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One species is simulated to split into two separate species via random mutations, even if both populations live
together in the same environment. This speciation is achieved in the Penna bitstring model of biological ageing,
with modified Verhulst factors, and in part by additional bitstrings regulating phenotype and mate selection.

I Introduction

The common ancestors of today’s humans and today’s chim-
panzees presumably lived several million years ago. Then,
due to genetic mutations and/or changes in the environment,
the population split into the ancestors of humans and the an-
cestors of chimpanzees. Such a separation of one species
into two is called “speciation”. It is easily explained if the
two populations live in separate environments, like one on
an island and the other on a continent, making the mating
of males from one population with females from the other
population impossible. This effect is called allopatric spe-
ciation. More difficult to explain is sympatric speciation,
where the two populations continue to live in the same en-
vironment but nevertheless cease to mate each other [1]. A
recent computer model [2] in the physics literature also cites
biological examples, serving as a background also for our
paper. We concentrate here on models with age-structured
populations [3, 4, 5] and in particular use the Penna bitstring
model [6, 7], which is the presently most widespread model
to simulate biological ageing. We deal only with sexual re-
production where two populations are defined as being dif-
ferent species if the mating from different populations pro-
duces no viable offspring.

The next section shortly explains this Penna model and
then presents the minimal modifications which we found
necessary to get sympatric speciation. A more realistic
model involving three pairs of bitstrings instead of only one
is discussed in the following section. We end with a short
summary.

II Simple Model

II.1 Penna Model

The Penna bitstring model for biological ageing [6, 7]
simulates the mutation accumulation by storing bad muta-

tions (= hereditary diseases) in a string of (usually) 32 bits.
The position of the bit corresponds to the age of the indi-
vidual; its value corresponds to health (zero) or sickness
(one). Sick bits act from the age to which their positions
belong up to the death of the individual. Three active sick-
nesses kill the animal; in addition all animals are killed at
each time stept = 1, 2, . . . with the Verhulst probability
V (t) = N(t)/Nmax whereN(t) is the current population
andNmax is often called the carrying capacity describing the
limitation of food and space. After reaching an age of eight
“years” (= bit positions or iterations), each individual gives
birth to one child per year until its death; the child inherits
the same bitstring as the mother except for one possible mu-
tation at a randomly selected position where the mutated bit
is set to one irrespective of its previous value. Initially, all
bit strings are zero.

For the sexual Penna model used here, each individual
has two bitstrings inherited from mother and father, respec-
tively, and produces gametes (single bitstrings) by random
crossover between these two bitstrings, followed again by
one random mutation. Each female of age eight or above
tries 20 times to find randomly a male aged eight or above
for mating, and if she succeeds she gets one child having
one of the father’s gametes and one of the mother’s gametes
as its two bitstrings. The child’s sex is fixed randomly. If
at a specific bit position, one of two bitstrings has zero and
the other has one, it affects the health of that individual if
and only if this position is one for which the harmful allele
is dominant and not recessive. Six out of the 32 possible
positions are randomly selected as dominant, the other 26 as
recessive. The complete Fortran program is listed in [7].

II.2 Speciation Model
Speciation is now attempted by defining one bit posi-

tion, which we take as position 11, as influencing the mating.
Each individual hasn = 0, 1, or 2 bits set at this position.
A female withn such bits at position 11 selects only males
with the same numbern of such speciation bits. Due to the
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randomness of mutations and crossover, their child does not
necessarily haven speciation bits set to one, and this ran-
domness allows the emergence of a new species out of the
original one where alln were zero. At every time stept we
thus have three populationsNn depending on the number
n = 0, 1, 2 of speciation bits set to one, and each of these
three sub-populations is half male and half female.

To get speciation in this model, it is not sufficient to start
with one population and to change it due to random muta-
tions into another population. Instead, we want to start with
one population and at the end have two populations coexist-
ing with each other in stable equilibrium but without cross-
mating. With the above Verhulst factor applying to both
populations together this seems impossible: After some time
(proportional to the population size), all survivours have one
certain “Eve” as mother [7] as a result of the random muta-
tions due to which one individual happens to become the
fittest in the population. Thus one population finally wins
against the other, just as in a standard Ising model at low
temperatures, with equally many up spins and down spins at
the beginning, one of the two spin orientations will win at
the end.

Coexistence is achieved by replacing the Verhulst factor
N/Nmax into three separate Verhulst factorsNn/Nmax for
the separate populationsn = 0, 1, 2 with N = N0 + N1 +
N2. We may imagine, for example, that the original popu-
lation n = 0 is vegetarian, and that the second population
n = 2 emerging out of it consists of carnivores. Both pop-
ulations are limited by the amount of food, but their food
sources are completely different; thus, there is no compe-
tition between the two different populations, but the meat-
eating females will not select any herbivore males for mat-
ing, and vice versa. (The small population withn = 1 is
added half ton = 0 and half ton = 2 for the evaluation
of the two Verhulst factorsV0 = (N0 + N1/2)/Nmax and
V2 = (N2 +N1/2)/Nmax and has the arithmetic average of
these two Verhulst factors as its own food-limiting Verhulst
factor.)
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Figure 1. Variation in time ofN0 (line, original species),N1 (x,
mixed genomes) andN2 (+, new species), withNmax = 300 mil-
lion. We start with 30 million males and as many females of the
original species.
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Figure 2. Same as in Fig. 1, but with populations ten times smaller
simulated over ten times more iterations, showing equilibration af-
ter several thousand iterations. Note linear, not logarithmic, verti-
cal scale. The dots refer to the original population, the + to the new
species (N1 is not shown).

II.3 Speciation Results

Figure 1 shows, for nearly108 individuals, how the new
speciesN2 emerges, within about a hundred iterations, from
the old speciesN0. The intermediate populationN1 is only
about one percent of the total. Thus, we see two separate
populations clearly emerging: Sympatric speciation. Fig. 1
shows the males; for the females the results are about the
same. Making ten times more iterations for a ten times
smaller population gives a better equilibrium, Fig. 2. Shift-
ing the speciation position from 11 to 21 or to 1 does not
change much the results. If we change the birth rate from1
to 1 + n wheren refers to the female, then the new species
ends up with a larger population than the original one but
still may both coexist (not shown).

Similar pseudo-speciation was observed in the asexual
case (not shown), or when the speciation bit was mutated
with a special probability different from that of the other
bits (not shown). Also on a square lattice without Verhulst
factor, similar results were found [9].

III The Penna model with phenotype
selection

In this section we will briefly describe the features we added
to the standard Penna model to represent phenotypic selec-
tion [3].

The first modification deals with the Verhulst factor,
which has already been criticized in the literature (see, for
instance, Ref. [10]). Rather than random, one should expect
that deaths caused either by predation or because of intra-
specific competition should also have selective value. The
probabilityV (t) of their occurrence should be dependent on
the fitness of the individual to the environment, expressed
as a function of the match between the individual’s pheno-
typic expression of genetically acquired traits and a pheno-
type ideally adapted to its habitat.
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To address this issue in the context of the Penna model
we add, to the usual double strand of genes with age-
dependent expression, extra pairs for each individual in the
population. Each of these pairs will stand for a particular
multi-locus phenotypic trait, such as size or colour, which
may have selective value. The dynamics of reproduction
and mutations are the same for both the age-structured and
the new strings. Gamete production, phenotypic expression
(phenotype), and the introduction of random mutations at
birth affect equally all loci.

A final addition refers to mating selectiveness. We in-
troduce into the genome a locus that codes for this selective-
ness, also obeying the general rules of the Penna model for
genetic heritage and mutation. If it is set to0, the individ-
ual will not be selective in mating (panmictic mating), and
it will be selective (assortative mating) if this locus is set to
1. The mutation probability for this locus is set to0.001 in
all simulations. Females that are selective will choose mat-
ing partners that satisfy some criterium related to the sexual
selection trait. In the first version described below, we add a
single phenotypic trait to the model, and this trait acts both
on the individual’s fitness and on its sexual selectiveness.
In the second version, two traits are added, one that is re-
lated to fitness and another to sexual selection. In the road
to speciation, as one population splits into two, the degraded
fitness of the offspring of inter-populations parents will lead
nature to choose for sexual selectiveness and give rise to two
non-interbreeding populations.

Assortative mating following the establishment of a sta-
ble polymorphism is essentially equivalent to speciation in
this context, and one of the purposes of these simulations
is to follow the rising of the fraction of the population that
becomes sexually selective as a result of the evolutionary
conflict between selection and mutation.

III.1 Version with a single phenotypic trait
In the version with a single trait, one pair of bitstrings

is added to the genome of each individual (see Fig. 3). Its
selective value is given by a fitness functionF (k), chosen to
depend on a single variablek. Here,k results from the pair
of non-structured strings representing the trait by counting
the number of recessive bit positions where both bits are set
to 1, plus the number of dominant positions with at least one
of the two bits set. It will therefore be a number between0
and32. For a given value of the phenotypek, F (k) quan-
tifies the availability of resources for individuals with that
particular phenotype. The fitness function encapsulates the
selective value of a particular phenotype, and can be thought
of as describing the profile of the ecology in which the pop-
ulation evolves, as related to the size of the individuals, for
example.

Our simulations were done with two different functional
forms for the functionF (k). Our intention was to mimic
the seasonal effect of rainfall on the availability of seeds of
different sizes in the Galapagos islands and its impact on
the morphology of beak sizes in the population of ground
finches that feed on these seeds [8]. In this application,k is
a measure of the beak size. At the beginning of the simu-
lations,F (k) is a single-peaked function with a maximum
at k = 16, representing large availability of medium-sized

seeds. The whole population of finches will compete for
the same resources. After12 000 iterations, functionF (k)
changes to a two-peaked shape, with maxima atk = 0 and
k = 32, and now the food resources concentrate on either
small or large seeds, with a vanishing number of medium-
sized ones.

In this discretized mathematical model, the probability
of death by intra-specific competition at each time step is
now given byV (t) = N(t)/(Nmax∗F (k)), whereN(t) will
account for the population that competes for resources avail-
able to individuals of phenotype (beak size, say)k. From
step0 up to step12 000, the whole population is compet-
ing for the same general food resource, andN(t) is the total
population. After step12 000, only small(large)-beaked in-
dividuals - those withk < (>)16 - can compete for the
small(large) seeds. For that reason, the death probability
V (t) of an individual withk < (>)16 is computed by as-
signing toN(t) the number of individuals withk < (>)16
plus half of the population that hask = 16. An individual
with k = 16 will compete either for small or large seeds,
and this choice is made at random.

With this strategy, the interaction with other individu-
als is still mediated by a mean-fieldV (t), but its effect
is no longer uniform. It depends on the particular genet-
ically acquired configuration of each individual and, al-
though stochastic, escapes from the biologically unmoti-
vated randomness mentioned above.

Sexual selection also depends on this single trait. When
the fitness functionF (k) is single-peaked, there is no se-
lective pressure for mating selectiveness, and the population
is panmictic. AfterF (k) becomes double-peaked, females
that mutate into selectiveness will choose mating partners
that have beak sizes similar to their own: if a female has
k < (>)16 and is selective, she will only mate with a part-
ner that also hask < (>)16.
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Figure 3. Schematic representation of crossing, recombination, and
mutation in the formation of the gamete from one of the parents.
The other gamete is generated in the same way, and the union of the
two gametes concludes the formation of the offspring’s genome.
We show these processes occurring both in the age-structured and
the non-structured portions. The arrows indicate where the random
mutations occurred.
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III.2 Simulation results: version with a single
phenotypic trait

Simulations were run for population sizes of the or-
der of 105, with minimum reproduction age set to10 for
both males and females. Each female gives birth to2 off-
spring after finding a suitable partner to mate with. The
age-structured part of the genome has the harmful allele as
dominant in3 loci, and is initially set to blank in the whole
population. The allele1 is dominant in16 out of the32 loci
of the non-structured part; an allele will mutate in the ga-
mete of the parents with probability0.1 per birth. At the
start of the run, this part of the genome is randomly gen-
erated, and all females are set as non-selective. The fitness
function is, up to step12 000,

F (k) = 1− | 16− k |
128

The denominator128 ensures a mild selective pressure
for middle-sized beaks. Only a negligible fraction of the
females end up becoming sexually selective, showing that
there is no evolutionary advantage for selectiveness in this
ecology. At step12 000, and up to the end of the run at step
50 000, the fitness function suddenly changes to

F ′(k) =
| 16− k |
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Figure 4. Morphology of the population when only middle-sized
seeds are abundant (circles) and when only small and large-sized
seeds are left (squares). We show the fraction of the population
with each beak size.

In Fig. 4 we show the distribution of phenotypes - in this
case, the beak size - of the populations at time step12 000,
up to which the fitness function was single-peaked, and at
time step50 000, after it has been double-peaked for30 000
time steps. A stable polymorphism has clearly been estab-
lished as a result of the duplicity of food resources. The frac-
tion of selective females in the population has also increased
to nearly1.0, and we now have two distinct populations each
of which does not mate with a partner from the other, since

hybrids are poorly fit to the environment: evolutionary dy-
namics made it advantageous to develop assortative mating
in this bi-modal ecology, and as a consequence of reproduc-
tive isolation one single species has split into two.

III.3 Version with two traits

The version with two traits has two additional pairs of
non-structured bitstrings in the genome of each individual.
One of them is related to fitness, like in the previous ver-
sion, and the second introduces a representation of a trait
that drives sexual selection. The purpose here is to make the
model more realistic by assigning different traits to different
functions and to study the interactions between these traits
[11], as well as to address issues raised by recent observa-
tions of speciation in fish [12]. The dynamics of death and
birth follow the rules already stated, and we map the pheno-
type space for this new sexual trait onto an integer between0
and32, just as done for the fitness trait described above. For
mating, a female will choose, among a random selection of
a fixed number of males, chosen to be6 in our simulations, a
suitable mating partner for whom the phenotype for this sec-
ond trait (colour, say) matches her own, under some strategy.
For the results we show in this paper the mating strategy is
defined as follows: Callf the phenotype of the female and
m the one for the male, for the sexual selection trait. Then,
the female follows the rules, if mutated into selectiveness,
• If f < 16 then it selects the male with the smallestm;
• If f > 16 then it selects the male with the largestm;
• If f = 16 then the female chooses randomly to act as one
of the above.

These rules amount to choosing a mating partner that
further enhances the phenotype into which the trait is
mapped. If we think about this mating trait as colour, for
instance, and assignf < (>)16 to a blue (red) character, a
blue (red) female will choose the male that lies deepest into
the blue (red) region.

III.4 Simulation results: version with two traits

Simulations were run with the same parameters as the
ones for the single trait version, and the equilibrium popula-
tion size is6×104. The mutation probability for new sexual
selection trait is set to1. The fitness function is set to a con-
stant up to step12 000. The distribution of the fitness trait
is single-peaked atk = 16 at step12 000, as a consequence
of the number of loci (16) where the1 allele is dominant,
and moves into a polymorphism after the ecology becomes
bi-modal. The sexual selection trait also shows a single peak
at step12 000, and splits the population in two groups after-
wards. But now a strong correlation develops between these
traits, and the individuals with sexual selection phenotype
< (>)16 have their fitness trait< (>)16. In other words, a
female chooses a mating partner because of his colour, and
its correlation with size allow them to generate viable off-
spring. Fig. 5 shows the distribution of both traits at the end
of the simulation.
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Figure 5. Distribution of fitness (squares) and sexual (*) traits at
the end of the simulation. These traits are correlated, and the pop-
ulation with fitness trait to the left has its sexual trait also to the left
of the plot.

Sexual selectiveness also develops as a result of the evo-
lutionary dynamics. At the end of the simulation all females
are selective, and again assortative mating and reproductive
isolation are the proxies in this model to the development of
two separate species out of the single one that existed at the
beginning.

IV Summary

We presented three distinct versions of bit-string models de-
veloped to study speciation. They are modifications of the
original Penna model for ageing, and were discussed in an
order of increasing complexity and realism. In the first, a
simple interpretation of one locus in the genome as identi-
fier of species, the imposition of assortative mating from the
start, and a bi-modal ecology, lead to the flourishing and co-
existence of two separate populations. The second version
introduces a non-structured part in the genome and, by map-
ping the genetic information onto a number, relates it to the
fitness of the individual. Variability in the ecology from a
single- to a double-peaked supply of resources generates a

stable polymorphism. By introducing sexual selectiveness
in the genetic information and using the fitness trait as the
one that also codes for mating choice, assortative mating and
reproductive isolation develops. The last version deals with
two separate traits, one for fitness and another for sexual se-
lection. Evolutionary dynamics again develops a splitting
into two separate species by generating a strong correlation
between the traits.

This work was partially supported by CNPq and
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[3] J.S. Śa Martins, S. Moss de Oliveira, G.A. de Medeiros, Phys.
Rev. E64, 021906 (2001).

[4] A. Nowicka, A. Duda and M.R. Dudek, cond-mat/0207198;
A. Łaszkiewicz, Sz. Szymczak, S. Cebrat, Int. J. Mod. Phys.
C 14, issue 6 (2003).

[5] D. Chowdhury, D. Stauffer, and A. Kunwar, Phys. Rev. Lett.
90, 068101 (2003).

[6] T.J.P. Penna, J. Stat. Phys.78, 1629 (1995).

[7] S. Moss de Oliveira, P.M.C. de Oliveira and D. Stauffer,Evo-
lution, Money, War and Computers, Teubner, Leipzig and
Stuttgart 1999, ISBN 3-519-00279-5.

[8] P.T. Boag and P.R. Grant, Nature274, 793 (1978); P.T. Boag
and P.R. Grant, Science214, 82 (1981).

[9] A.O. Sousa, Stuttgart University, priv. comm. (April 2003)
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