The modifications required to get the results for intensity dependent interaction case can be reduced to the change of t
factors vm! by vmm! and \/3(2m)!/m! by \/6m (2m)!/m! in Egs. (4.17), (4.18) and (4.20). For the case of —2,

after taking the same procedure used before, we find the following system of equations

inA, Cy +hQV3mIC, =€, C, (4.22)
RW3m!C, + h [Om(m — 1) + % 1c,.=¢.,.C., '
giving for the coefficients of the algebraic quadratic equation for the eigenvalues (2.19)
D, = —h[Om(m —1) +2A ] (4.23)
D, = $R?A,, [Om(m — 1)+ 3A | — 3r2Q%*m!. '
So, we find
h
£d) = 3 {[@m(m —1)+2A ]+ \/[@m(m D) +A, 7+ 1292m!} . (4.24)
|
Again, from Egs. (4.24), (4.22) and the eigenstates normal-and
ization condition we can determine tid coefficients and 5 = 9mm-1)+A4, (4.26)
show that the eigenstates for the total Hamiltonkrfor " 2v/3m! Q ’ '
this case can be written as being its eigenvalues given by
0 E®) = 1(3m —4) hw + EF) (4.27)
o)y — S 0 (4.25) ’ . : . .
—2m 14 ( (i))z |0) ’ ' Now, the results for the intensity dependent interaction case
T & |m) can be obtained with the change of the factoi3m! by
V3mm/! in Egs. (4.22), (4.23), (4.24) and (4.26). Finally,
where using Egs. (2.21), (4.10) and (4.11) foe= —3, we find

e — 1
T 62 ¥4, B, =58m=6w+&,,
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with splitting in the original energy levels caused by the inclu-
£, = §hA 7 (4.28) sion of the matter-radiation interaction with a strength pa-
o2 rameter Q = 0.3w. The column (C) shows the effects of
and the inclusion of the nonlinear term with a strength parame-
ter © = 0.2w in the total Hamiltonian. We can see that
0 the net effect in this case is a shifting up and the increasing
v )= 0 (4.29) of the energy gap between the primary shifted levels when
—am 0 ’ ' n > —2j + 2. Finally, the last column (D) presents the
|0) increasing of the energy gap between the primary shifted

For this last case we do not observe the effects of the inten-energy levels when we turn on the detuning of the system

sity dependent interaction on the results for the eigenstateswIth A, = 0.2w. Note that the ground state energy is only

and eigenvalues of the total Hamiltonian. !’“Od'f'ed by the.pres_ence O.f t_he nonresonant térm, J.,, .
S . o in the total Hamiltonian. This is because the ground state is
After these applications we emphasize that is just a mat-

i : . . a no photon state. It is important to note that fo= 1/2
ter of simple numerical work to find the eigenstates and the : . : : .
. ) . : case the introduction of the nonlinear term in the Hamilto-
energy spectra, for any higher value pf It is straight-

nian does not affect the results foernegative values. This

forward to do an analytical calculation up to five particle . . . ?
) AN is because this nonlinear term takes into account a change
system,j = 5/2, when we have a resonant situation

(A, = 0)and we do not consider the presence of the non- of two phot(_)ns and, thu_s, it is necessary to haye eigenstates
Iinéné\rity term(6 — 0) correspondmg to bosonic states compongtitsvith & > 2.

' Only for higher; values we can observe the effects of the
nonlinearity on the eigenstates and eigenvalues:foeg-

5 Numerical results and discussion atives values. Figure (1b) is the intensity-dependent radia-
tion version of Fig. (1a). If we compare these figures we

In this section we show some examples of exact numericalconclude that the action of the intensity-dependence in the

applications of the formalism developed in the previous sec- matter-radiation interaction is to generate an amplification
tions. in the energy gap of the levels which are sensitive to this

In tables 1 and 2 we show the results for energy eigen- dependenceén > —2; +2).

values,.E_, for the cases of one-particle and three-particle
systems; = 1/2 andj = 1/2, 3/2, respectively. The en-

ergiesk ~are given in units ofw. The used values of @w ® © O ®w ® © ©O
the constant$), © andA  are chosen in a such way that

the model approximation is preserved. The bosonic quan- * 0
tum number,n, is chosen as-2j < n < 2 and number * = >

30

30

of photons taking part in each processmas= 1,2,3. Re-
sults in bold face stand for the intensity-dependent interac- 2 ’
tion case, otherwise for non intensity-dependent one. As | __ . En—/\—/ ,,,,,,,,,,,,,,,,,,,,,, .
shown in the tables, for all values of, the number of levels

increases from to 25 + 1, asn goes from—2j ton = 2.
Since the ground-state is a photon free state, the results for

E, 25 Ey 25

10 10

Eq 05 Ey 05

0.0 0.0

the intensity-dependent and non intensity-dependent cases | os| | Ey 05
for the ground states are equal for each valuenof For 10 10
each value ofj, the first excited state fon = 1 (labeled

by n = —25 + 1), also has a same value for the intensity- (12) (1b)

depen(.je.nt and non intensity-dependent situations. I-IO\"’(E\’(:"rFigure la. The behavior of the energy level diagram of the system
now this is because of the dependence.@mdm shown by for j = 1/2 with the energies given in units év. We can follow

the eigenvaluest,,,. For each value of, asm increases the split of the energy levels when we gradually turn on each com-
the splitting among energy levels also increases. This effectponent of the total HamiltoniaH, a process that is represented by
is stressed in the case of intensity-dependent interaction. ~ columns (A), (B), (C) and (D). The set of strength used is given in
Figure (1) shows the behavior of the energy level dia- the_text. Flgure (1l_3) is the the radiation intensity-dependent inter-
. . . action version of Figure (1a).
gram of the system fon = 1 andj = 1/2 with the energies

given in units ofiw. In this figure we can see the split of the Figures (2a) and (2b) are the version of Figs. (1a) and
energy levels when we gradually turn on each component(lb) form = 1andj = 3/2, recpectively. We observe
of the total HamiltoniarH, process that is represented by he'same behavior presented for= 1/2 case in the split-
the columns (A), (B), (C), and (D). The column (A) shows  ting of the energy levels when we turn on each component of
only the contribution of the radiation for the energy of the the Hamiltonian, except for the splited energy levels number

system since that the other components of the total Hamil-and the increasing in the energy gap between the levels.
tonian are turned off. The column (B) shows the symmetric
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Table 1. Values oF  for j = 1/2 (single particle and three particle systems).

E (hw), j=1/2, Q=03w, O=A =02uw.

n 1 2 3

-1 -0.4 -0.4 0.6 0.6 1.6 1.6
0 | 0.184 | 0.184 | 0.680 | 0.530 | 1.085 | 0.647
0.816 | 0.816 | 1.720 | 1.871 | 3.115 | 3.553
1 ]1.180 |1.029 |1.585 | 1.147 |1.738 | 0.486
2.220 | 2.371 | 3.615 | 4.053 | 5.662 | 6.914
2 | 2579 | 2.270 | 2.887 | 2.048 | 2.698 | 0.167
4,021 | 4.330 | 5.913 | 6.752 | 8.702 | 11.233

Table 2. Values of  for j = 3/2 (three-particle system).

E  (lw), j=3/2, Q=03w, O=A=02w.
m

n 1 2 3

-3 -1.2 -1.2 0.3 0.3 1.8 1.8

-2 |-0.829 | -0.829 0.606 | 0.318 1.847 0.987
0.229 | 0.229 2.194 | 2.482 4.753 5.613
-1 | -0.287 | -0.465 0.914 | -0.554 0.544 | -7.227
0.703 0.6 2430 | 2.196 3.875 3.614
1.784 | 2.065 5.756 7.458 | 13.581 | 21.613
0 0.453 | -0.014 | 1.443 | -2.101 | -1.864 | -25.329
1.291 1.126 2.892 | 2.485 | 4.113 3.378
2.227 2.156 5.508 | 5.217 9.352 8.863
3.629 | 4.331 | 10.957 | 15.200 | 27.999 | 52.688
1 1.496 0.642 | 2.351 | -2.457 | -2.012 | -33.215
2.628 | 2.236 | 4.388 | 3.287 5.081 2.914
4.031 | 4.116 8.203 | 8.205 | 13.043 | 13.641
5.846 | 7.006 | 14.658 | 20.565 | 34.688 | 67.459
2 2.912 1.620 | 3.538 | -2.811 | -2.147 | -42.408
4405 | 3.819 6.405 | 4.496 6.508 2.197
6.230 | 6.477 | 11.299 | 11.740 | 17.264 | 19.623
8.454 | 10.083 | 18.758 | 26.576 | 41.975 | 84.188

Figure (3a) shows the behavior of the energy level dia- We can see that the net effect in this case is a shifting up and
gram of the system fof = 3/2, n = 2 andm = 1,2,3; the increasing of the energy gap between the primary shifted
with energies given in units ofw. In this Figure we can levels. The last column (D) presents the increasing of the
see the split of the energy levels when we gradually turn on energy gap between the primary shifted energy levels when
each component of the total Hamiltoni&h, process that  we turn on the detuning of the system with = 0.2w.
is represented by columns (A), (B), (C) and (D). The left- Finally, we note that as: increases, the gap between levels
most column (A) shows only the contribution of the radia- also increases. This kind of behavior of the energy levels is
tion for the energy of the system since the other componentspresent for all excited states.
of the total Hamiltonian are turned off. The next column (B)
shows the symmetric splitting in the original energy levels Figure (3b) is the intensity-dependent version of Fig.
caused by the inclusion of the matter-radiation interaction (3a). If we compare these two set of figures we conclude
with a strength paramete2 = 0.3w. The third column (C)  that the action of the intensity-dependence in the matter-
shows the effects of the inclusion of the nonlinear term with radiation interaction is to generate an amplification in the
a strength paramete® = 0.2w in the total Hamiltonian.  energy gap of the levels.
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Figure 3a. Some of energy levels forja= 3/2 system with
n = 2andm = 1, 2 and3, as each component of the total
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Figure 4. Weight of each componer,

v+ km

=2 . inthe
composition of the state vectorblfilj’“)) for j = 3/2, and
n = m = 2. The left column is for a non intensity-dependent

interaction and the right column is for an intensity-dependent one.

Figure (4) shows the weight of each component,
P = Cme, with £ = 0, 1, 2 and 3, in the com-

n+km

position of the state vector$\lfilj’3’4)> for j = 3/2, and

n = m = 2. The values of parametefs © andA  are the
same as in the tables 1 and 2. In this Figure are shown the
27 + 1 states, from the less energetic state in the top to the
more one in the bottom and the size of the vertical bars are
proportional to the weight of the correspondent component.
The column to the left is for the non intensity-dependent sit-
uation and that one to the right is for the intensity-dependent
case. Clearly, in the non intensity-dependent situation and
for the lowest energy eigenvalue (in the top), the compo-
nents more important in the composition of the eigenstate
correspond to the lower bosonic states. As the energy eigen-
value increases (going down in the figure), this behavior
gradually change, in a such way that for the highest energy
eigenvalue (in the bottom) we observe that the components
with more importance in the composition of the eigenstate
correspond to the higher bosonic states. For the intensity-
dependent situation and for the positive energy eigenvalues,
we observe the same behavior as describe above for the rel

HamiltonianH is progressively added, a process that is represented@tive importance of the components in the composition of
by columns (A), (B), (C), and (D). Figure (3b) is the radiation the eigenstate. However, for the only one eigenstate with a

intensity-dependent version of Figure (3a).

negative energy eigenvalue (in the top), we see that interme-
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diate components present a higher relative importance thar® Conclusions
the components in the extremes. A non observed vertical bar
in the figures does not mean that the respective componentn this article we introduced a model for interaction between
is null, but only that in the figure scale its relative value can the matter, consisting d¥ two-level particles, and the radi-
not be represented. ation via anm-photon process, witm = 1,2,3,.... The
Figure (5) is the same as for Figure (4) with= m = 3. model includes the nonlinear effects related with the non-
As we can see, for negative (top of each column) and posi-linear polarisability in a nonlinear medium and nonlinear
tive energy eigenvalues, the general behavior for the relativeeffects due an intensity-dependent radiation coupling. We
importance of the components is the same as describe bepresent the exact results for the eigenstates and eigenvalues
fore. for some different values gfin terms of the photon number
m. We compare the different spectra to evaluate the effects
| Non Intensity-Dependent | | I ntensity-Dependent | of the photon number involved in the interaction and the dif-

. ) ferent sources of nonlinearity and also discuss some aspects
B2, 232 =3 m=3 | E.=s280 (=32 023 m=3, of the composition of the eigenstates and of the spectra ob-
*r ] *r ] tained in these cases.
osf . 06 . We emphasize that our general model makes possible to
0al ] oal ] resolve simultaneously problems with different Hamiltoni-

i ans; as we sed = A = 0, our model reduces to a bare
0.2 B 0.2 - . . . .

i | | - I ‘ I resonant modgl for a multl—gtom sysyem interacting W|t_h an
P T — electromagnetic radiation via a multi-photon process; if we
o8k . osf - put® =0, A, # 0, we get a bare multi-atom -photon non
resonant model and if we sét # 0, A, = 0, we have a
multi-atom -photon resonant model with a nonlinearity. We

0

06 — 0.6 -

o4r ] oar ] showed that it is straightforward to generalize all these situ-
02 - 0o} . ations for an intensity-dependent interaction.
£, |l & £ I ol A related quantum mechanical model for the propaga-
O fez2%m <30z ne e tion of light through a nonlinear medium taking into ac-
T ] T ] count the nonlinear polarisability of radiation was presented
os- . o8 ] in Ref. [15]. Our Hamiltonian can be considered a gen-

i eralization of this model. Indeed, forn. = 1, using the
Holstein-Primakoff boson mapping of the angular momen-

0.2F - 0.2F -
tum algebra:
0 I I . I ‘ | 9

E=408570, =32 =8, m=3 Le. -102100, =32 13, m=3
] ] 3y = a7 b (J1- Lbib),
b ﬁ b ﬁ -y (\i-gii)i 6D
| ‘ _ | ‘ _ By= 14 b,
= s and introducing the scaled matter-radiation interaction pa-
k ©) k rameter o
Q= N (6.2)

Figure 5. The version of Fig. (4) for = m = 3.
one sees that in the limjt — oo, substitution of Eq. (6.1)
into Egs. (2.1), (2.1), (2.2) yields the Hamiltonian

]

H = hwala + huwobTh + QY (aiﬁ + aTZS) +heat?a? (6.3)

up to a constant. Eqg. (6.3) is the Hamiltonian studied in point for other models.

Ref. [15]. Our Hamiltonian can also be considered as an

exactly-solvable coupled-channels problem. As many inter-

esting problems in areas ranging from nuclear physics [16] Appendix |

to the study of transitions from metastable states [17] have

COUp|Ed'Channe|S form, our Hamiltonian can be a Starting The roots of the cubic a|gebraic equation
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with
E. +D,E. +D,E, +D,=0, (6.4) { b= % (3D, — D?) 66)
_ 1 3 .
can be obtained by[18] u=75(D,D, =3D,) - 5:D; .
EY = (B, +E_)—1iD, .
m o 373 3 Appendix Il
E =-3(E +E)—-3D,+52 (Ey —E-) (6.5)
Y = ~1(By +E_)- 1D, - i\2/5 (B, —E_) . The roots of the quartic algebraic equation
where £, and E_, that must be complex conjugate, are
given by E +D,E +D,E +DE, +D,=0, (6.7)
1/3
E, = [u +vpP+ u2] , can be obtained by[19]
]
(1,2) 1 1 2
OF = (D, +2B) £ /& (D, +2B.)* — (Bi+ By) 69
E’Y =-1(D,-2B,)+ \/ﬁ (D, —2B,)* — (Bx — By),
where
Bo = /2B - D, + 1D? | s
By=(BD,~D,)/@B)  vith  Bi=[uk s (69)
By =By +B_+{D,,
and
1 2
p:3—[3(D1D374D0)7D2] 6.10
{ w=ps  LIp (D,D, - 3D,)+ D, (8D, —3D2)] . (6.10)
|
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