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Ghost Free Analysis of a Nonsymmetric Theory of Gravitation
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The absence of ghost-negative energy radiative modes in a proposed generalized theory of gravitation based on
a non-symmetric metric is reanalyzed. The missing contribution of the symmetric sector of the Lagrangian is
calculated and shown to be null. The ghost free character of the theory is then firmly established.

1 Introduction

In this paper we shall investigate in a more complete way the
problem of the emission of gravitational radiation in a metric
nonsymmetric theory of gravitation developed by one of us
in a previous work [1], herefrom referred to as I, which has
not been adequately investigated in that paper. In a second
paper [2] the solution of the field equations for a spherical
point source was obtained together with its implications for
the motion of test particles and light. The theory was shown
to be consistent with the four classical solar tests of general
relativity.

The sources of the field are the energy-momentum-
stress tensorTαβ and the phenomenological coupled mat-
ter fermion number current densitySα = Fnα, where
nα = nuα is the fermion number density (n) current found
in the description of the interior of stars andF is the cou-
pling constant of the current to the geometry. The gravita-
tional radiation comes from both of these sources,Sα being
the one connected directly to the antisymmetric partg[αβ]

of the metric. In I it was claimed that the energy of the
emitted radiation coming from the current sourceSα is pos-
itive definite. As the part coming from the stressTαβ has no
problem, it was concluded that the theory is free of ghost-
negative radiative modes which, as shown by Damour, Deser
and McCarthy (DDM) [3], were present in previous theories.
However, in analyzing the radiation coming from the current
sourceSα only a part of the Lagrangian, its antisymmetric
sector, was taken into account leaving it open the question of
what the contribution coming from the other part, the sym-
metric sector, might be. Here we complete this missing cal-
culation showing that this last contribution is actually null
guaranteeing in this way that the theory is really ghost free.

2 The field equations

The vacuum field Lagrangian of the theory is written in Eq.
(I-5.13), here with the replacement2∆α/3 = Γα,

L = gαβ

(
Uαβ + Γ[α,β] +

1
2
Λgαβ

)
. (1)

Here we use the notationX =
√−gX, whereg is the deter-

minant ofgαβ whose inverse isgαβ as defined bygαβgαγ =
δα
γ . Next

Uαβ = Γσ
(αβ),σ−Γσ

(σα),β +Γσ
(αβ)Γ

λ
(σλ)−Γσ

(αλ)Γ
λ
(σβ), (2)

symmetric, because the second term is (see below), is the
analogue of the Ricci tensor, depending only on the sym-
metric part of the connection which is given by

Γσ
(αβ) =

1
2
g(σλ) (sαλ,β + sλβ,α − sαβ,λ)

+
1
4

(
g(σλ)sαβ − δσ

αδλ
β − δλ

αδσ
β

)(
ln

s

g

)

,λ

, (3)

where sαβ symmetric and with determinants, is the in-
verse ofg(αβ) as defined bysαβg(αγ) = δβ

γ . Next,Γα =
1
2 (Γµ

αµ − Γµ
µα) is the torsion vector involving contractions

of the antisymmetric part of the connection andΛ is the cos-
mological constant. TheΛ term of Eq. (1) could be written
2
√−gΛ but we shall keep it as it is to make a close contact to

I. From Eq. (3) one sees thatΓσ
(σα) =

(
ln(−g)/

√−s
)
,α

so
the second term on the right of Eq. (2) is in fact symmetric.
Variations with respect togαβ , Γγ

(αβ) andΓα yields the field
equations. The former leads toUαβ + Γ[α,β] + Λgαβ = 0,
with symmetric and antisymmetric parts given by

Uαβ + Λg(αβ) = 0 (4)

and

Γ[α,β] + Λg[αβ] = 0. (5)

The variation with respect toΓσ
(αβ) leads to the third field

equation

g(αβ),γ +g(αµ)Γβ
(µγ) +g(βµ)Γα

(µγ)−g(αβ)Γµ
(µγ) = 0, (6)

which can be solved as in Eq. (3), and the last one leads to
the fourth one,

g[αβ],β = 0. (7)
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3 The energy-momentum-stress ten-
sor

Following DDM [4], the idea behind the calculation is to ex-
pand the field Lagrangian in Eq.(1) about a Riemannian gen-
eral relativity (GR) background space with metricGαβ in
such a way as to have the Lagrangian splitted in two terms,
the one of GR and a second one containing the contribution
of g[αβ]. This is done by writinggαβ = Gαβ + ḡαβ and
expand̄gαβ=ḡ(αβ) + ḡ[αβ] in powers of the lowest-order an-

tisymmetric part of the metricBαβ = ḡ
(1)
[αβ] which acts as a

perturbation, keeping the expansion to second order

gαβ = Gαβ + Bαβ + aBαµBµ
β + bGαβBµνBµν . (8)

Herea andb are constants to be determined and indices are
raised with the GR metricGαβ , Bµ

β = GµλBλβ . With such
an expansion the Lagrangian can be expanded as

L =
√
−G(R(G) + 2Λ) + LB , (9)

where the first term is the Lagrangian corresponding to the
GR background field with Ricci scalarR andLB is the con-
tribution of theBαβ field, which acts then as a ”matter” La-
grangian in the GR background field. In this formulation the
B gravitational stress tensorTµν

B is defined through the vari-
ation of theB action according to [4]δIB =

∫
δLBd4x =

8π
∫

Tαβ
B δGαβd4x, that is,

Tαβ
B =

1
8π
√−G

δLB

δGαβ
. (10)

All what we need is theB field Lagrangian to second or-
der and that is why we stopped at that order in Eq. (8). To
make a close contact with I we rewrite Eq. (1) as a sum of a
symmetric sector plus an antisymmetric one,

L = g(αβ)

(
Uαβ +

1
2
Λg(αβ)

)
+g[αβ]

(
Γ[α,β] +

1
2
Λg[αβ]

)

(11)
and consider the contribution of each term toLB . Only the
contribution of the second term was considered in I, lead-
ing to a positive energy. Here we shall complete the cal-
culation by investigating what the contribution of the first
term is. Calling these contributionsL1B andL2B we write
LB = L1B + L2B in Eq. (9),

L =
√
−G(R + 2Λ) + L1B + L2B , (12)

where according to Eq. (11)

L1B = g(αβ)

(
Uαβ +

1
2
Λg(αβ))−

√
−G(GαβRαβ + 2Λ

)

(13)

and

L2B = g[αβ]

(
Γ[α,β] +

1
2
Λg[αβ]

)
. (14)

Only this part of the Lagrangian was considered
in I. To second order we see that this term is
L(2)

2B =
√−GBαβ

(
Γ(1)

[α,β] + 1
2ΛBαβ

)
= −Λ

√−G

GαγGβδBγδBαβ/2, where use has been made of Eq. (5) in
the last step. From Eq. (10) this gives to theB stress tensor
the contribution written in Eq. (I-5.19)

Tαβ
B = − 1

8π
Λ

(
1
4
GαβBµνBµν −BαµBβ

µ

)
, (15)

which is typical of a Maxwell field stress tensor ifΛ < 0.
This then leads to a positive energy contribution as ascer-
tained in I. By the way, this result follows immediately from
the relationsδ

√−G =
√−GGαβδGαβ/2 and δGµρ =

−Gµ(αGβ)ρδGαβ when varyingL(2)
2B .

Our problem now is to see what the contributionL1B of
theB field is. As it will be shownL1B will give no contri-
bution to theB stress tensor. We proceed with the expansion
of the first term on the right of Eq. (13) on account of Eq.
(8). First we have, withBµνBµν = B2,

√−g =
√
−G

{
1 +

1
4
(1− 2a + 8b)B2

}
. (16)

Next, the inverse to Eq. (8) isgαβ = Gαβ + Bαβ +
(1 − a)BαµBµ

β − bGαβB2. Its symmetric part isg(αβ) =
Gαβ +(1−a)BαµBµ

β−bGαβB2, whose inverse issαβ =
Gαβ − (1− a)BαµBµ

β + bGαβB2. Thus, from Eq. (3) we
see thatΓσ

(αβ) = Σσ
αβ+ Γ

σ

(αβ) where the first term is the
Christoffel connection of theG field and the second term
is the contribution of theB field, which is at least of order
O(B2) becausesαβ = Gαβ + O(B2). With this we obtain
for Uαβ the relationUαβ = Rαβ+ Uαβ where

Uαβ=Γ
σ

(αβ)|σ − Γ
σ

(ασ)|β + Γ
σ

(αβ)Γ
ρ

(σρ) − Γ
σ

(αρ)Γ
ρ

(σβ)

(17)
is the contribution of theB field. Here a vertical bar in-
dicates the Riemannian covariant derivative with respect to
the background Christoffel connection. Knowing all this
it is easy to write down the form ofL1B in terms of a
andb. As eachΓ is of orderO(B2) we see that the term√−GGαβ Uαβ coming from the expansion of the first term
on the right-hand side of Eq. (13) is of fourth order inB, up
to a total derivative coming from the two first terms ofUαβ

which does not contribute to the Lagrangian. To the desired
second order the final result is

c

L(2)
1B =

√
−G

({
1
4
(1− 2a + 4b)B2Gαβ + (1− a)BαµBµ

β

}
Rαβ + Λ(4b− a)B2

)
. (18)
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The last task before calculating the corresponding contribu-
tion to the stress tensor is then to determine the values of the
two parameters.

4 Determination of the parameters

To achieve the determination of the two parametersa and
b we make use of the solution of the field equations for a
point mass source found in [2] and compare with Eq. (8)
when properly expanded. The solution forgαβ correspond-
ing to the static spherically symmetric arc element, given in
standard form by

ds2 = γdt2 − αdr2 − r2(dθ2 + sin2 θdφ2) , (19)

is

γ =
(

1 +
F 2

r4

)1/2

− 2M

r

(
1 +

F 2

r4

)1/4

(20)

and

1
α

= 1 +
F 2

r4
− 2M

r

(
1 +

F 2

r4

)3/4

, (21)

whereM is the mass of the particle. The last nonzero metric
components are

g[r0] = −g[0r] =
F

r2

1
(1 + F 2

r2 )3/4
. (22)

We shall now construct harmonic coordinatesXα out of
the standard onesxα = (t, r, θ, φ) following the same steps
we encounter in GR [5]. These harmonic coordinates are the
ones appropriate to radiation problems as we are now fac-
ing. The harmonic condition is here defined by the relation
(g(αβ)(X)Γγ

(αβ)(X)) = 0 similar to GR. By a change to the
coordinatexα this relation becomes, as shown in Appendix
A,

g(αβ) ∂2Xλ

∂xα∂xβ
− g(αβ)Γγ

(αβ)X
λ,γ = 0. (23)

Notice that as Eq. (6) gives the relation
g(αβ),β +g(αβ)Γγ

(αβ) = 0 similar to GR, the above ex-

pression can also be written as (g(αβ)Xλ,α ),β = 0. We
set

c

X1 = R(r) sin θ cosφ; X2 = R(r) sin φ;X3 = R(r) cos θ (24)

and look for the solution forR(r) from Eq. (23). Having this we can determine the arc element in terms of the new space
variables. Usingdr = dR/Ŕ,R2dΩ = dXidXi − (dR)2, andRdR = XidXi we obtain

ds2 = γdt2 −
[

r2

R2
δij + (

α

R´2
− r2

R2
)
XiXj

R2

]
dXidXj . (25)

d

HavingR(r) we will then be able to determine the parame-
tersa andb by comparing the resultant metric components
with Eq. (8). To obtainR(r) we concentrate on Eq. (23)
for the space componentXi and make use of Eqs. (II-13)
and (II-20) for the needed values ofg(αβ) andΓγ

(αβ). In this
way we obtain a second order differential equation forR(r)
which we solve to first order inF 2/r4 only. We neglect the
curvature terms that depends onM because theF depen-

dence is all we need for the determination of the parameters
a andb. We show the details of the calculation in Appendix
B and quote here only the final result,

R = r(1 +
F 2

4r4
). (26)

Plugging this in Eq. (25) together with the values ofα and
γ in Eqs. (20) and (21) without theM terms we find

c

ds2 =
(

1 +
F 2

2r4

)
dt2 −

[(
1− F 2

2r4

)
δij +

F 2

r4

XiXj

R2

]
dXidXj . (27)

d

Now, to lowest order, that is keeping onlyB0i terms and no
curvature contributions, Eq. (8) gives

g00 = 1 + (a− 2b)B0iB0i (28)

and
gij = −(1− 2bB0kB0k)δij − aB0iB0j. (29)

Comparison with the metric components present in Eq. (27)
shows that

a = 1 (30)



824 S. Ragusa and L. Chibebe Céleri

and

b =
1
4

, (31)

and B0iB0i = F 2/r4 this last relation being in agree-
ment with the first order part of Eq. (22)g(1)

[r0] = F/r2 =
(B0iB0i)1/2, the modulus ofB0i(r). With the results in Eqs.
(30) and Eq. (31) we see the right hand side of Eq. (18) van-
ishes,L(2)

1B = 0. ThereforeL1B is at least of fourth order
in theB field, and as a consequence of this the correspond-
ing stress tensor vanishes. Therefore, Eq.(15) gives the full
expression of theB stress tensor. This then establishes in
a complete way the positive definite character of the theory
developed in [1].

5 Appendix A: Harmonic relation

The transformation formula forg(αβ)(x) when we go to a
new coordinate framēx is

g(αβ) =
∂xα

∂x̄µ

∂xβ

∂x̄ν
ḡ(αβ) (32)

and for the symmetric part of the connection [6]

Γγ
(αβ) =

∂xα

∂x̄η

(
∂x̄ρ

∂xα

∂x̄σ

∂xβ
Γ̄η

(ρσ) +
∂2x̄η

∂xα∂xβ

)
. (33)

Contracting these two equations, and multiplying by
∂x̄λ/∂xγ we obtain

g(αβ)Γγ
(αβ)

∂x̄λ

∂xγ
= ḡ(ρσ)Γ̄λ

(ρσ) + g(αβ) ∂2x̄λ

∂xα∂xβ
. (34)

With the harmonic condition̄g(ρσ)Γ̄λ
(ρσ) = 0 we obtain Eq.

(23), with x̄λ = Xλ.

6 Appendix B: Solution for R

We use Eqs. (II-13) and (II-20) for the needed values of
g(αβ) andΓγ

(αβ)and note in special the relationsg00γ/α =
γ/(αγ−ω2) = −g11 and (rαg11)−1 = 1−F 2/(F 2 + r4).
In this way we obtain after some algebra

c

R” + Ŕ

[
γ́

2γ
− ά

2α
+

2
r

(
1− F 2

F 2 + r4

)]
− 2αR

r2

(
1− F 2

F 2 + r4

)
= 0, (35)

d

which we solve forR to first order inF 2/r4 only. We ne-
glect in Eqs. (20) and (21) the curvature terms that depends
on M because theF dependence is all we need for the de-
termination of the parametersa andb. PuttingR = r +xF 2

we are led to the differential equation

x” +
2x́

r
− 2x

r2
− 1

r5
= 0 , (36)

with solutionx = 1/4r3. Then,R = r(1 + F 2/4r4) as
written in Eq. (26)
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