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We review and extend the formalism introduced by Peliti, that maps a Markov process to a path-
integral representation. After developing the mapping, we apply it to some illustrative examples:
the simple decay process, the birth-and-death process, and the Malthus-Verhulst process. In the
�rst two cases we show how to obtain the exact probability generating function using the path
integral. We show how to implement a diagrammatic perturbation theory for processes that do not
admit an exact solution. Analysis of a set of coupled Malthus-Verhulst processes on a lattice leads,
in the continuum limit, to a �eld theory for directed percolation and allied models.

1 Introduction

It is often noted that nonequilibrium statistical me-
chanics lacks the comprehensive formalism of ensembles
that has proved so useful in equilibrium. The reason
is that equilibrium statistical mechanics treats station-
ary states for a special class of systems, that possess
detailed balance. This allows one to bypass the dy-
namics, and study stationary properties directly. For
systems out of equilibrium, we generally do not have
such a shortcut, and must deal with the full dynamical
problem, even if our goal is only to obtain stationary
properties. In the case of stochastic systems with a dis-
crete state space, the fundamental description is given
by the master equation, which governs the evolution
of the probability distribution. This class of problems
includes a wide range of systems of current interest,
that exhibit phase transitions or scale invariance far
from equilibrium: driven lattice gases, birth-and-death
processes such as directed percolation or the contact
process, sandpile models, and interface growth models.

One of the more powerful tools for studying stochas-
tic models is a formalism that maps the process to
a path-integral representation. This mapping gener-
ates an e�ective action that can be studied using the
tools of equilibrium statistical physics, for example,
the renormalization group. Several methods for map-
ping a stochastic process to an equilibrium-like action
have been proposed [1-7]. In this article we review
the method developed by Peliti [8], and apply it to
some simple stochastic processes. This method has sev-
eral advantages. With it, one can map any birth-and-
death process to a path-integral representation with-
out ambiguity. In particular, the step of writing a
Langevin equation, and of postulating noise autocor-

relations, does not arise in this formalism. Thus it
provides a direct path from the model of interest to
an e�ective action, and (in the continuum limit), to its
�eld theory, without the uncertainties that often attend
the speci�cation of the noise term [9]. A second advan-
tage, which we explore in detail, is that it leads to a
systematic perturbative analysis for Markov processes.

The principal aim of this article is to acquaint the
reader with the formalism and provide a set of worked
examples whose mastery will allow one to apply the
method to problems at the frontier of research. While
Peliti's article [8] provides an excellent exposition of the
mapping, we include, for completeness, a derivation of
the central formulas. Our development of the pertur-
bation theory di�ers somewhat from Peliti's. Most of
the applications discussed are also new.

The balance of this article is structured as follows.
In Sec. II we derive the path-integral representation,
starting from the master equation. Sec. III presents
an application to the simple decay process, and expres-
sions for two-time joint probabilities. In Sec. IV we be-
gin our discussion of diagrammatic perturbation theory
for the probability generating function, which is illus-
trated with a pedagogical example. This is extended in
Sec. V where we analyze the birth-and-death process
using perturbation theory. In Sec. VI a perturbation
expansion for moments of the distribution is developed,
which turns out to be much simpler than that for the
full generating function. This method is applied to the
Malthus-Verhulst process in Sec. VII. In Sec. VIII we
illustrate another application of the formalism, show-
ing how the path-integral description for a lattice of
coupled Malthus-Verhulst processes leads, in the con-
tinuum limit, to a �eld theory for directed percolation.
Sec. IX presents a brief summary.
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2 From the master equation to a

path integral

In this section we recapitulate Peliti's derivation of the
path integral mapping. We consider Markov processes
in continuous time, and with a discrete state space
n = 0; 1; 2; :::. (We may think of n as the size of a
certain population.) The probability pn(t) of state n at
time t is governed by the master equation [10, 11, 12]:

dpn(t)

dt
= �pn(t)

X
m

wmn +
X
m

wnmpm(t) ; (1)

where wmn is the rate for transitions from n to m.
(We study stationary stationary Markov processes, i.e.,
time-independent transition rates.)

We now associate a vector jni in a Hilbert space
with each state n, and for convenience de�ne the inner
product so:

hmjni = n!Æm;n : (2)

The identity may then be written as

1 =
X
n

1

n!
jnihnj : (3)

(All sums run from zero to in�nity unless otherwise
speci�ed.) A probability distribution �n (�n � 0,P

n �n = 1), may be represented as a linear combi-
nation of basis states:

j�i =
X
n

�njni : (4)

The Hilbert space formalism is useful because it pro-
vides a simple way to express the evolution in terms of
creation (�) and annihilation (a) operators, which we
de�ne via:

ajni = njn�1i �jni = jn+1i : (5)

These relations imply that [a; �] = 1. (Note that while
we make use of many pieces of notation familiar from
quantum mechanics, there are fundamental di�erences.
Expected values, for example, are linear, not bilinear,
in j�i.) The mean population size is given by

E[n(t)] = h jaj�(t)i ; (6)

where

h j �
X
m

1

m!
hmj (7)

is the the projection onto all possible states.
Central to our analysis will be the probability gen-

erating function (PGF),

�t(z) �
X
n

pn(t)z
n : (8)

We denote the PGF corresponding to state j�i as
�(z) =

P
n �nz

n. (Note that �(1) = 1 by normal-
ization.)

Next consider the inner product between states j�i
and j i:

h�j i =
X
n

1

n!
h�jnihnj i =

X
n

n!�n n : (9)

We can write this in terms of the corresponding PGFs
if we note the identity

Z
dzzn

�
�
d

dz

�m
Æ(z) = n!Æn;m ; (10)

which is readily proved, integrating by parts. (Unless
otherwise speci�ed, all integrals are over the real axis.)
Then we have

h�j i =

Z
dz�(z)  

�
�
d

dz

�
Æ(z)

=

Z
dzdz0

2�
�(z) (iz0)e�izz

0

; (11)

where we used the integral representation of the Æ func-
tion.

For birth-and-death processes, it is always possible
to write the master equation in terms of an evolution
operator L composed of creation and annihilation op-
erators (speci�c examples are considered below). The
master equation then takes the form

dj�i

dt
= Lj�i ; (12)

and has the formal solution

j�(t)i = eLtj�(0)i � Utj�(0)i : (13)

This evolution has its analog in the space of probability
generating functions; it is for the analog of the operator
Ut in the PGF representation that we shall develop a
path-integral expression. To do this we de�ne, for any
operator A in the Hilbert space, a function called its
kernel:

A(z; �) =
X
m;n

zm�n

m!n!
Am;n (14)

where Am;n = hmjAjni are the matrix elements of A.
Suppose j i = Aj�i. The PGF corresponding to j i is
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 (z) =
X
n

 nz
n =

X
n

zn

n!
hnjAj�i

=
X
n;m

zn

n!
hnjAjmi

1

m!
hmj�i

=
X
n;m

zn

n!
An;m

1

m!

Z
d�d� 0

2�
�m�(i� 0)e�i��

0

=

Z
d�d� 0

2�
A(z; �)�(i� 0)e�i��

0

: (15)

We shall also require an expression for the kernel of a
product of a pair of operators, A and B:

c

AB(z; �) =
X
m;n

zm

m!
[AB]m;n

�n

n!

=
X

n;m;r;s

zm

m!
hmjAjrihsjBjni

�n

n!

Ær;s
r!

=
X

n;m;r;s

Z
d�
zm

m!
Am;rBs;n

�n

n!

1

(r!)2
�r
�
�
d

d�

�s
Æ(�)

=

Z
d�d�0

2�

X
n;s

A(z; �)Bs;n
�n

n!

(i�0)s

s!
(i�0)se�i��

0

=

Z
d�d�0

2�
A(z; �)B(i�0; �)e�i��

0

: (16)

d

Given an operator A, we may put it in normal or-

der by commuting all creation operators to the left of
all annihilation operators; it will then have the form:

A =
X
m;n

Am;n�
man : (17)

With this we associate the normal kernel:

A(z; �) =
X
m;n

Am;nz
m�n : (18)

The ordinary and normal kernels are related via:

A(z; �) = ez�A(z; �) : (19)

[To prove Eq.(19) we show that the coeÆcients of zm�n

on the right- and left-hand sides are equal. The coeÆ-
cient on the r.h.s. is:

min[m;n]X
r=0

1

r!
Am�r;n�r ;

while on the l.h.s. it is simply Am;n=(m!n!). The ma-
trix element, however, may be written so:

c

Am;n =
X
r;s

Ar;shmj�
rasjni

=
X
r

nX
s=0

Ar;s
n!

(n�s)!
hmjn+r�si

=

nX
s=0

Am�n+s;s
m!n!

(n�s)!
=

min[m;n]X
t=0

Am�t;n�t
m!n!

t!
;

which establishes the identity.]
We may now develop a path-integral representation for Ut(z; �). To begin, recall Trotter's formula, which allows

us to write:

Ut = etL = lim
N!1

�
1 +

tL

N

�N
: (20)

Each factor in the product has a corresponding kernel, which, using Eq. (19), can be written
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�
1 +

tL

N

�
(z; �) = ez�

�
1 +

t

N
L(z; �)

�
; (21)

with L(z; �) the normal kernel of the evolution operator. Now using Eq. (16), we have

Ut(z; �) = lim
N!1

N�1Y
j=1

�Z
d�jd�

0
j

2�
e�i�j�

0

j

� NY
k=1

�
ei�

0

k�k�1

�
1 +

t

N
L(i�0k; �k�1)

��
; (22)

or, rearranging,

Ut(z; �) = lim
N!1

N�1Y
j=1

Z
d�jd�

0
j

2�
exp

(
N�1X
k=1

�
�i�0k(�k��k�1) +

t

N
L(i�0k; �k�1)

�
+

t

N
L(z; �N�1) + z�N�1

�
: (23)

Finally, we let N ! 1 with t0 = (k=N)t, �k !  (t0) and �0k !  0(t0), to obtain a path-integral expression for
Ut(z; �):

Ut(z; �) =

Z
D D 0 exp

�
�

Z t

0

dt0
h
i 0(t0) _ (t0)�L(i 0;  )

i
+ z (t)

�
; (24)

d

where the dot denotes a time derivative. The func-
tional integrals over  (s) and  0(s) are for 0 < s < t,
with boundary conditions  (0) = � and i 0(t) = z;  
and  0 are real. The symbol

R
D is de�ned by the

limiting process in Eq. (23). [The reader may wonder
at this point what has become of the factors of 2� in
the denominator of Eq. (23). The answer is that the
prefactor, which for the moment is unde�ned, will be
�xed via normalization.] Note also that the �rst term
in the argument of the exponential could be written
more precisely as i 0(t0) _ (t0�), i.e., the time derivative
is evaluated at t0� � with �! 0 from above. While the
function  0(t0) has no obvious physical signi�cance, we
shall see that  is closely related to the random variable
n(t) in the birth-and-death process.

The kernel Ut(z; �) has two principal uses. First,
from Eqs. (15) and (16), we see that Ut provides a
mapping between PGFs at di�erent times:

�t(z) =

Z
d�d� 0

2�
e�i��

0

Ut(z; �)�0(i�
0) (t � 0): (25)

We make considerable use of this relation in the ex-
amples that follow. Evaluating the integral is particu-
larly simple if the initial distribution is Poisson. Then
�0(z) = ep(z�1), and

�t(z) = e�pUt(z; p) : (26)

Another simple case is pn(0) = Æn;n0 (exactly n0 indi-
viduals initially), corresponding to �0(z) = zn0 , which
yields

�t(z) =
@n0Ut(z; �)

@�n0

����
�=0

: (27)

Setting z = 0 in the above expressions, we obtain the
probability of the state n= 0, which in many cases is
absorbing, so that the survival probability is given by
Ps(t) = 1�p0(t).

Independent of its probability interpretation, the
kernel has a second utility: we may treat the argu-
ment of the exponential as an e�ective action. In the
continuum limit of a system with many degrees of free-
dom, the function  (t) becomes a classical �eld,  (x; t)
(similarly for  0), leading to a �eld theory for a Markov
process originally described by transition rates for par-
ticles on a lattice. (An example is discussed in Sec.
VIII.) With such a �eld theory in hand, we can apply
methods such as the renormalization group to study
critical behavior. The e�ective action is known once
we construct the evolution operator L; at no point do
we need to write a Langevin equation or stipulate noise
properties.

3 Decay Process

As a simple example we consider exponential decay,
i.e., the Markov process with transition rates wm;n =
wnÆm;n�1. The evolution operator is

L = w(1� �)a : (28)

Since this is in normal order, we have

L = w(1� i 0) (29)

and thus,
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c

Ut(z; �)=

Z
D 

Z
D 0 exp

�
�

Z t

0

dt0
�
i 0(t0) _ (t0) + w(i 0 � 1) 

�
+ z (t)

�
: (30)

It is convenient to transform away the linear term in the action via the change of variable i ̂ = i 0 � 1. The �rst
term in the integral then contributes the additional (boundary) terms � (t) +  (0), and using  (0) = � we have

Ut(z; �)=

Z
D 

Z
D ̂ exp

�
�

Z t

0

dt0i ̂[@t0 + w] + (z � 1) (t) + �

�
: (31)

This can be evaluated exactly. Recalling that
R
d!ei!z = 2�Æ(z) , we see that the functional integral

Z
D ̂ exp

�
�

Z t

0

dt0i ̂[@t0 + w] 

�

imposes the condition

d (s)

ds
= �w (s) (32)

for 0 < s � t, and so  (t) =  (0)e�wt = �e�wt. In other words the functional integral over  ̂ yields a product of
Æ-functions:

Z
D ̂ exp

�
�

Z t

0

dt0i ̂[@t + w] 

�
= const:�

Y
0<s�t

Æ( (s)� �e�ws); (33)

which when inserted in Eq. (31) gives

Ut(z; �)= C expf�[1 + (z � 1)e�wt]g; (34)

where C represents the as yet undetermined normalization factor. Using this in Eq. (25) results in

�t(z) = C

Z
d�d� 0

2�
expfi�[�� 0 � i(1 + (z � 1)e�wt)]g�0(i�

0)

= C

Z
d� 0Æ[i� 0 � (1 + (z � 1)e�wt)]�0(i�

0) (35)

= �0[1 + (z � 1)e�wt]; (36)

d

where in the �nal line we set C = 1 to satisfy the nor-
malization condition, �t(1) = 1. If there are exactly n
particles at time zero, �0(z) = zn, and

�t(z) = [ze�wt + 1� e�wt]n; (37)

which on expanding yields

�m(t) =

�
n
m

�
e�mwt(1� e�wt)n�m; (38)

as expected. For a Poisson initial distribution we �nd

�t(z) = ep(z�1)e
�wt

; (39)

corresponding to a Poisson distribution whose mean de-
cays exponentially: p(t) = pe�wt.

3.1 Joint probabilities

It is useful to extend the formalism to joint probabil-
ities, i.e., for the values of the process at di�erent times.
For t1 � t2, let P (n1; t1;n2; t2jn0; 0) be the probability
of state n1 at time t1 and n2 at t2, given n0 at time 0.
The generating function for the joint probability is



78 Ronald Dickman and Ronaldo Vidigal

�(z1; t1; z2; t2jn0) =
X
n1;n2

zn11 zn22 P (n1; t1;n2; t2jn0; 0)

=
X
n1;n2

zn11 zn22 P (n1; t1jn2; t2)P (n2; t2jn0; 0)

=
X
n1;n2

zn11 zn22 P (n1; t1 � t2jn2; 0)P (n2; t2jn0; 0) ; (40)

where in the second line we used the Markov property and in the third, stationarity.
Let us modify slightly our notation for the one-time generating function, to include the initial condition, P (n; 0) =

�n(0) = Æn;n0 :

�(z; tjn0) =
X
n

znP (n; tjn0; 0) : (41)

Then we have

�(z1; t1; z2; t2jn0) =
X
n2

�(z1; t1 � t2jn2) z
n2
2 P (n2; t2jn0; 0)

=
X
n2

zn22 P (n2; t2jn0; 0)

Z
d�d� 0

2�
e�i��

0

Ut1�t2(z1; �)�(i�
0; 0jn2) (42)

where, in the second line, we used Eq. (25). Now, noting that �(i� 0; 0jn2) = (i� 0)n2 , we have

�(z1; t1; z2; t2jn0) =
X
n2

P (n2; t2jn0; 0)

Z
d�d� 0

2�
e�i��

0

(iz2�
0)n2Ut1�t2(z1; �)

=

Z
d�d� 0

2�
e�i��

0

Ut1�t2(z1; �)�(iz2�
0; t2jn0)

=

Z
d�d� 0

2�

Z
d�d�0

2�
e�i��

0

Ut1�t2(z1; �)e
�i��0Ut2(iz2�

0; �)(i�0)n0 : (43)

Thus we have a formula analogous to Eq. (25), for the two-time generating function. The generalization to n times
is straightforward.

For the decay process, Eq. (43) reads:

�(z1; t1; z2; t2jn0) =

Z
d�d� 0

2�

Z
d�d�0

2�
e�i��

0

exp
h
�f(z1 � 1)e�w(t1�t2) + 1g

i
� e�i��

0

exp
�
�f(iz2�

0 � 1)e�wt2 + 1g
�
(i�0)n0 ; (44)

which, after integrations over Æ-functions, yields:

�(z1; t1; z2; t2jn0) =
n
1 + e�wt2

h
z2

�
(z1�1)e

�w(t1�t2) + 1
�
� 1

ion0
: (45)

From this we readily obtain the expectation:

hnii =
@�(z1; t1; z2; t2jn0)

@zi
jz1=z2=1 = n0e

�wti ; (46)

and

hn1n2i =
@2�(z1; t1; z2; t2jn0)

@z1@z2
jz1=z2=1 = n0e

�wt1 + n0(n0�1)e
�w(t1+t2) : (47)

The covariance is then
hhn1n2ii = n0e

�wt1 [1� e�wt2 ] : (48)

For t1 = t2 we �nd hhn(t)ii = n0e
�wt[1� e�wt], which is the variance of a binomial random variable [see Eq. (38)].
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4 Perturbation Theory

The preceding example illustrates the general proce-

dure for calculating probabilities, but no perturbative

treatment was needed as the action was purely bilin-

ear in the �elds. An example of perturbation theory is

a�orded by analyzing the Malthus-Verhulst process, in

which each individual has a rate � to reproduce, and

a rate of � + �(n � 1) to die, if the total population

is n. (The term / � represents saturation, so that the

population does not grow without limit even if � > �.)

For this process the kernel is

L(z; �) = �(z � 1)z� + �(1� z)� + �(1� z)z�2; (49)

since the corresponding evolution operator has the

property

c

Ljni = �n[jn+ 1i � jni] + �n[jn� 1i � jni] + �n(n� 1)[jn� 1i � jni]; (50)

which evidently reproduces the rates de�ning the process.

Using Eq. (25) we have (with  � i 0),

Ut(z; �)=

Z
D 

Z
D exp

�
�

Z t

0

dt0
�
 _ � �( �1)  � �(1� ) � �(1� )  2

�
+ z (t)

�
: (51)

As before, we eliminate the linear term by changing variables,  ̂= i 0�1, yielding

Ut(z; �)=

Z
D 

Z
D ̂ exp

�
�

Z t

0

dt0
�
 ̂[@t0+w] �� ̂

2 +� ̂(1+ ̂) 2
�
+� + (z�1) (t)

�
; (52)

where w = �� �. Separating the bilinear part of the action from the cubic and quartic terms, we have

Ut(z; �)=

Z
D 

Z
D ̂ exp

�
�

Z t

0

dt0 ̂[@t0+w] +� + (z�1) (t)

�
exp[�SI ]; (53)

where

SI =

Z t

0

dt0[�� ̂2 +� ̂(1+ ̂) 2] �

Z t

0

dt0LI(t
0): (54)

Evidently SI must be treated perturbatively. It is interesting to note that while the process with � = 0 admits

an exact solution, the cubic term generates a perturbation series in the present formalism. When we expand e�SI

we obtain a series of functional integrals over  and  ̂ of various products of these �elds times the \Gaussian"

factor e�S0 . Consider the basic contraction:

[ (t1) ̂(t2)] =

Z
D 

Z
D ̂ (t1) ̂(t2) exp

�
�

Z t

0

dt0 ̂[@t0+w] +� + (z�1) (t)

�
: (55)

Let

F [ ;  ̂] = exp

�
�

Z t

0

dt0 ̂[@t0+w] +� + (z�1) (t)

�

= exp

�
�

Z t

0

dt0 [�@t0+w] ̂ + �[ ̂(0) + 1]

�
; (56)

where in the second line we integrated by parts and used the boundary conditions  (0) = � and  ̂(t) = z�1. Since

the contraction [ (t1) ̂(t2)] is the functional integral of  (t1) ̂(t2)F , it is convenient to introduce the operator K

via the relation

K(t2)F [ ;  ̂] =  ̂(t2)F [ ;  ̂]: (57)

The fact that



80 Ronald Dickman and Ronaldo Vidigal

Æ

Æ (t00)
F [ ;  ̂] = �(�@t00 + w) ̂(t00)F [ ;  ̂]; (58)

suggests that K take the form

K(t2) =

Z t

0

dt00�(t00; t2)
Æ

Æ (t00)
+ B (59)

where B is a boundary term. Using Eq. (58) and integrating by parts yields

Z t

0

dt00 �(t00; t2)
Æ

Æ (t00)
F

=

�
�

Z t

0

dt00 ̂(t00)(@t00 + w)�(t00; t2) + (z�1)�(t; t2)�  ̂(0)�(0; t2)

�
F : (60)

Consistency with Eq. (57) then requires that

(@t00 + w)�(t00; t2) = �Æ(t
00 � t2); (61)

which has the `causal' solution

�(t00; t2) = ��(t
00 � t2)e

�w(t00�t2); (62)

leading to

K(t2) = �

Z t

t2

dt00e�w(t
00�t2)

Æ

Æ (t00)
+ (z � 1)e�w(t�t2); (63)

as may be veri�ed directly.

To evaluate

[ (t1) ̂(t2)] =

Z
D 

Z
D ̂  (t1)K(t2)F( ;  ̂): (64)

we make use of our earlier result, Eq. (33), to evaluate the integral over  ̂:

[ (t1) ̂(t2)] =

Z
D  (t1)

�
�

Z t

t2

dt00e�w(t
00�t2)

Æ

Æ (t00)
+ (z�1)e�w(t�t2)

�

� e�+(z�1) (t)
Y

0<s�t

Æ( (s)� �e�ws): (65)

Now perform a functional integration by parts so that Æ=Æ (t00) operates on  (t1). This yields

[ (t1) ̂(t2)] =

Z
D 

�Z t

t2

dt00e�w(t
00�t2)Æ(t1 � t

00) + (z�1)e�w(t�t2) (t1)

�

� e�+(z�1) (t)
Y

0<s�t

Æ( (s) � �e�ws): (66)

We may now integrate over  to obtain

[ (t1) ̂(t2)] =
h
(z�1)e�w(t�t2)�e�wt1 +�(t1 � t2)e

�w(t1�t2)
i
U0
t (z; �)

� h (t1) ̂(t2)iU
0
t (z; �) ; (67)

where

U0
t (z; �) � e

�[1+(z�1)e�wt]: (68)

In light of the discussion following Eq. (24), we see that in Eq. (57) and the subsequent expressions, t2 should be

interpreted as t+2 , which means that in the expectation, Eq. (67), we should take �(0) � 0.
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To see what our results mean, consider the very simple situation of LI = u ̂ , which is equivalent to exponential

decay with a rate w0 = w + u. Then,

e�SI = exp

�
�u

Z t

0

dt0 ̂ 

�
; (69)

and

Ut(z; �) = U0
t

�
1� u

Z t

0

dt0h (t0) ̂(t0)i+O(u2)

�
= U0

t

�
1� u(z�1)�te�wt +O(u2)

�
; (70)

consistent with the exact result, Ut(z; �) = e�[1+(z�1)e�wte�ut]. (Note that obtaining the correct result depends on

using �(0) = 0.)

The preceding analysis exposes a curious feature of this formalism. Normally when we perturb about a Gaussian

model, the expectation of the �eld h i = 0. Here, by contrast, we have

[ (t1)] =

Z
D 

Z
D ̂  (t1)F = �e�wt1U0

t ; (71)

while from Eq. (65) we have

[ ̂(t1)] =

Z
D 

Z
D ̂ K(t1)F = (z�1)e�w(t�t1)U0

t : (72)

This suggests that it would simplify matters if we were to introduce new �elds:

'(�) =  (�) � �e�w� ; (73)

and

'̂(�) =  ̂(�) � (z�1)e�w(t��); (74)

which by construction have expectation zero. The boundary conditions on  and  ̂ imply that '(0) = '̂(t) = 0.

Noting that @t0 + w annihilates e�wt
0

, we have

�

Z t

0

dt0 ̂(@t0 + w) = �

Z t

0

dt0['̂+ (z�1)e�w(t�t
0)](@t0 + w)'

= �

Z t

0

dt0'(�@t0 + w)'̂ � (z�1)'(t); (75)

where in the second line we integrated by parts and used the fact that �@t0 + w annihilates ewt
0

. Integrating by

parts once again gives

�

Z t

0

dt0 ̂(@t0 + w) = �

Z t

0

dt0'̂(@t0 + w)' � (z�1)[ (t)� �e�wt]; (76)

which, when inserted in Eq. (53), yields

Ut(z; �) = U0
t (z; �)

Z
D'

Z
D'̂ exp

�
�

Z t

0

dt0'̂(@t0+w)'

�
e�SI

� U0
t (z; �) ~Ut(z; �) : (77)

The change of variable, then, yields the unperturbed solution, U0
t , automatically, and eliminates the boundary term

from the exponential. The normalization is such that the functional integral is unity if SI = 0.

We may now repeat the analysis of the basic contraction by letting

G['; '̂] � exp

�
�

Z t

0

dt0'̂(@t0+w)'

�
; (78)
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and de�ning J such that

J (t2)G = '̂(t2)G: (79)

One readily veri�es that

J (t2) = �

Z t

t2

dt00e�w(t
00�t2) Æ

Æ'(t00)
; (80)

which leads directly to

['(t1)'̂(t2)] = U0
t (z; �)�(t1 � t2)e

�w(t1�t2)

� U0
t (z; �) h'(t1)'̂(t2)i: (81)

Then an average of n �elds (with equal numbers ''s and '̂'s) may be written

['(t1)'̂(t2) � � �'(tn�1)'̂(tn)] = U0
t (z; �) h'(t1)'̂(t2) � � �'(tn�1)'̂(tn)i; (82)

with h'(t1)'̂(t2) � � �'(tn�1)'̂(tn)i given by the sum of all distinct products of pairwise contractions of the form of

Eq. (81).

Let us analyze the simple quadratic \perturbation" using the \'" representation. Introducing the new �elds we

have

�SI = �u

Z t

0

dt0 ̂ 

= �u

Z t

0

dt0['̂+ (z � 1)e�w(t�t
0)]['+ �e�wt

0

]; (83)

which gives us

Ut(z; �) = U00

t

Z
D'

Z
D'̂G['; '̂] exp

�
�u

Z t

0

dt0 ('̂'+ b'+ c'̂)

�
; (84)

where

b(t0) = (z � 1)e�w(t�t
0); (85)

c(t0) = �e�wt
0

; (86)

and

U00

t (z; �) = exp
�
�
�
1 + (z � 1)e�wt(1� ut)

��
: (87)

Let Ut(z; �) = U00

t (z; �) ~U(z; �). The latter factor has the expansion:

~U(z; �) =

1X
n=0

(�u)n
Z t

0

dt1

Z t1

0

dt2 � � �

Z tn�1

0

dtn

Z
D'

Z
D'̂ ['̂1'1 + b1'1 + c1'̂1]

� ['̂2'2 + b2'2 + c2'̂2] � � � ['̂n'n + bn'n + cn'̂n]G['; '̂]; (88)

where 'j � '(tj), etc. The n = 0 term is unity (by normalization), while the n = 1 term vanishes, since

h'(t0)i = h'̂(t0)i = h'(t0)'̂(t0)i = 0.

For n = 2, of the nine possible terms in L2I , only one survives the functional integral, giving

u2
Z t

0

dt1

Z t1

0

dt2b1c2h'1'̂2i = u2�(z � 1)

Z t

0

dt1

Z t1

0

dt2e
�w(t�t1)e�wt2e�w(t1�t2)

= �(z � 1)e�wt
(ut)2

2
(89)
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Next consider the n = 3 contribution. Once again there is but a single nonzero term, since we must choose b1'1
for the �rst factor (there is no ' with time > t1, with which to contract '̂1), c3'̂3 for the �nal factor (there is no

'̂ with time < t3, i.e., no way to contract '3), while the middle factor must be '̂2'2. Writing this contribution in

terms of functional derivatives we have

�u3
Z t

0

dt1

Z t1

0

d t 2

Z t2

0

dt3b1c3

Z
D'

Z
D'̂

�

Z t

t2

dt00e�w(t
00�t2)

Z t

t3

dt000e�w(t
000�t3)'1'2

Æ

Æ'(t00)

Æ

Æ'(t000)
G['; '̂] (90)

Upon performing the two functional integrations by parts, Æ=Æ'(t00) may act on '1 and Æ=Æ'(t
000) on '2, or vice-versa.

In the former case we obtain the factor

Z t

t2

dt00e�w(t
00�t2)Æ(t00 � t1)

Z t

t3

dt000e�w(t
000�t3)Æ(t000 � t2) = e�w(t1�t3): (91)

The Æ-functions can both be satis�ed since t1 2 [t2; t] and t2 2 [t3; t]. On the other hand, the second alternative

gives the factor

Z t

t2

dt00e�w(t
00�t2)Æ(t00 � t2)

Z t

t3

dt000e�w(t
000�t3)Æ(t000 � t1) = 0; (92)

since t00 = t2 does not fall within the range of integration. Combining this result with the other factors the

third-order term becomes �(z � 1)e�wt(�ut)3=3!.

We now introduce a diagrammatic notation which will prove essential in this and subsequent analyses. The

three terms in LI are represented by vertices, so:

d

bi'i  !
i
�� 

ci'̂i  ! � 
i
�

'i'̂i  ! � 
i
�� 

A contraction between 'i and '̂j (with ti > tj due to

the factor �(ti � tj)) is represented by joining the line

exiting vertex j with that entering vertex i. Thus the

n = 2 and n = 3 terms correspond to the diagrams:

1
�� 

2
� and

1
�� 

2
�� 

3
�

respectively. Associated with the line connecting ver-

tices i and j (with ti > tj), is the factor e
�w(ti�tj).

Each diagram constructed according to the follow-

ing rules corresponds to a term in the expansion of ~U .

1) Draw m � 1 vertices of type �� and an equal num-

ber of type � �. Add p � 0 vertices of type � �� ,

for a total of 2m+ p vertices.

2) Form all possible unlabelled diagrams, i.e., distinct

connections in which each outgoing line is joined with

an ingoing line.

3) Generate all distinct labellings of each unlabelled

diagram by assigning an index (time) to each vertex,

such that the arrows always point from the larger to

the smaller index.

4) A diagram consists of one or more connected parts;

its contribution to ~U is the product of factors associated

with these connected parts.

In the example under consideration, the factor asso-

ciated with the j-th connected part (having vj vertices)

is

fj = �(z � 1)e�wt
(�ut)vj

vj !
:

We now make use of a well known theorem in dia-

grammatic analysis (see, e.g., x8.3 of Ref. [14]), which

in the present context states that ln ~Ut is given by the

sum of all contributions associated with connected di-

agrams only. In the present case there is exactly one

connected diagram at each order n � 2, yielding

ln ~Ut = �(z � 1)e�wt
1X
n=2

(�ut)n

n!
; (93)

which, when inserted in Eq. (84), gives the exact result,

Ut(z; �) = exp
h
�
�
1 + (z � 1)e�(w+u)t

�i
: (94)

While the expansion of ln ~Ut in terms of connected

graphs represents a considerable simpli�cation, it is

possible, in principle, to evaluate ~Ut directly, without
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transforming to the �elds ' and ~'. Consider, for exam-

ple, the second order term in the expansion of ~Ut, Eq.

(70):

c

u2
Z t

0

dt1

Z t1

0

dt2

Z
D 

Z
D ̂ ̂(t1) (t1) ̂(t2) (t2)F( ;  ̂)

= u2
Z t

0

dt1

Z t1

0

dt2

Z
D 

Z
D ̂F( ;  ̂)

�Z t

t1

d�e�w(��t1)
Æ

Æ (�)
+ b(t1)

�

�

�Z t

t2

d� 0e�w(�
0�t1)

Æ

Æ (� 0)
+ b(t2)

�
 (t1) (t2) : (95)

d

Noting that the functional derivative w.r.t.  (�) gives
zero, the above expression is seen to be

1

2
u2t2�(z�1)e�wt

�
1 + �(z�1)e�wt

�
; (96)

which is precisely the O(u2) contribution in the expan-
sion of ~Ut, Eq. (94). Clearly, this analysis is consid-
erably more cumbersome than the connected diagram
expansion.

5 Birth-and-death process

Next we consider the more complex, but still exactly
soluble problem of a birth-and-death process without
saturation, i.e., Eq. (54) with � = 0. Our �rst step,
as before, is to rewrite the perturbation in terms of the
variables ' and '̂:

c

�

Z t

0

dt0 ̂2 = �

Z t

0

dt0['̂+ b(t0)]2['+ c(t0)]

= �

Z t

0

dt0['̂2'+ 2b'̂'+ b2'+ c'̂2 + 2bc'̂+ b2c] : (97)

In the second line, the �nal term is independent of ' and '̂. Integrating it, and combining it with the usual prefactor
U0
t , we have for this problem

U00

t (z; �) = exp

�
�

�
1 + (z � 1)e�wt +

�

w
(z � 1)2e�wt(1� e�wt)

��
: (98)

The remaining terms will again be analyzed using diagrams. There are �ve vertices, as shown in Fig. 1 (note that
the three we have encountered before carry di�erent factors here).

The �rst vertex in Fig. 1 (\terminal") must bear the lowest index of a given branch, since no lines exit from
it. The second and �fth can only appear in the interior of a diagram, while the remaining two can only appear as
the nth of an n-vertex diagram, since no lines enter. Thus the expansion is not as complicated as it might at �rst

appear. The lowest-order diagram is again
1
�� 

2
� which now corresponds to

2�2(z � 1)3�

Z t

0

dt1

Z t1

0

dt2e
�w(3t�2t1�t2)e�w(t1�t2)e�wt2 =

�
�

w

�2

�(z � 1)3e�wt(1� e�wt)2 :
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Figure 1. Vertices in the birth-and-death process.

At third and higher orders there are graphs with bifurcations, the simplest being the one shown in Fig. 2,
corresponding to

2�3(z � 1)4 �

Z t

0

dt1

Z t1

0

dt2

Z t2

0

dt3e
�w(4t�2t1�2t2)e�w(t1�t3)e�w(t2�t3)e�wt3

=
2

3!

�
�

w

�3

�(z � 1)4e�wt(1� e�wt)3 : (99)

The factor of 2 arises because there are two ways to contract the '̂-lines exiting vertex 3. Thus all the vertices in
this problem, except for the terminal b2', carry a factor of 2, either explicitly, or due to the combinatorial factor.
The other third-order connected diagram is

4 � (z � 1)4
Z t

0

dt1

Z t1

0

dt2

Z t2

0

dt3e
�w(4t�2t1�t2�t3)e�w(t1�t3)e�wt3

=
4

3!

�
�

w

�3

�(z � 1)4e�wt(1� e�wt)3 : (100)

The two diagrams di�er only by their numerical prefactors, the sum of which just cancels the 1=3! that comes from
the integrations. We show in the Appendix that this pattern continues at higher orders, i.e., that the sum of all
numerical factors due to n-vertex diagrams is n!, so that

ln ~Ut(z; �) =

1X
n=2

[(�=w)(z � 1)(1� e�wt)]n : (101)

Combining this with Eq. (98), we obtain the exact result [13],

Ut(z; �) = exp

�
�

�
1 +

(z�1)e�wt

1� (�=w)(z�1)(1�e�wt)

��
: (102)
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6 Expansion of moments

While the transformation to variables ' and '̂, with
expectation zero, yields a certain simplifcation, it also
causes a proliferation in the number of vertices, so that
in many cases it may be advantageous to work with the
original variables  and  ̂. We have seen that in this
case the expansion of Ut becomes quite complicated.
Fortunately, it is still possible to derive relatively simple
expressions for the moments hnr(t)i of the distribution.

Note that from the de�nition of �t(z) we have

hni =
@�t(z)

@z

����
z=1

; (103)

and that, in general, the r-th factorial moment, hnrif �
hn(n�1)(n�2) � � � (n�r+1)i, is given by:

hnrif =
@r�t(z)

@zr

����
z=1

: (104)

Using Eq. (25) we then have

c

hnrif =

Z
d�d� 0

2�
e�i��

0

�
@rUt(z; �)

@zr

�
z=1

�0(i�
0) : (105)

If Ut is of the form of Eq. (53), then

U
(r)
t (�) �

�
@rUt(z; �)

@zr

�
z=1

= e�
Z
D 

Z
D ̂ (t)rG[ ;  ̂] exp[�SI ] : (106)

d

(Note that the prefactor e� is just U0 for z=1.) Thus
the expectation of the variable  is closely related to
that of n(t) itself.

In case n(0) = n0 (so that �0(z) = zn0), we have,
using Eq. (27),

hnr(t)if =
@n0U

(r)
t

@�n0

�����
�=0

: (107)

Evaluation of the above expression is facilitated by not-
ing that

dn

d�n
�re�

����
�=0

=
n!

(n�r)!
:

If the initial distribution is Poisson with parameter p,
then Eq. (26) implies that

hnr(t)if = e�pU
(r)
t (�=p) : (108)

It is instructive to evaluate the above expressions
�rst for the simple decay process, SI = 0. In this case

U
(r)
t (�) = [ (t)r ]z=1 = e� [�e�wt]r ; (109)

and a short calculation shows that for the initial con-
dition n(0) = n0,

hn(t)i = n0e
�wt ; (110)

and
Var[n(t)] = n0e

�wt(1� e�wt) ; (111)

as expected. For the Poisson initial distribution, one
�nds that

hn(t)i = Var[n(t)] = pe�wt ; (112)

consistent with the probability distribution pn(t) being
Poisson with parameter pe�wt.

Next we consider the moments for the birth-and-
death process. In this case

�SI = �

Z t

0

dt0 ̂2 

corresponding to a vertex that branches to the left. To

evaluate U
(r)
t (�), we expand e�SI , generating diagrams

consisting of vertices and a single \sink", with r lines
entering, to the left of all vertices. Each line entering
a node (i.e., a vertex or the sink), corresponds to a
variable  (t0); if not contracted, it contributes a factor
of �e�wt

0

. (We call such uncontracted lines \external".
Recall that for the birth-and-death process, w � ���.)
On the other hand, lines exiting a vertex correspond
to  ̂ variables, and must be contracted with a  line,
because [ ̂] = 0 when z = 1. With z = 1, the basic
contraction is:

h (t1) ̂(t2)i = �(t1 � t2)e
�w(t1�t2) :

Thus the perturbation series for a given moment is
much simpler than the full series for Ut(z; �).

Consider the case r=1. The sink has only a single
line entering, so diagrams with n � 1 vertices all give
zero, and the only nonzero contribution to (@Ut=@z)z=1

is for n=0 (the sink itself), which is �e�e�wt.

For r=2 the sink has two lines. There is then the
n=0 contribution, �2e�e�2wt, and the 1-vertex diagram
shown in Fig. 3. Including the combinatorial factor of
2, its contribution is
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Figure 2. An O(�3) diagram in the birth-and-death process.
Figure 3. One-loop diagram in the expansion of hn2if for
the birth-and-death process.

c

2�e�
Z t

0

dt1h (t) ̂(t1)i
2�e�wt1 =

2�

w
�e�e�wt(1� e�wt)

d

Using these results, we readily �nd that

hn(t)i = hn(0)ie�wt : (113)

For n(0) = n0, the variance is

Var[n(t)] = n0
�+�

w
e�wt(1� e�wt) (114)

for w 6= 0, while for w=0 we have

Var[n(t)] = 2�n0t : (115)

For a Poisson initial distribution,

Var[n(t)] = pe�wt
�
1 +

2�

w
(1� e�wt)

�
; (116)

which becomes p(1+2�t) in case w=0. We see that at
long times, the variance decays (grows) exponentially,
for w > 0 (w < 0), and that for w=0 the variance grows
� t, reecting the di�usive character of the process in
this case. Higher-order moments may be evaluated sim-
ilarly; only diagrams with n � r�1 vertices contribute
to hnrif .

7 Malthus-Verhulst Process

We now return to the Malthus-Verhulst process; the
three vertices associated with �SI [see Eq. (54)] are

shown in Fig. 4. The series for U
(r)
t (�) begins with

the \sink" term, �re�e�rwt, and then includes diagrams
with n � 1 vertices. (Note that the n-th order contri-
butions carry factors of (��)s�n�s, with s variable.)
Based on our diagrammatic analysis of the birth-and-
death process, we can formulate the following simple

rules for evaluating the n-th order contribution to U
(r)
t :

Figure 4. Vertices in the moment expansion for the
Malthus-Verhulst process.

1) Draw all diagrams consisting of n vertices and a sin-
gle r-line sink to the left of all vertices. Each line ex-
iting a vertex must be contracted with a line entering
another vertex to the left.
2) The sink has time variable t; assign time variables
t1,...,tn to the vertices from left (nearest the sink) to
right.
3) For each external line include a factor of �e�w� ,
where � is the time variable of the associated vertex
(if the external line is attached to the sink, � = t). For
each internal line from vertex j to vertex i, (i < j)
include a factor of e�w(ti�tj).
4) Include the factors (� or ��) associated with each
vertex, and the combinatorial factor associated with the



88 Ronald Dickman and Ronaldo Vidigal

number of ways of realizing the contractions. Finally,
integrate over the time variables t1,...,tn, with

t � t1 � t2 � � � � � tn � 0 :

(Note that by �xing the time ordering we e�ectively in-
clude the factor 1=n! that comes from expanding e�SI .)

Figure 5. Low-order diagrams in the expansion of hni for
the Malthus-Verhulst process.

Let us consider some examples in the evaluation of
hni; the low-order diagrams are shown in Fig. 5. For
n=1 we have only diagram (a), whose contribution is:

���2e�
Z t

0

dt1e
�w(t�t1)e�2wt1 = �

�

w
�2e�e�wt(1�e�wt) :

At second order we have the following contributions.
Diagram (b):

�2 ���e�
Z t

0

dt1

Z t1

0

dt2e
�w(t�t1)e�2w(t1�t2)e�wt2

= �
2��

w2
�e�e�wt

�
wt� 1 + e�wt

�
:

Diagram (c):

2 �2�2e�
Z t

0

dt1

Z t1

0

dt2e
�w(t�t1)e�2w(t1�t2)e�2wt2

= �
2�2

w2
�2e�e�wt

�
wt� 1 + e�wt

�
:

c

Diagram (d):

2 �2�3e�
Z t

0

dt1

Z t1

0

dt2e
�w(t�t1)e�w(t1�t2)e�wt1e�2wt2

=
�2

w2
�3e�e�wt

�
1� e�wt

�2
:

For �xed n(0) this yields the expansion:

hn(t)i = n0e
�wt

h
1�

�

w
(n0�1)(1�e

�wt)

�
�

w2

�
2[�+ (n0�1)�][e

�wt�1+wt]� �(n0�1)(n0�2)(1�e
�wt)2

�
+ � � �

i
: (117)

For r=2 a similar calculation results in

hn(t)[n(t)�1]i = n0(n0�1)e
�2wt � 2�n0(n0�1)te

�2wt

+
2

w2
n0e

�wt(1�e�wt)
�
�� �(n0�1)(n0�2)e

�wt
�
+ � � � : (118)

The evaluation of diagrams can be simpli�ed somewhat by considering the Laplace transform of hnrif :

hnr(s)if =

Z 1

0

dte�sthnr(t)if

We have seen that each line entering a node with time variable � carries a factor of e�w� , and each line exiting the
node carries a factor of ew� . Letting `i be the number of lines entering node i less the number exiting, we can write
the time integration factor for the general diagram so:

e�rwt
Z t

0

dt1 � � �

Z tn�1

0

dtn exp[�w(`1t1 + � � �+ `ntn)]:
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Inverting the order of the integrations, the Laplace transform of the above expression becomes:Z 1

0

dtn

Z 1

tn

dtn�1 � � �

Z 1

t2

dt1

Z 1

t1

dte�(s+rw)t exp[�w(`1t1 + � � �+ `ntn)]

=
1

s+rw

1

s+(r+`1)w
� � �

1

s+(r+`1 + � � �+`n)w
:

d

7.1 A numerical example

The diagramatic expansion for the Malthus-
Verhulst process can be extended, and simpli�ed (by
identifying the so-called reducible diagrams [14]), but
such analysis is beyond the scope of this article and
will be defered to a future work. We close this section
with an application of the second-order expansion for
the mean population, Eq. (117). Note that for short
times, the factor multiplying n0e

�wt may be written as

f(t) = 1�At+Bt2 +O(t3);

with A = �(n0�1) and B = �[(n0�1)(n0�3)� � �] .
Evidently, our analysis generates an expansion in pow-
ers of t, whose convergence would seem to require that
�n0t� 1.

If we wish to extend the range of validity of the
expansion, we must transform to a new variable that
remains �nite as t!1; a glance at Eq. (117) suggests
that we use y = 1�e�wt as the new variable. (This
transformation is very useful in analysis of series, for
example in the study of random sequential adsorption
[15].) In fact, f(t) is readily expressed in terms of y:

f(t) = 1�Ay +By2 +O(y3) (119)

with A = A=w and B = B=w2 To proceed, we form a
Pad�e approximant [16, 17] to the power series in y:

f(y) =
1 + ay

1 + by
: (120)

Equating coeÆcients of y and of y2, we �nd

b =
B

A
=
�(n0�1)(n0�3)� �

w(n0�1)

and

a = b�A = �
2�(n0�1) + �

w(n0�1)
:

(Here we must note that a Pad�e approximant to a series
of three terms can only serve as a very rough approxi-
mation!)

We apply this expression to the Malthus-Verhulst
process with parameters � = 1, � = 0:5, and � = 0:1.
In Fig. 6 we compare the numerical solution of the
master equation with the perturbation theory expres-
sion, hn(t)i = n0e

�wtf(t) (with f represented by the

Pad�e approximant), and with the simple exponential
decay, n0e

�wt, for n0 = 3 and n0 = 10. The pertur-
bation expansion, using the Pad�e expression, yields a
good approximation to the correct value, despite the
very short series used, and the fact that for n0 = 10 we
have �n0 = 1, so that the time series has only a small
radius of convergence.

Figure 6. Mean population size in the Malthus-Verhulst pro-
cess with � = 1, � = 0:5, � = 0:1; n0 =3 (upper); n0 =10
(lower). In each panel, the middle curve represents the ex-
act (numerical) solution, the lower, the Pad�e approximant
to the second-order perturbation series, and the upper, sim-
ple exponential decay, hni = n0e

�wt.

8 Coupled Malthus-Verhulst

processes

In this section we show how the path integral formal-
ism can be applied to processes on a lattice, leading
to a �eld theory in the continuum limit. The pro-
cess of interest is a lattice of coupled Malthus-Verhulst
processes, with di�usive exchange of particles between
neighboring cells. This process describes the dynamics
of a population distributed in space, with the individu-
als performing random walks, allowing the population
to spread. In the continuum limit, the process is of
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great interest as a �eld theory for directed percolation
[6].

At each site r of the lattice, there is a process nr(t)
whose evolution is given by Eq. (50). The new feature
in this model is di�usion, represented by the operator:

LD = D
X
r

X
e

(�r+e � �r)ar: (121)

where D is the di�usion rate and
P

e
is over the vectors

from a given site to its nearest neighbors.

The evolution kernel Ut is a function of the vari-
ables zr and �r de�ned at each site; we use fzg and
f�g to denote these sets of variables. To write Ut for
this process we add the di�usive contribution to the
Malthus-Verhulst part, Eq. (51), to �nd

c

Ut(fzg; f�g) =

Z
D 

Z
D exp

"
�

Z t

0

dt0
X
r

�
 
r

_ r �D r
� r

� �( 
r
�1) 

r
 r��(1� r) r��(1� r

) 
r
 2
r

�
+
X
r

zr r(t)

#
; (122)

where � r =
P

e
( r+e �  r) is the discrete Laplacian, and the functional integrals are now understood to include

the funcions  r and  r
at each site. Eliminating the linear term as usual, by letting  ̂ = i 0 � 1, and introducing

w=���, we obtain

Ut(fzg; f�g) =

Z
D 

Z
D ̂exp

"
�

Z t

0

dt0
X
r

�
 ̂r(@t0 + w �D�) r

� � ̂2
r
 r+� ̂r(1+ ̂r) 

2
r

�
+
X
r

[�r+(zr�1) r(t)]

#
: (123)

d

Up to this point, our expression for Ut is exact.
We now make a number of simpli�cations, leading to
an e�ective action for the lattice of coupled Malthus-
Verhulst processes. (Each deserves a careful justi�ca-
tion, but we shall not enter into such questions here.)

i) We drop the boundary term, which should not inu-
ence stationary properties.

ii) We take the continuum limit, so that  r(t) !
 (x; t), and � r ! r

2 .

iii) We discard the term /  ̂2 2, which turns out to be
irrelevant to the scaling behavior near the critical point
[5].

Under these approximations the argument of the ex-
ponential in Eq. (123) becomes the e�ective action

c

S =

Z
dt0

Z
ddx

n
 ̂(@t0 + w �Dr2) + � ̂ 2 � �  ̂2

o
: (124)

d

This is the action corresponding to directed percolation
[6] or Reggeon �eld theory (a particle physics model
with the same formal structure as the continuum the-
ory of a spatially extended population) [18, 19]. This
theory has been analyzed using renormalization group
techniques, to show that the upper critical dimension
dc=4, and to derive expressions for critical exponents
in an expansion in �=4�d [20, 21]. While such devel-
opments lie beyond the scope of this article, we can get
a qualitative understanding of the physics represented

by S by ignoring, for the moment, the term /   ̂2.
Functional integration over  ̂ then imposes the follow-
ing partial di�erential equation as a constraint on  :

@ 

@t
= Dr2 � w � � 2: (125)

This is the mean-�eld theory of directed percolation
and allied models [22]. We see that this equation cor-
rectly predicts an absorbing state,  = 0. For w � 0
the solution ows to this state, regardless of the ini-
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tial condition. For w < 0, however, another stationary
state appears: the uniform solution  = jwj=�. Thus
w = 0 marks a continuous phase transition. The �eld
 (x; t) may be interpreted as a local population density.
This mean-�eld description is readily shown to yield the
critical exponents �=1 (for the order parameter h i),
�jj=1 (for the relaxation time), and �? = 1=2 (for the
correlation length) [22].

In this case, the e�ect of the neglected term in the
action, ��  ̂2, can be represented by a noise term
�(x; t) in Eq. (125), which now becomes a Langevin
equation or stochastic partial di�erential equation:

@ 

@t
= Dr2 � w � � 2 + �(x; t); (126)

where � is a Gaussian noise with h�(x; t)i = 0 and au-
tocorrelation proportional to the local density [6]:

h�(x; t)�(y; s) = � (x; t)Æd(x� y)Æ(t � s); (127)

(note that in this way the noise respects the absorb-
ing state). In the presence of noise, the critical point
is renormalized from its mean-�eld value of wc = 0,
and, more signi�cantly, the critical exponents take non-
mean-�eld values for d < 4. As we have noted, the
transcription of a stochastic model to a Langevin equa-
tion is not always straightforward. For this reason, the
path-integral formalism discussed in this article is es-
pecially valuable: it allows one to construct an action
(that is, the starting point for a renormalization group
analysis), without having to postulate noise properties.

9 Summary

We have reviewed the formalism, based on the work
of Peliti, that maps a Markov process to a path in-
tegral representation, and have presented detailed ex-
amples of its application to birth-and-death processes.
We show, in particular, how the exact solutions for the
decay and simple birth-and-death process can be recov-
ered, and derive a perturbation expansion for moments

in the Malthus-Verhulst process. Finally, we show how
the evolution kernel for a lattice of coupled Malthus-
Verhulst processes leads, in the continuum limit, to a
�eld theory for directed percolation. As the study of
nonequilibrium processes grows, we expect the meth-
ods discussed here to attract ever-greater interest.
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Appendix

We aim to show that the sum of all numerical
weights associated with n-vertex diagrams in the ex-
pansion of ln ~Ut for the birth-and-death process is n!.
To see this, consider an arbitrary n; b-diagram, i.e., one
having n vertices, b of them bifurcations. There is a
single factor of �, associated with vertex n. Such a dia-
gram will have b+1 terminal vertices (carrying factors
b2i ), and so n� 2b� 1 nonterminal vertices that are not
bifurcations, which carry factors bj . Each bk carries a
factor of e�wt(z�1) for a total of n+1 such. Next con-
sider the factors ewti for each vertex i. If i is terminal,
there are two such factors (from b2i ), and a factor e�wti

due to the line entering the vertex. If i < n is neither
terminal nor a bifurcation, there is a factor ewti from bi,
while the exponential factors associated with the lines
entering and leaving the vertex cancel. If i < n is a
bifurcation, there is no factor bi, but there is again a
net factor of ewti as two lines exit, while only one enters
vertex i. Consider vertex n. If it is a bifurcation, then
the net factor is ewtn (two lines exiting, factor e�wtn

in cn). The same holds if vertex n is not a bifurcation
(single line exiting, factors in bi and ci cancel). In sum-
mary, there is a factor ewti associated with each vertex.
Finally, all vertices carry a factor of 2, except for the
terminal ones, leading to an overall factor of 2n�b�1.
Combining all of these observations, the contribution
due to a given labelled n; b-diagram is

c

2n�b�1 � (z � 1)[�(z � 1)]ne�(n+1)t

Z t

0

dt1 � � �

Z tn�1

0

dtne
w(t1+���+tn)

=
2n�b�1

n!

�
�

w

�n
�(z � 1)n+1e�wt(1� e�wt)n : (128)

d

To �nd the contribution / �n, it remains to evalu- ate the sum of all such terms, that is, to determine

W (n) =
X
Gn

2n�b�1 (129)
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where the sum is over all distinct labelled diagrams of n
vertices. A labelled n; b-diagram has a weight of 2n�b�1.
LetW (n; b) be the sum the weights of all n; b-diagrams.
De�ne the degree of a vertex as the number of lines that
exit from it, so that a terminal vertex has degree 0, bi-
furcations have degree 2, and all other vertices have
degree 1. (In this model there are no vertices with de-
gree > 2.)

Now, given a labelled n; b-diagram, we can generate
a set of distinct n + 1-vertex labelled diagrams by the
following recipe:
i) Relabel the vertices 1,...,n as 2,...,n+1.
ii) Attach a new vertex (`1') to any vertex of degree less
than 2.

It is easy to see that (1) each choice for attaching the
new vertex generates a di�erent diagram; (2) the sets
generated by di�erent n-vertex labelled diagrams are
mutually disjoint; (3) applied to the complete set of n-
vertex labelled diagrams, the procedure generates the
complete set of n+1-vertex diagrams. When we at-
tach the new vertex to one of degree 0, the number of
bifurcations does not change, so the new diagram has
an additional factor of 2 in its weight. If on the other
hand we attatch the new vertex to one of degree 1,
we generate a new bifurcation, and the weight remains
unchanged. Recalling that an n; b-diagram has b+1 ver-
tices of degree zero, and n�2b�1 of degree 1, we have
for n > 2 the following recurrence relation:

c

W (n; b) = 2(1+b)W (n�1; b)+ (n�2b)W (n�1; b�1) : (130)

d

Starting with W (2; 0) = 2 (and W (2; j) = 0 for j > 0),
we readily �nd W (3; 0) = 4, W (3; 1) = 2, and then
W (4; 0) = 8, W (4; 1) = 16, and so on.

To solve for W (n) in general, we introduce a gener-
ating function

g(x; y) =
X
n

X
b

xnyb
W (n; b)

n!
: (131)

(Since W (n) appears to grow like n! we need the fac-

torial for g to have a nonzero radius of convergence.
Without it, we get a function with an essential singu-
larity at x=0, as the reader may verify!) For purposes
of analysis, it is convenient to de�ne W (1; 0) � 1 and
W (1; j) � 0 for j > 0, which is completely consistent
with the recurrence relation for n = 2. (There is, of
course, no diagram with n = 1.) For n = 0,W vanishes
identically, so we must add a source term in Eq. (130).
The modi�ed recurrence relation, valid for n = 1; 2; 3; :::
and b � 0, is

c

W (n; b) = 2(1+b)W (n�1; b) + (n�2b)W (n�1; b�1)+ Æn;1Æb;0 : (132)

Multiply this relation by xnyb=n! and sum over n and b. Letting m = n�1 and rearranging, one �nds

g(x; y) = 2
X
m�0

X
b�0

xm+1yb

(m+1)!
[(1+b)W (m; b)� bW (m; b�1)]

+ x
X
m�0

X
b�0

xmyb

m!
W (m; b�1) + x : (133)

Now let b0 = b�1 in the terms multiplying W (m; b�1). After a simple rearrangement (and dropping the primes)
we have

g(x; y) = 2(1� y)

�
1 + y

@

@y

�X
n�0

X
b�0

xn+1yb

(n+1)!
W (n; b) + xyg(x; y) + x : (134)

We require

G(x) �
X
n�1

xnW (n)

n!
= g(x; 1) : (135)

For y = 1, Eq. (134) immediately yields G(x) = x=(1�x), implying W (n) = n!.
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