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This is an introductory course to the Lanczos Method and Density Matrix Renormalization Group Algorithms
(DMRG), two among the leading numerical techniques applied in studies of low-dimensional quantum models.
The idea of studying the models on clusters of a finite size in order to extract their physical properties is briefly
discussed. The important role played by the model symmetries is also examined. Special emphasis is given to
the DMRG.

1 Introduction

From a mathematical point of view, quantum mechanics
can be regarded in many respects as an eigenvalue problem.
Typically, one has to to calculate eigenvalues and eigenvec-
tors of Hamiltonians. Very often, especially in low temper-
ature problems, the knowledge of the ground state and the
first few excited states yields considerable insight into the
physics of a given system. Symmetry properties and the
known quantum numbers of the desired state can be used
to reduce the Hilbert space. However, even a large reduc-
tion factor will eventually be overcome by the exponential
growth. This means that requirements for memory and run-
ning time of relatively small systems can be prohibitive,
even for the best computers, when a full diagonalization
of a finite cluster is attempted. Typically, many degrees of
freedom have to be integrated out of the original problem to
make it accessible to present day computer capacities.

These notes consist of an introductory course to the
Lanczos Method and Density Matrix Renormalization
Group Algorithms(DMRG), two among the leading numer-
ical techniques applied in studies of low-dimensional quan-
tum models. Another important numerical technique, the
Quantum Monte Carlo, is discussed by R. R. dos Santos.
The numerical approach allows for a direct and unbiased cal-
culation of physical properties for finite clusters, from which
a phase diagram can be constructed.

For those outside the field of one- or two-dimensional
quantum systems it may seem that working on problems at
such low dimensionalities is completely irrelevant to three-
dimensional reality. However, there are in fact many reasons
for working in low-dimensional physics, in both statistical
mechanics and other fields.

First, restricting the study to one dimension continues to
demonstrate itself as an efficient and effective laboratory for
the development and consideration of new theoretical ideas,
many of which are intended for application to real higher-

dimensional systems. Both thermal and quantum fluctuation
effects are larger in lower dimensions.

Secondly, there are in fact real systems which display
a high degree of low-dimensionality, at least in condensed
matter physics.

Thirdly, one-dimensional systems share the possibility
with higher-dimensional systems of undergoingquantum
phase transitionsas some parameter is varied while hold-
ing the temperature fixed atT = 0. In experimental situa-
tions, this parameter could be pressure or doping, for exam-
ple, such as in the case of high-temperature superconduc-
tors where, upon the variation of doping, the ground state
changes from antiferromagnetic to superconducting.

This manuscript is organized in the following way. In
Section 2 the Hamiltonians for the Hubbard,t � J and
Heisenberg models are defined. These models and their
generalizations are aimed to describe the microscopic fea-
tures of matter. Besides that, they present rich mathemati-
cal aspects. In Section 3, the idea of studying the models
on clusters of a finite size in order to extract their physical
properties is discussed. The important role played by the
model symmetries is also examined. In Section 4 the Lanc-
zos method is presented and some of its most popular gen-
eralizations discussed. In Section 5 we start by examining
the basic ingredients of the DMRG method and presenting
the two kinds of DMRG algorithms. Then, the way mea-
surements of observables are performed in DMRG is dis-
cussed and, finally, the most important additions to the orig-
inal method are briefly mentioned. Section 6 contains some
final comments and the acknowledgments.

2 Models

In this Section we present some representative quantum
models. These models and their generalizations have wide
applicability in statistical mechanics as well as in condensed
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matter physics.

2.1 The Hubbard Model
A starting point for the microscopic approach to elec-

tron motion in crystals may be obtained by analyzing the
energy levels of the atoms involved. Lattice models are
used, because the atomic structure in the physical systems
determines the possible places at which the electron can be
found. If two neighboring atoms have overlapping orbitals
with very similar energies, the orbitals can hybridize and al-
low electrons to travel from one atom to the other. On the
other hand, the repulsion between electrons is very strong
due to their charge. The simplest approximation for the in-
teraction between the electrons is to restrict it to the case
when both electrons are on the same site (or atom). On-site
Coulomb repulsion and nearest-neighbour (n.n.) hopping
are already the terms of the Hubbard model[4, 5], which can
be characterized by the Hamiltonian

HHub = �t
X
hiji�

�
cyi�cj� + h:c:

�
+ U

X
i

ni"ni#; (2.1)

wherecyi� (cj�) is a creation (annihilation) operator for an
electron of spin� ="; # in a Wannier orbital at lattice site
i and hiji denotes n.n. pairs. In the sum, bondshiji are
summed over only once each. Heret is the matrix element
for tunneling from one lattice site to a neighbouring one,i.e.
the overlap of n.n. electron wavefuctions. The lettersh:c:
denote the Hermitian conjugate of the immediately preced-
ing term. The fermionic operators obey the anticommutation
relations n

ci�; c
y
j�

o
= ÆijÆ�� (2.2)

and
fci�; cj�g = 0: (2.3)

Also, ni� = cyi�ci� is the number operator for electrons of
spin� at sitei, andU the Coulomb repulsion. The charge
or number operator at sitei is

ni =
X
�

ni� = ni" + ni#: (2.4)

The states of the model are given by specifying the four
possible configurations of each site (its level can either be
empty, contain one electron with either of two spins, or two
electrons of opposite spins) on a lattice made ofL sites.

However, the knowledge of the parameterst andU is not
enough to characterize the system. One also needs to know:

� The dimensionality of the system,i.e., whether it is a
one-dimensional (1D) chain, a two-dimensional (2D)
plane or a full three-dimensional (3D) system.

� The geometry of the lattice. The lattice structure
can introduce frustration, and its symmetry properties
greatly influence the behaviour of traveling electrons.

� The boundary conditions (BC),i.e., whether the lat-
tice is open, closed or has some special condition at
its surface.

� The filling or density,

n =
1

L

X
i�

hni�i; (2.5)

whereh:::i denotes a ground state expectation value.

� The temperatureT which is the third energy scale
along witht andU .

The first term in Hamiltonian Eq. (2.1) is called hopping
term and the second one Coulomb term. The hopping term
alone can be shown to lead to a conventional band spec-
trum and one-electron Bloch levels in which each electron
is distributed throughout the entire crystal (a metal). The
Coulomb term alone would favor local magnetic moments,
since it suppress the possibility of a second electron (with
oppositely directed spin) at singly occupied sites (an insula-
tor). When both terms are present the competition between
them brings about a transition between the metallic phase
and the Mott insulating phase[6].

2.2 The t� J Model

If the Hubbard model is considered in the limit where
U=t is large, thestrong coupling limit, the number of dou-
bly occupied sites is small. This leads to the derivation of
effective models, most prominently thet � J model[7]. In
thet� J model, the Hubbarb model complexity is reduced
by projecting out the states with double occupancy. Using
this procedure one gets thet� J Hamiltonian

HtJ = �t
X
hiji�

�
~cyi�~cj� + h:c:

�

+J
X
hiji

�
~Si � ~Sj � 1

4
ninj

�
; (2.6)

where
~Si =

X
��

cyi�
1

2
~���ci� (2.7)

is the electron spin operator at sitei, with

c

~� = [�x; �y; �z ] =

��
0 1
1 0

�
;

�
0 �i
i 0

�
;

�
1 0
0 �1

��
(2.8)
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being the Pauli matrices. The tilde on thec-operators in the
hopping term refers to the fact that a creation operator can-
not introduce an electron on a site where another electron,
even of the opposite spin, is already located. Formally, one
would express this as

~cyi� = cyi�(1� ni;��) and, thus,~ci� = (1� ni;��)ci� :
(2.9)

In the derivation of thet � J model from the Hubbard
model, one takes into account intermediate double occupan-
cies between states which are suppressed by their high en-
ergy but help to lower the kinetic energy by making the elec-
trons more mobile. In such processes, an electron hops on
an already occupied site, then either electron can hop back
to the original site. Double occupancies are forbidden in the
t�J model, but the physics can be included by adding an ad-
ditional term. Since the intermediate processes in the Hub-
bard model are only possible if the electrons on the adjacent
sites have opposite spin, this term can be described by an in-
teraction that favors the singlet state compared to the triplet
state. This is precisely what the second term in Hamiltonian
Eq.(2.6) does. To show this, we note that~Si � ~Sj has two
eigenvalues: if the two electrons are in a singlet state, the
eigenvalue is -3/4, and if the electrons form a triplet, the en-
ergy is 1/4. If the effect of the14ninj-term is included, one
gets the following energies from theJ-term:

one or both sites unoccupied 0
spins on both sites forming a triplet state0
spins on both sites forming a singlet state�J:

Therefore, the term effectively lowers the energy for
states in which two electrons with opposite spin are on ad-
jacent sites. From second order perturbation theory of the
Hubbard model we obtainJ = 4t2=U [7].

2.3 The Heisenberg Model

In the case of half-filling(n = 1), whenni � 1 for all
sites, hopping becomes impossible in thet�J model. In ad-
dition, the 1

4ninj-term is reduced to a constant. Thus, both
terms can be neglected and thet� J model at half filling is
a spin 1/2 Heisenberg model,

HHeis = J
X
hiji

�
~Si � ~Sj

�
: (2.10)

It is important to remember that this is an effective model,
i.e., although the spins in the model are localized they are
meant to describe a system of mobile electrons. The~Si � ~Sj
interaction is called a spinexchangeinteraction.

All these models were originally designed to describe
physical systems. The Heisenberg model was introduced
before the Hubbard model and is not restricted to just spin
1/2 systems. The restriction in the above case resulted from
the fact that electrons are spin 1/2 fermions.

A possible generalization for these models is to extend
the n.n. summation to more distant neighbours.

3 The study of finite-size systems

Having set up Hamiltonians which are believed to con-
tain the physics we are interested on, we are left with the
formidable task of calculating measurable quantities to gain
some understanding of the models.

Here we choose to work with two unbiased numeri-
cal techniques, namely, Lanczos and DMRG. These meth-
ods are unbiased (i.e., in contrast to mean-field based ap-
proaches) in the sense that they do not make an initial as-
sumption on the nature of the ground state of the system.
However, as we will see later, each of these numerical meth-
ods has its limitations.

In studying finite-size systems the general idea is to con-
struct a matrix representation of the Hamiltonian for a given
number of sites (system size). The Hamiltonian is then diag-
onalized in order to obtain the spectra and calculate measur-
able quantities,e.g., spin and charge correlation functions.
We repeat this calculation for systems of different sizes and
extrapolate the results toward an infinite size system (i.e.,
towards the thermodynamic limit). This agenda is usually
well succeeded provided that we have enough data for a re-
liable extrapolation. The number of lattices with different
sizes needed for the extrapolation procedure to converge de-
pends heavily on the model being studied and even on the
set of parameters being used for a given model. The Finite
Size Scaling theory[8] is specially useful when critical be-
haviour is present since, in this case, a strong dependence
of the physical quantities on the system size is expected[9].
However, in many cases a fairly good ideia of the properties
in the thermodynamic limit can be achieved by examining
just a few system sizes. The models we are dealing with in-
volve many parameters (e.g.,n; t; U; andJ in the models of
Section 2). In order to build up a phase diagram we have to
systematically cover the model parameter space to see how
the physical quantities depend on each of these parameters.

We can roughly divide the above task in two steps:

� Build up a representation for the Hamiltonian, diago-
nalize it, and calculate the measurable relevant quan-
tities.

� Interpret the results and construct the phase diagram.

The second step strongly depends on the model being
studied and on what kind of physics we are looking at. If
the subject being studied is an advanced topic in physics (as
it usually is), then a considerable experience in that field of
research might be necessary to carry that step out. On the
other hand, the first one is, in principle, much simpler and
involves the knowledge of basic concepts in quantum me-
chanics and numerical analysis; topics covered in most un-
dergraduate courses in physics. The Lanczos and DMRG are
tools for carrying out the first step. To understand why such
special techniques are needed let us suppose the Heisenberg
model is to be studied on a lattice ofL sites. Each site has
two possible states: spin up and down. A lattice withL
sites has2L states and this is the dimension of the Hamilto-
nian matrix. Similarly, for thet � J and Hubbard models
we have3L and4L, respectively. Due to this exponential
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growth withL even small lattices (typically 10 sites or so)
generate Hamiltonians too big to be handled by present-day
computers using standard diagonalization algorithms.

3.1 Symmetries
In the process of constructing a representation for the

Hamiltonian it is very useful to take advantage of the model
symmetries. Many models, including those presented in
Section 2, exhibit conservation of total spin number, total
spin in thez-direction and total charge,i.e.,

h
H; (~S)2

i
= [H;Sz] = [H;N ] = 0; (3.1)

whereH is the model Hamiltonian and

~S =
X
i

~Si (3.2)

N =
X
i

ni: (3.3)

In addition, these operators also commute with one another,
i.e., h

(~S)2; Sz
i
= [Sz; N ] =

h
N; ~S2

i
= 0; (3.4)

so that the eigenvalues ofH; ~S; Sz, andN are simultane-
ous good quantum numbers, which we will denote simply
byE; S(S + 1); Sz, andN respectively.1 In the numerical
treatment of a given model it is possible to consider eigen-
states which simultaneously diagonalizeH and all opera-
tors associated with its symmetries. We do this by choosing
to work in a representation in which the symmetry opera-
tors are always diagonal, selecting a subspace or sector of
Hilbert space with particular eigenvalues of those operators,
and diagonalizingH in this particular sector. As exempli-
fied below, total spin in thez-direction and total charge are
easily implemented. However, total spin quantum number

(~S)2 is much more difficult to specify, and also quite diffi-
cult to measure, since in terms of the fundamental operators
ci� it is extremely non-local:

(~S)2 =
X

aij��
Æ

cyi�
1

2
�a��ci�c

y
j


1

2
�a
ÆcjÆ ; (3.5)

wherei andj both run throughout the entire lattice,i.e., they
do not just represent n.n. terms. However, in cases in which
choosing the direction of quantization in thez-axis is arbi-
trary, i.e., in which there is full rotational (orSU(2)) sym-
metry, the eigenvalues ofH ,N , and~S2 will be independent
of the eigenvalues ofSz, which may assume any value rang-
ing from�S to S. This can be quite useful in determining
the total spin quantum numberS of the ground state if it is
only possible to specify the projectionS z in the method of
investigation.

Let us denote byE(Sz) the ground state in the sector
specified by the spin projectionS z. If E(Sz) < E(Sz + 1)
andE(Sz) = E(Sz � 1) = ::: = E(Szmin), where

Szmin =

�
0 if Sz integer
1
2 if Sz half-odd-integer;

(3.6)

then the absolute ground state, (i.e., that in the Hilbert space
unrestricted by the specification ofS z) contains a state of
spinSz and no states of any higher spin.

Strongly correlated electron models also often exhibit a
particle-holesymmetry. This symmetry relates the creation
of an electron to its destruction in the following way. Con-
sider the transformation

PH : ci� ! (�1)icyi� : (3.7)

Under this transformation, the n.n. hopping terms transform
according to

c

PH : cyi�ci+1;� + h:c:! �ci�cyi+1;� + h:c: = cyi+1;�ci� + h:c: = cyi�ci+1;� + h:c:; (3.8)

remaining unchanged under this transformation. However, the number operators transform according to

PH : ni� = cyi�ci� ! ci�c
y
i� = 1� cyi�ci� = 1� ni� (3.9)

PH : ni ! 2� ni (3.10)

PH : N ! 2L�N; (3.11)

and similarly the conduction electron spin operator transforms according to

PH : ~si = (sxi ; s
y
i ; s

z
i ) ! (�sxi ; syi ;�szi ) = R~si (3.12)

PH : ~S = (Sx; Sy; Sz) ! (�Sx; Sy;�Sz) = R~S (3.13)

PH : ~S2 ! ~S2: (3.14)

d

1It will be clear from the context whether bySz orN we mean the operator or its eigenvalue.
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Here R represents a spin rotation by� about they-axis. If
this particle-hole symmetry applies to the full Hamiltonian,
i.e. not only to its non-interacting kinetic part as shown here
but also its interaction terms, then there will be a one-to-one
correspondence between eigenstates with quantum number
(E; S; Sz; N) and (E; S;�Sz; 2L � N). In particular, if
we wish to determine the properties of a system away from
half-filling, we need only do this below half-filling and the
physics above half-filling will be identical.

In order to reduce finite size effects it is common to work
with periodic boundary conditions (PBC) to eliminate the
lattice surface in given a direction. In this case, the system
gains translational invariance in that direction2. This sym-
metry expresses itself through the commutation ofH with
the translational operatorT , which can be defined as

T jd1d2:::dL�1dLi = jd2d3:::dLd1i; (3.15)

where

jd1d2:::dL�1dLi = jd1i 
 jd2i
; :::;
jdL�1i 
 jdLi
(3.16)

anddi is the state at sitei (e.g., for the Hubbard modeld i can
be either one electron with spin up or down, two electrons
with opposite spins, or an empty site). In Eq. (3.15) we have
assumed, for the sake of simplicity, a one-dimensional lat-
tice of sizeL. In higher dimensions translational invariance
in each direction can be treated separately. The eigenvalues
of T areei

2�

L
k; k = 0; 1; 2; :::; L� 1, which we will label

by the numberk. An eigenstate�k of T with eigenvaluek
is given by

c

�k = C
�
1 + U + U2 + U3 + :::+ UL�1

� jd1d2:::dL�1dLi; (3.17)

d

whereU = ei
2�

L
kT andC a normalization constant. If

�k = 0 then is not possible to construct a state with mo-
mentumk from jd1d2:::dL�1dLi. Note thatS;N; Sz, andk
are simultaneous good quantum numbers.

Another symmetry shared by all the models introduced
and Section 2 and many others is the charge-conjugation
symmetry. This symmetry implies a one to one cor-
respondence between eigenstates with quantum number
(E; S; Sz; N) and (E; S;�Sz; N) and is present if the
Hamiltonian commutes with the parity operator, whose ef-
fect is to flip the particle spin(j " # 0 0 "i ! j # " 0 0 #i).

In the presence of charge-conjugation symmetry we can
choose to work only withS z � 0 or only withSz � 0.

Let us consider thet � J model on a chain with four
sites under PBC. Each site can be in one of the following
states: one electron with spin up(j "i) or down (j #i),
or empty (j0i). The dimension of total Hilbert space is
3L = 34 = 81.. We divide the Hilbert space in sectors
labeled by the quantum numbersN;S z, andk. Below, we
denote each sector by[N;Sz; k; (dimension of the sector)]
and write down the states for some illustrative cases.

c
� [0; 0; 0; 1]

� [1; 0:5; 0; 1] [1; 0:5; 1; 1] [1; 0:5; 2; 1] [1; 0:5; 3; 1]

� [2; 0; 0; 3]

�
(1)
[2;0;0;3] =

1

2
(j0 0 " #i+ j0 " # 0i+ j " # 0 0i+ j # 0 0 " i)

�
(2)
[2;0;0;3] =

1

2
(j0 0 # "i+ j0 # " 0i+ j # " 0 0i+ j " 0 0 #i)

�
(3)
[2;0;0;3] =

1

2
(j0 " 0 #i+ j " 0 # 0i+ j0 # 0 "i+ j # 0 " 0i)

� [2; 0; 1; 3]

�
(1)
[2;0;1;3] =

1

2
(j0 0 " #i+ ij0 " # 0i � j " # 0 0i � ij # 0 0 " i)

�
(2)
[2;0;1;3] =

1

2
(j0 0 # "i+ ij0 # " 0i � j # " 0 0i � ij " 0 0 #i)

�
(3)
[2;0;1;3] =

1

2
(j0 " 0 #i+ ij " 0 # 0i � j0 # 0 "i � ij # 0 " 0i)

2In fact, a cyclic BC is enough to gain translational invariance.
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� [2; 0; 2; 3]

�
(1)
[2;0;2;3] =

1

2
(j0 0 " #i � j0 "# 0i+ j " # 0 0i � j # 0 0 " i)

�
(2)
[2;0;2;3] =

1

2
(j0 0 # "i � j0 # " 0i+ j # " 0 0i � j " 0 0 #i)

�
(3)
[2;0;2;3] =

1

2
(j0 " 0 #i � j " 0 # 0i+ j0 # 0 "i � j # 0 " 0i)

� [2; 0; 3; 3]

�
(1)
[2;0;3;3] =

1

2
(j0 0 " #i � ij0 "# 0i � j " # 0 0i+ ij # 0 0 " i)

�
(2)
[2;0;3;3] =

1

2
(j0 0 # "i � ij0 # " 0i � j # " 0 0i+ ij # 0 0 "i)

�
(3)
[2;0;3;3] =

1

2
(j0 " 0 #i � ij " 0 # 0i � j0 # 0 "i+ ij # 0 " 0i)

� [2; 1; 0; 2]

�
(1)
[2;1;0;2] =

1

2
(j0 0 # #i+ j0 # # 0i+ j # # 0 0i+ j # 0 0 # i)

�
(2)
[2;1;0;2] =

1p
2
(j0 # 0 #i+ j # 0 # 0i)

� [2; 1; 1; 1]

�
(1)
[2;1;1;1] =

1

2
(j0 0 # #i+ ij0 # # 0i � j # # 0 0i � ij # 0 0 # i)

� [2; 1; 2; 2]

�
(1)
[2;1;2;2] =

1

2
(j0 0 # #i � j0 # # 0i+ j # # 0 0i+ j # 0 0 # i)

�
(2)
[2;1;2;2] =

1p
2
(j0 # 0 #i � j # 0 # 0i)

� [2; 1; 3; 1]

�
(1)
[2;1;3;1] =

1

2
(j0 0 # #i � ij0 # # 0i � j # # 0 0i+ ij # 0 0 # i)

� [3; 0:5; 0; 3] [3; 0:5; 1; 3] [3; 0:5; 2; 3] [3; 0:5; 3; 3]

� [3; 1:5; 0; 1] [3; 1:5; 1; 1] [3; 1:5; 2; 1] [3; 1:5; 3; 1]

� [4; 0; 0; 2] [4; 0; 1; 1] [4; 0; 2; 2] [4; 0; 3; 1]

� [4; 1; 0; 1] [4; 1; 1; 1] [4; 1; 2; 1] [4; 1; 3; 1]

� [4; 2; 0; 1]

d

The above example gives an ideia of how helpful sym-
metry implementation can be. Indeed, a further reduction in
the Hilbert space can be achieved in some cases by consid-
ering a lattice reflection symmetry, namely[W;HtJ ] = 0,
where

W jd1d2:::dL�1dLi = jdLdL�1:::d2d1i: (3.18)

The eigenvalues ofW are +1 and -1. For instance, the sec-

tor [2; 0; 0; 3] can be broken into two subspaces, indexed by
W = �1 ([2; 0; 0;�1; 1]) and +1([2; 0; 0; 1; 2]), and given
by:

� [2; 0; 0;�1; 1]

�
(1)
[2;0;0;�1;1] =

1p
2
(�

(1)
[2;0;0;3] � �

(2)
[2;0;0;3])
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� ([2; 0; 0; 1; 2])

�
(1)
[2;0;0;1;2] =

1p
2
(�

(1)
[2;0;0;3] + �

(2)
[2;0;0;3])

�
(2)
[2;0;0;1;2] = �

(3)
[2;0;0;3]:

In higher dimensions, besides reflection with respect to
different axes, rotations by several angles are also available.
Note that these operations might or might not commute with
the translational operator depending on the value ofk. For
instance, reflection symmetry can not be employed to break
sector[2; 0; 1; 3] in sub-sectors.

By implementing the model symmetries we can signif-
icantly reduce the computational effort required for diag-
onalizing the Hamiltonian. In some cases we can study
lattices large enough to reveal bulk properties using stan-
dard routines to diagonalize each sector of the Hamilto-
nian. For instance, a 4�4 Heisenberg system can be
fully diagonalized if most symmetries discussed above are
implemented[10]. Since this approach yields the full spec-
trum we can construct the exact partition function for the
system and, therefore, obtain the thermal behaviour exactly
at arbitrary temperature.3

4 Lanczos Method

In this Section, an algorithm is presented which allows us
to determine numerically the ground state and some excited
states for Hamiltonian operators on finite clusters. The basic
idea of the Lanczos method[11, 12] is that a special basis can
be constructed where the Hamiltonian has a tridiagonal rep-
resentation. Once in this form the ground state of the matrix
can be found easily using standard library subroutines such
asNumerical Recipesor IMSL.

The tridiagonal matrix is constructed iteratively. First, it
is necessary to select an arbitrary normalized vectorj 0i in
the Hilbert space of the model being studied. The overlap
between the actual ground statej	0i, and the initial state
j 0i should be nonzero. If noa priori information about
the ground state is known, this requirement is usually easily
satisfied by selecting an initial state withrandomlychosen
coefficients in the working basis that is being used. If some
other information of the ground state is known, like its total
momentum and spin, then it is convenient to initiate the iter-
ations with a state already belonging to the subspace having
those quantum numbers (and still with random coefficients
within this subspace).

After j 0i is selected, we define a new vector by apply-
ing the HamiltonianH to the initial state. Subtracting the
projection overj 0i, we obtain

j 1i = H j 0i � h 0jH j 0i
h 0j 0i j 0i; (4.1)

that satisfiesh 0j 1i = 0. Now, we can construct a new

state that is is orthogonal to the previous two as

j 2i = H j 1i � h 1jH j 1i
h 1j 1i j 1i � h 1j 1i

h 0j 0i j 0i: (4.2)

It can be easily checked thath 0j 2i = h 1j 2i = 0. The
procedure can be generalized by defining an orthogonal ba-
sis recursively as

j i+1i = H j ii � aij ii � b2i j i�1i; (4.3)

wherei = 0; 1; 2; :::; and the coefficients are given by

ai =
h ijH j ii
h ij ii ; b2i =

h ij ii
h i�1j i�1i ; (4.4)

supplemented byb0 = 0; j �1i = 0. In this basis, it can be
shown that the Hamiltonian matrix becomes,

H =

0
BBBBB@

a0 b1 0 0 : : :
b1 a1 b2 0 : : :
0 b2 a2 b3 : : :
0 0 b3 a3 : : :
...

...
...

...

1
CCCCCA
; (4.5)

i.e., it is tridiagonal as expected. Once in this form the ma-
trix can be diagonalized using standard library subroutines.
However, note that to diagonalize completely the model be-
ing studied on a finite cluster a number of iterations equal
to the size of the Hilbert space (or of the subspace under
consideration) is needed. In practice this would demand a
considerable amount of CPU time. However, one of the
advantages of this technique is that accurate enough infor-
mation about the ground state can be obtained after a small
number of iterations (typically of the order of� 100 or less).
The ideia behind Lanczos method is a systematic improve-
ment of a given variational state that is used to represent
the ground state [14]. The procedure just described assumes
thatH is a an hermitian matrix. If that is not the case then a
generalized algorithm is needed[15].

The eigenvalues of (4.5) steadily approach the lowest
eigenvalues ofH and its eigenstates are expanded in the
Lanczos basisj ii. Each statej ii is represented by a large
set of coefficients, when it is itself expanded in the basis
selected to carry out the problem (e.g, the basis used in ex-
ample of Section 3). Thus, in practice, it is not convenient
to store each one of thej ii vectors individually, since such
a procedure would demand a memory requirement equal to
the size of Hilbert space sector multiplied by the number of
Lanczos steps. A simple solution to this problem consists
of running the Lanczos subroutinetwice. For instance, if
j	0i =

P
i fij ii, then in the first run the coefficientsfi

are obtained, and in the second the vectorsj ii are system-
atically reconstructed one by one and used to build upj	 0i
in the original basis.

A common difficulty with the Lanczos method is that fi-
nite precision arithmetic causes thej ii to lose their orthog-
onality. A consequence of that is the appearance of spurious

3As discussed below, this is a commodity we will not have when working with Lanczos or DMRG methods.
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eigenvalues (and eigenstates) in the spectra. One fix is to
repeatedly reorthogonalize, which is too costly since, in this
case, allj ii have to be stored. Another is to partially re-
orthogonalize, and a third option is to ignore the problem.
We can choose the latter if just the extremal (lowest or high-
est few) eigenvalues are needed, which is often the case. A
final way of avoiding the problem is to stop the Lanczos
whenever the problem starts to appear, calculate the ground
state, and use it as an initial statej 0i to restart the Lanczos
procedure. This resets the basis but keeps the information
from the previous Lanczos running. By pushing this ideia
to its limit, we can always perform just two Lanczos steps
(i.e., work just withj 0i andj 1i), diagonalize a 2�2 ma-
trix, and use its lowest eigenstate as a newj 0i. This is the
so-calledmodified Lanczos[16, 17]. The modified Lanczos
converges more slowly than the original Lanczos but has the
convenience of having the ground state always at hand. An
even more pedestrian technique is thepower method[19],
which consists of successively applying the Hamiltonian to
the initial state until all excited states are filtered out and
only the ground state remains. This procedure is the slowest
in speed of convergence, but in simple problems is enough
and easy to program.

One of the greatest appeals of the Lanczos method is the
possibility of calculatingdynamicalproperties of a given
Hamiltonian in finite clusters[18, 12]. The technique per-
mits accurate calculations of energy and momentum depen-
dent dynamic correlation functions which are observable in
scattering experiments, such as Neutron Scattering (spin dy-
namics) and Photoemission Spectroscopy which measures
the spectral function of the system[13].

Since Lanczos yields a number of excited states another
interesting possibility is the calculation of finite-temperature
quantities. Examples of successful attempts in this front are
Refs. [20] and [21].

The main limitation of Lanczos technique is the size of
the clusters that can be studied. Recently, attempts have
been made to reach larger cluster. The basic ideia is the
following. If j�ii is a complete basis we are working with,
then the ground state can be formally represented as

j	0i =
X
i

gij�ii: (4.6)

In general, allj�ii contribute significatively for the sum but,
in some cases, it might happen that several states have very
small weightgi. In fact, for most models studied a very
small percentage of the states in the basis dominate the sum
in Eq. (4.6). This suggests that useful results can still be
obtained if a large part of the Hilbert space is simply dis-
carded. ThetruncatedLanczos[22] implements this idea by
systematically enlarging and reducing the working Hilbert
space in a controlled way and by keeping a fixed number of
states (typically a million or so) in the basis. The number
of states kept represent a very small percentage of the total
Hilbert space but the algorithm is designed to search for and
keep the dominant states in sum Eq. (4.6). It is also impor-
tant to choose a basisj�ii which uses as much information

about the system as possible. For every physical systems we
should use a different basis depending on physical insight
we have about the system. For instance, if we know that
there is a tendency to dimerization then it is convenient to
construct a basis of dimers. A well chosen basis leads to
a better representation ofj	0i for a given number of states
kept in the truncation procedure.

The efficiency of the truncation technique depends heav-
ily on the model being studied. In particular, it seems
suitable for problems with gaps in the spectrum (like a
spingap)[23].

5 Density Matrix Renormalization
Group Algorithms

5.1 Overview

The basic agenda to overcome the system size limita-
tions is to use a basis in which the ground state can be rep-
resented by only a few base states. In other words, a pro-
cedure must be found to identify or construct the important
states and neglect or discard all others so that the piece of
the Hilbert space one operates on remains small. The trun-
cated Lanczos, briefly discussed in the previous Section, is
a possible approach to this agenda. It has the advantage of
working with a basis formed by states that have an intuitive
meaning so that the results can be easily interpreted. In ad-
dition, dynamical information can be obtained without dif-
ficulty. The DMRG technique we are about to discuss is an
alternative approach to that agenda. The innovation of the
DMRG is that it does not hold on to a specific basis, but op-
timizes the basis it uses in the steps leading to the calculation
of the ground state. A disadvantage of the DMRG method is
that the base states chosen by the algorithm are not intuitive,
and the description of the state requires the measurement
of observables. For the measurement process, one needs a
representation of the operators in the current basis. Con-
sequently each operator that needs to be measured must be
stored, and every time the basis is changed all of them have
to be transformed. This is expensive in time and memory.
Another disadvantage is that dynamical information cannot
be easily obtained.

Historically, DMRG has its roots in the renormalization
group approach pioneered by Wilson[24]. Considering a
real-space blocking version for lattice systems of Wilson’s
original approach, the basic idea is to start with a small sys-
tem that can be handled exactly. The system size is then
increased without increasing the size of the Hilbert space
until the desired system size is reached.

Increasing the system without increasing the Hilbert
space is typically done in two steps:

� The system size is increased, and as a consequence,
the Hilbert space grows at the same time.

� The Hilbert space is truncated to its original size keep-
ing the system size constant.
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To characterize such arenormalizationprocedure two
basic questions have to be answered:

� How is the enlargement done ?

� Which criterion to apply in the second step to differ-
entiate between the states we will keep from those we
will discard ?

In Wilson’s approach, we start with blocks of a certain
(small) size. In the first step, two such blocks are linked to
form a block which is twice as large. The Hamiltonian of
this larger block is then exactly diagonalized and its eigen-
states are used as base states. The criterion for keeping states
is their energy, and only eigenstates whose energy lies below
a certain threshold are kept. The states which are kept char-
acterize the new block that is again linked to an identical
block, and the process is iterated.

This approach proved to be very effective for the Kondo
model[24]. However, for other strongly correlated systems
like those in Section 2 it was not successful[25]. The main
reason for this failure lies in choosing the block eigenstates
as the states to be kept. Since the block was not previously
connected to the rest of the system ( another identical block
in the case above ) its eigenstates have inappropriate fea-
tures at the block ends, making them a poor choice as a ba-
sis to represent the ground state of a larger system, formed
by putting together two (or more) blocks. This problem was
pinpointed by White and Noack in Ref. [1] and an attempt
was made to fix it by combining eigenstates from several
different blocks under various BC. Let us see how DMRG
fixes this problem.

5.2 Enlargement and Reduction in the DMRG
Procedure

As mentioned in Section 5, the two most important char-
acteristics of a renormalization procedure are the way the
system grows and how the decision is made on which states
are kept in the Hilbert space by the truncation step. In this
Section, these elements of the DMRG procedure will be dis-
cussed. How these elements are used in the global DMRG
algorithm will be the subject of the subsequent Sections.

Figure 5.1 shows the most important structures used in
the DMRG algorithm. The elementary unit is a site, and is
described by the statesdi (i = 1; : : : ; D), in which the site
can be found4. A blockB(l;m) consists of a number of
sitesl and its HamiltonianHB contains only terms involv-
ing the sites inside the block. To representB(l;m) andHB

we associate anm-dimensional basis wherem is in general
smaller than the full Hilbert space of the block. The states
in the basis are grouped in symmetry sectors labeled by a
set of quantum numbers (e.g., S z andN ), which makesHB

a block-diagonal matrix. We also store the matrix elements
of HB between these states. The block is grown by adding
a site to it, and together they form theenlarged blockB e.

If jb1i : : : jbmi andjd1i : : : jdDi represent, respectively, the
basis of block and a site then the basis of the enlarged block
can be constructed from the direct product

jbeki = jbii 
 jdji: (5.1)

The dimension of the Hilbert space forB e is the product of
the dimensions of the Hilbert space ofB(l;m) and a site,i.e,
m�D. A possible mapping ofi andj-values ontok-values
in Eq. (5.1) isk = (i� 1)D + j.

block B

l

site

enlarged

block B(l,m)

e

Figure 5.1. Representation of the basic elements of the DMRG al-
gorithm. The thick line connecting the block and the site represents
all the interaction terms between them present in the Hamiltonian.

B’(l’,m’)B(l,m)

Figure 5.2. The superblock consist of two enlarged block con-
nected to each other. The two sites in the middle are the last added
sites to the respective blocks. In the case of a Heisenberg chain the
two enlarged blocks are connected only by the exchange of these
two sites.

The next step in the DMRG method is the formation of
thesuperblockHamiltonian (Fig. 5.2). The superblock con-
sists of two enlarged blocks connected to each other. In Fig.
5.2 open boundary conditions (OBC) are applied to the su-
perblock. These BC are the most widely used in DMRG for
it yields the best results for a given computational effort. We
will discuss PBC latter.

The DMRG method focus on a single eigenstate of the
superblock Hamiltonian (usually the ground state), called
the target state, which is used to construct the density
matrix5. The ground state of the superblock is calculated
(using Lanczos or any other method). We then eliminate the

4Here, the indexi is not labeling a site in a lattice but the states accessible to a given site. For instance,D = 4 and2 for the Hubbard and Heisenberg
model, respectively.

5It is possible to target several eigenstates simultaneously but, for a given computational effort, the accuracy decreases rapidly.
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states from the basis of the enlarged block that contribute
the least to the ground state of the superblock. To calculate
those, the density matrix is used.

The concept of the density matrix was developed in sta-
tistical mechanics[26] by considering the problem of a sys-
tem in contact with a much larger bath. The ground state of
the universe,i.e. system and bath, is known, and the ques-
tion is which states of the system contribute the most to this
ground state. This is what the density matrix can tell us. One
can express the ground state of the universe (the superblock)
in a basis that is the tensor product of the basis vectors of the
system (one of the enlarged blocks) and the bath (the other
enlarged block),

j	0i =
m�DX
i=1

m0�DX
j=1

aij jbei i 
 jb0ej i: (5.2)

Hence many of the eigenstates of the system contribute to
the one ground state of the universe. The density matrix of
the system is given by

�ii0 =

m0�DX
j=1

aija
�
i0j : (5.3)

We show an actual example of such a calculation below. The
density matrix has the same dimension and block-diagonal
structure of the HamiltonianHe, for the enlarged block. If
we denote byju�i (� = 1; : : : ;m�D) the eigenstates of�
and byw� its eigenvalues then

P
� w� = 1 andw� is the

probability of the system being in the stateju�i given that
the universe is in the statej	0i.

This is the information we need to decide which states to
keep in a renormalization group approach. In order to make
an optimal decision of which states to discard and which
to keep, it is a good criterion to consider the weightw� of
the states in the ground state of a larger system, which we
eventually want to describe. We must order theju�i by their
eigenvalues in a decreasing order and use the firstm of those
states with largest eigenvalues to form a new basis for the
enlarged blockBe, which will then becomeB(l+1;m). In
symbols,

HB(l+1;m) = OHe O
y; (5.4)

where the rows of them � (m � D) matrixO are formed
by theju�i previously selected. The change of basis in Eq.
(5.4) renormalizes the Hilbert space, cutting its size back to
m. Constructed in this way, the blocks are being prepared

to be connected to another block in the next step, when a
new superblock will be formed. By using the density ma-
trix states we somehowlook into the futureand adapt the
block for it. BesidesHB we also need to store other opera-
tors representing the sites at the border of the block. These
operators are necessary to construct the interaction between
the block and the site, when forming the enlarged block and
also needed to be transformed according to Eq. (5.4).

To illustrate the DMRG steps of enlargement and trun-
cation, a full DMRG step for the antiferromagnetic spin 1/2
Heisenberg chain will be performed[27]. The starting point
is a blockB(1; 2) of a single site. The possible states of the
single site are

jb1i = j"i; jb2i = j#i: (5.5)

For convenience the up/down basis is chosen. The basis it-
self is not stored. The only data that is stored are the opera-
tors needed to progress the algorithm namely, the operators
needed to build the Hamiltonians for the enlarged block and
the superblock.

For one isolated site without external fields the Hamilto-
nian is zero. Since the up/down basis was chosen, the other
operators are the spin matrices given by

S� =
1

2
(�x � i�y) ; Sz =

1

2
�z : (5.6)

To build the enlarged system, another site is added. In this
case the basis of the block is the same as the basis of the
added site,

jd1i = j"i; jd2i = j#i; (5.7)

and the operators look the same as those of the block. Thus,
the basis of the enlarged block is, by Eq. (5.1),

jbe1i = j""i
jbe2i = j"#i (5.8)

jbe3i = j#"i
jbe4i = j##i:

The HamiltonianHe for the enlarged blockB(2; 4) has non-
zero elements, and describes the interactions of the sites in
B(2; 4). He consists of theHB , describing the interactions
within the block, and the interactions between the rightmost
spin of the block and the new site. In the above basis the
Heisenberg Hamiltonian of the enlarged block is

c

He = HB 
 Id +
1

2

�
S+
b 
 S�d + S�b 
 S+

d

�
+ Szb 
 Szd (5.9)

=

�
0 0
0 0

�


�
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�
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0 1
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�
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0 0
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0 1
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and it looks as follows:

He =
1

4

0
BB@

1 0 0 0
0 �1 2 0
0 2 �1 0
0 0 0 1

1
CCA : (5.10)

d

In Eq. (5.9) the indicesb andd refer to the operators act-
ing on the Hilbert space of the block and the site, respec-
tively, andI is the unit matrix. In this first step we have
m = D = 2 but, as the block grows in size in the follow-
ing steps we will havem > D. Note that only representa-
tions for the Hamiltonian of the block and for the operators
S+; S�, andSz of the rightmost site of the block and the
new site are needed to construct the enlarged block.

The superblock is constructed by taking the enlarged
block as the left block and connecting it to another enlarged
block on the right (Fig. 5.2). In the so-calledinfinite size
method, discussed in the next Section, the right block is the
same as the left block, only spatiallyreflectedso that the site
last added to the left block is connected with the site added
last to the right block. The rightmost site of the left block
becomes the leftmost of the right block.

In addition to the Hamiltonians of the enlarged blocks,
one needs representations of the spin operators of the right-
most site of the enlarged block. In order to construct repre-
sentations forS+; S�, andSz in the basis of the enlarged
block we have to calculate the tensor product of the unit ma-
trix of the block Hilbert space and the operator in the repre-
sentation of the basis of the rightmost site. For instance, the
(S+

r )e matrix, theS+-operator of the spin on therightmost
site in the basis of the enlarged block, is given by

(S+
r )e = Ib 
 S+

d =

�
1 0
0 1

�


�

0 1
0 0

�
: (5.11)

Representations for(S�r )e and(Szr )e are obtained in a sim-
ilar way. The basis for the superblock is the tensor product
of the bases from the two enlarged blocks being connected:

c

0
BB@

jbe1i
jbe2i
jbe3i
jbe4i

1
CCA


0
BB@

jb0e1 i
jb0e2 i
jb0e3 i
jb0e4 i

1
CCA =

0
BB@

j""i
j"#i
j#"i
j##i

1
CCA


0
BB@

j""i
j"#i
j#"i
j##i

1
CCA =

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

j""""i
j"""#i
j""#"i
j""##i
j"#""i
j"#"#i
j"##"i
j"###i
j#"""i
j#""#i
j#"#"i
j#"##i
j##""i
j##"#i
j###"i
j####i

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

jbs1i
jbs2i
jbs3i
jbs4i
jbs5i
jbs6i
jbs7i
jbs8i
jbs9i
jbs10i
jbs11i
jbs12i
jbs13i
jbs14i
jbs15i
jbs16i

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

: (5.12)

In general,jbei i andjb0e
i i are distinct basis. Assuming that we want to calculate the ground state properties, it is possible to

exploitSz conservation and the fact that the ground state belongs to the subspace withS z = 0. Therefore, we can concentrate
only on states in this symmetry sector:

jbs(0)1 i � jbs4i
jbs(0)2 i � jbs6i
jbs(0)3 i � jbs7i (5.13)

jbs(0)4 i � jbs10i
jbs(0)5 i � jbs11i
jbs(0)6 i � jbs13i:

The Hamiltonian of the superblock consists of three parts: theinternal Hamiltonians of the two enlarged blocks and the
exchange arising from the spin interacting at the connection between them:

Hs = He 
 I
0

e + Ie 
H
0

e +
1

2

h
(S+

r )e 
 (S�r )
0

e + (S�r )e 
 (S+
r )

0

e

i
+ (Szr )e 
 (Szr )

0

e; (5.14)



66 André Luiz Malvezzi

where the prime refers to operators in the Hilbert space of the second enlarged block forming the superblock. We now build a
representation forHs in the basisjbs(0)i i:

H(0)
s =

1

4

0
BBBBBB@

1 0 2 0 0 0
0 �1 2 2 0 0
2 2 �3 0 2 0
0 2 0 �3 2 2
0 0 2 2 �1 0
0 0 0 2 0 1

1
CCCCCCA
: (5.15)

The ground state energy ofH 0
s isE0 = (1=4)(3 + 2

p
3) and the corresponding eigenvector is

j	0i = 1

2
q
3(2 +

p
3)

0
BBBBBB@

1

1 +
p
(3)

�2�p
3

�2�p
3

1 +
p
3

1

1
CCCCCCA
: (5.16)

In order to decide which states of the left enlarged block are the most important for the ground state of the superblock one
uses the density matrix given by Eq. (5.3). Combining Eqs. (5.12) and (5.13) we obtain

0
BBBBBBBB@

jbs(0)1 i
jbs(0)2 i
jbs(0)3 i
jbs(0)4 i
jbs(0)5 i
jbs(0)6 i

1
CCCCCCCCA

=

0
BBBBBBB@

jbe1i 
 jb0e
4 i

jbe2i 
 jb0e
2 i

jbe2i 
 jb0e
3 i

jbe3i 
 jb0e
2 i

jbe3i 
 jb0e
3 i

jbe4i 
 jb0e
1 i

1
CCCCCCCA
: (5.17)

This allows us to identify the coefficientsaij in Eq. (5.2) (and in Eq. (5.3)) and they are all zero except fora 14; a22; a23; a32; a33; a4
For the density matrix we get

� =
1

12(2 +
p
3)

0
BB@

1 0 0 0

0 11 + 6
p
3 �2(5 + 3

p
3) 0

0 �2(5 + 3
p
3) 11 + 6

p
3 0

0 0 0 1

1
CCA : (5.18)

d

Note that� andHe (Eq. (5.10)) share the same block-
diagonal structure. The eigenvalues of� are (1=12)(2 +p
3) � 0:02 for each of the triplet states and(21 +

12
p
3)(12(2 +

p
3)) � 0:94 for the singlet state. The base

states are then ordered according to the size of the respective
eigenvalues, with the singlet state (largest eigenvalue) com-
ing first. The transformation matrixO in Eq. (5.4) is given
by

O =

�
0 1=

p
2 �1=p2 0

1 0 0 0

�
: (5.19)

After determining the basis and the transformation, the rep-
resentations of all operators used to describe the enlarged
block are changed to the new basis. Applying the transfor-
mation to theHe (Eq. (5.10)) leads to

HB(2;2) = OHe O
y =

1

4

� �3 0
0 1

�
: (5.20)

In the present simple caseHe and� have the same eigen-
vectors. That is the reason why the above transformation
diagonalizesHe. The same transformation is done with the
other operators that will be needed for future calculations.
One example is theS+-operator, which has the following
representation in the new basis

S+
r = O (S+

r )e O
y =

1p
2

�
0 0
1 0

�
: (5.21)

Note that, even though a site has been added to blockB(1; 2)
to form blockB(2; 2), the dimension of Hilbert space did
not change, due to the truncation performed. The states
kept in the truncation are those with higher probability to
be found in the ground states of the superblock system.

In this example we have performed the truncation in the
Hilbert space in order to illustrate the procedure. In a practi-
cal calculation the system in our example would be too small
to already start the truncation. Usually, we know from the



Brazilian Journal of Physics, vol. 33, no. 1, March, 2003 67

beginning how many states will be kept. Thus, in the first
steps the block is grown (sites are added) without truncation
until the number of states needed to describe the block be-
comes larger than the number of states we want to keep6.
If we had, for instance, decided to keepm = 20 states in
the computation, the chain would be grown to a size of 5
sites with25 = 32 states, which is the first block size with
Hilbert space dimension exceeding 20. Then, a truncation
would create a blockB(5; 20) from an enlarged block with 5
sites and in the following steps all blocks would have dimen-
sion 20, even though they represented a increasing number
of sites.

We often use the sum of the density matrix eigenvalues
of the discarded states (1�Pm

�=1 w�) as a measure for the
severity of the truncation. The goal is to keep this num-
ber as small as possible. In many cases it has been found
that this number is roughly proportional to the error in the
energy[28]. The proportionality factor is of course model-
dependent. In doped fermionic models, we need to keep
more states to achieve a good accuracy than in a spin model.
Even for a given model the accuracy for a given truncation
may depend on the parameters being used in the calcula-
tion (e.g., couplings and symmetry sector). For instance,

close to a phase transition line or inside a critical (massless)
phase the strong quantum fluctuations tend to reduce accu-
racy. In the example above we discarded two of the triplet
states leading to a truncation error of 0.04, which is unac-
ceptably high. Truncation errors in actual calculations are
usually kept smaller than10�4.

In this Section the focus was on one DMRG step. En-
largement of the block by adding a site, the formation and
diagonalization of the superblock, the calculation of the den-
sity matrix, and the truncation procedure were discussed. In
the next Sections we describe how several DMRG steps are
combined to calculate the properties of a given model.

5.3 The infinite system algorithm

The first implementation of the DMRG method was
the infinite system algorithm[2, 3]. The goal was to use
DMRG’s advantage to decouple the system size and the size
of the Hilbert space and calculate ground state energies of
large systems,i.e., system sizes that are unreachable for ex-
act diagonalizations, eventually converging to the thermo-
dynamic limit.

d)

B(l,m) B(l,m)

B(l+1,m)

a)

b)

B(l+1,m) B(l+1,m)

B(l+2,m)

c)

Figure 5.3. Two DMRG steps of the infinite system algorithm; see text for discussion.

In the infinite system algorithm, the left enlarged block is
connected to its own mirror image on the right side, so that
the number of sites of the superblock is increased by two
in each step. Growing the block and truncating the Hilbert
space is done as explained in Section 5. Schematically the
algorithm can be described as follows:

1. Grow the chain to a size in which its Hilbert space di-
mension is just larger thanm, the number of states to
be kept. This is the first enlarged block.

2. Form the superblock by adding an identical enlarged
block on the right such that the sites, which were
added last, are next to each other.

3. Diagonalize the superblock, calculate the density ma-

trix with respect to the left enlarged block.

4. Change basis of the left enlarged block to the eigen-
basis of the density matrix, keep only them states
with the largest density matrix eigenvalues. The trans-
formed, truncated left enlarged block becomes the
block for the next iteration.

5. This block is enlarged,i.e., a site is added on the right.

6. Continue with step 2 until convergence is reached.

In Fig. 5.3, two successive iterations of the infinite sys-
tem algorithm are shown. The starting point is a block with

6In this initial steps with no truncation the matrixO has dimension(m �D)� (m�D) and Eq. (5.4) becomes a simple change of basis.
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l sites that is described by a basis withm states. Enlarge-
ment and construction of the superblock (step 2), leads to
the situation portrayed in Fig. 5.3.a.

After diagonalizing the superblock, finding the transfor-
mation, and truncating the enlarged block according to its
density matrix (steps 3 and 4), one arrives at the situation
depicted in Fig. 5.3.b. The new block describes a chain with
l+1 sites, but uses a basis with onlym states. Enlarging the
block (step 6) and building the superblock (step 2) leads to
the situation in 5.3.c, and the procedure is repeated.

From the computational point of view the most difficult
part is the calculation and the subsequent diagonalization
of the superblock Hamiltonian. The diagonalization can be
done with the Lanczos method but any other method (e.g.,
the Davidson algorithm[29]) can be used. The computa-
tional effort depends on the size of the Hamiltonian matrix
and accuracy needed for the ground state. Since the su-
perblock Hamiltonian is block-diagonal, diagonalizing only
the sector that has the proper quantum numbers reduces the
matrix by a factor that depends on the superblock, block, and
model. Typically it is of order 10-20. Since the total Hilbert
space for the superblock has dimension(D�m)2, the most
important determining factor for the size of the Hamiltonian
is the numberm of states kept in the block. In actual calcu-
lationsm is typically a few hundred of states and is limited
due to restrictions in computer memory and CPU-time. As
we work with different models, the sizeD of the Hilbert
space for a single site also affects the computational effort
needed to reach a given accuracy in the results.

To summarize: in the infinite system algorithm, the sys-
tem size is increased in each step while the number of states
kept to describe the blocks is constant. The goal is to grow
the chain to a long-enough length, so that the energy and
short range correlations around the center have converged.
The convergence is checked by keeping track of the dif-
ference�E0 between the ground state energy of the su-
perblocks in two sucessive steps7.

5.4 The Finite System Algorithm
In the finite system algorithm the goal is no longer to

reaches the thermodynamic limit, but rather to restrict our-
selves to a finite system sizeL. In the beginning, until the
superblock size reaches the system size, the algorithm is
identical to the infinite size algorithm. When the system
size reachesL, i.e. the enlarged block hasL=2 sites, the
left block is grown further but on the right an enlarged block
with a smaller number of sites is used in order to keep con-
stant the number of sites in the superblock. As soon as the
decreasing size of the right block reachs a single site the pro-
cedure is stopped. One such iteration in which the left block
has been calculated for all possible sizes, nearly up toL, is
called asweepover the system. After one sweep is done,
we start all over with a small left block. However, from now
on, the information about the best representation of the right
block that complements the left block to the desired system

sizeL is now present since it has been calculated in the pre-
vious sweep. When the optimal basis for a specific size of
the left block is determined with DMRG, the result is stored
and used in the next sweep as best possible guess for the op-
timal states describing the right block. The steps of the finite
system algorithm are compiled in the following list:

1. In the first sweep use the infinite size algorithm until
the superblock size reaches the chain sizeL under in-
vestigation. After every truncation save all operators
of the reduced block to disk.

2. Enlarge the left block sizel + 1.

3. Read a block of sizeL � l � 2 from disk; this is the
right block.

4. Enlarge the right block to the sizeL� l� 1.

5. Form the superblock from right and left enlarged
blocks.

6. Diagonalize the superblock, calculate the density ma-
trix with respect to the left enlarged block.

7. Change the basis of the left enlarged block to the
eigenbasis of the density matrix, keep only them
states with the largest density matrix eigenvalues, save
the block with the basis to disk. The transformed,
truncated left enlarged block becomes the left block
for the next step.

8. Continue with step 2 until the right block becomes a
single site

9. If the right block is a single site, begin a new sweep
over the system,i.e. construct a superblock with a left
enlarged block containing two sites. Continue with
step 3 until convergence is reached.

To illustrate the progress of the algorithm, two general
steps are portrayed in Fig. 5.4.

At first glance Fig.5.4 looks like Fig.5.3. In fact the al-
gorithms are very similar. The left bock is enlarged, the su-
perblock is constructed and diagonalized (Fig.5.4.a). Then
the density matrix for the left enlarged block is constructed
and the block is reduced (Fig.5.4.b). This reduced block is
then again enlarged, the superblock is built up and so on.
The difference between the two algorithms is that the right
block in Fig. 5.3 has the same number of sitesl as the left
side. In the finite system algorithm the right enlarged block
always complements the left one to the target sizeL and thus
becomes shorter, while the later grows.

As an example, let us consider a calculation for the
Heisenberg chain withL = 16 sites and a truncation of
m = 24 states. The following superblocks have to be
formed:

7(�E0)=2 converges to the ground state energy per site in the thermodynamic limit.
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B(l,m)

c)

d)

a)

b)
B(l+1,m)

B(l+2,m)

B(l+1,m)

B(L-l-2,m)

B(L-l-3,m)

Figure 5.4. Two DMRG steps of the finite system algorithm, see text for dicussion.

� Initial sweep:

[B(1,2),B(1,2)] [B(2,4),B(2,4)] [B(3,8),B(3,8)] [B(4,16),B(4,16)]

[B(5,24),B(5,24)] [B(6,24),B(6,24)] [B(7,24),B(7,24)] [B(8,24),B(6,24)]

[B(9,24),B(5,24)] [B(10,24),B(4,16)] [B(11,24),B(3,8)] [B(12,24),B(2,4)]

� Following sweeps:

[B(1,2),B(13,24)] [B(2,4),B(12,24)] [B(3,8),B(11,24)]

[B(4,16),B(10,24)] [B(5,24),B(9,24)] [B(6,24),B(8,24)]

[B(7,24),B(7,24)] [B(8,24),B(6,24)] [B(9,24),B(5,24)]

[B(10,24),B(4,16)] [B(11,24),B(3,8)] [B(12,24),B(2,4)]

If the ground state of the superblock is even under re-
flection symmetry, left and right side can be interchanged.
That means that the reduced left blocks stored during the
first half of a sweep (when the size of the left block is smaller
thanL=2) can be already used as right blocks in the second
half of the same sweep. However, if the ground state of the
superblock does not show reflection symmetry, the reduced
blocks from the left and right side have to be constructed and
stored independently. Therefore, in the absence of reflection
symmetry stored space and CPU-time are doubled.

The finite system algorithm is terminated when conver-
gence is reached,i.e. when the energy in succeeding sweeps
does not improve (decrease) any more. It happens, how-
ever, that the energy stays on a certain level for two or three
sweeps only to further decrease afterwards. Therefore, one
cannot just compare the energies of the last two sweeps per-
formed. The convergence behaviour of the model should
be taken in account. This behaviour can be investigated by
looking at small systems, where calculations are inexpen-
sive. The number of sweeps necessary for convergence de-
pends strongly on the system sizeL, the number of states
keptm, and the model itself. Fermionic models need more
sweeps than spin models, specially when they are doped.
Typically, spin models converge in less than 10 sweeps, even
for fairly large chains (L = 100 or larger), while calcula-

tions for the dopedt � J model with the samem usually
need roughly twice as many sweeps, even for smaller sys-
tem sizes.

The first sweeps do not yield very accurate results. Their
purpose is to generate a good set of blocks of different
sizes. Therefore, the first sweeps are normally done with
a small number of states. When convergence is approached
the number of states kept in the truncation can be increased
in order to improve accuracy. This helps saving CPU-time,
specially whenL is large.

5.5 Measurement of observables

The ground state energy of the superblock is determined
every time the superblock is diagonalized. The value is used
to determine whether convergence is reached. It turns out
that in the finite system algorithm the energy is lowest when
the two blocks forming the superblock have the same size.
Therefore, thissymmetricconfiguration is used to measure
also all other observables in which one is interested.

Unfortunately the values for the other observables, such
as theSz value of a certain spin or the spin correlation be-
tween spins on different sites, are not as easily obtainable as
the energy.

This is caused by the change of basis that is performed
in every step. Even if we start out with a base where the
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demanded properties of the basis states are known, or could
easily be calculated, this knowledge fades fast with the re-
peated linear combination of basis states of new base sys-
tems. Of course we could keep track, for instance, ofhS zi
for each site in each state but the computational effort would
be enormous.

The way that is chosen is to carry out the measurement
by actually evaluating the operator in the ground state. The
expectation value ofSz on sitei is calculated as

hSzi i = h	0jSzi j	0i: (5.22)

This is the textbook formula, but the difficulty of applying
it here is not visible from this equation. The problem is the
basis. The ground state is expanded in a basis that evolved
in every step of the algorithm and could not have been an-
ticipated at the beginning.

When the sitei is added to the block, the representa-
tion of theSz-operator in the basis of the enlarged block is
known (in Eq. (5.11) the calculation is done forS +

i ). But in
general this it too early to measurehS z

i i, because the sym-
metric configuration was not yet reached. In order to still
have the right representation forS z

i in the symmetric config-
uration, the matrix has to be updated and stored every time
the basis changes. Updating means that the basis change has
to be performed onS z

i . If (Szi )
e
j denotes the representation

of theSz-operator on sitei in the Hilbert space of the en-
larged block withj sites (j � i) andOj is the matrix that
transforms and cuts the basis before adding sitej + 1, the
representation ofSz

i after the truncation is

(Szi )j = Oj(S
z
i )

e
jO

y
j : (5.23)

When another site, the(j+1)th, is added, the representation
of the operator also has to be adjusted according to

(Szi )
e
j+1 = (Szi )j 
 Id; (5.24)

and truncated withOj+1. Following this procedure we al-
ways have a representation of the operator in the current ba-
sis.

When it is time to perform measurements,i.e. when both
blocks forming the superblock have the same size, we only
have to find the representation of the operator in the Hilbert
space of the superblock. If,e.g., the operator is acting on
a site inside the left block this means tensorizing it with the
unit element acting on all remaining spaces, namely, the two
central sites and right block.

If i is small, i.e., the site is close to the end of the
block, a lot of basis changes have to be performed before
the measurement is carried out. Due to the truncations that
go with this procedure, the accuracy is decreased. We ex-
pect a greater accuracy from observables on sites close to
the middle of the chain.

The issue is somewhat more complicated for nonlocal
operators,e.g. spin correlations likeCs(i; j) = hSzi Szj i.
In general one could just take the representations of the in-
volvedSz-operators and multiply them, when the symmet-
ric configuration is reached. However, there is a more accu-
rate way to proceed. As an example, we consider a spin-spin
correlation wherej = i + 1 and the symmetric configura-
tion is reached atL=2 = i + 2. The representation of the
two operators at the chain size i+2 are

c

(Szi )
e
i+2 = (Oi+1((Oi(Ib 
 Sz)Oy

i )
 Id)O
y
i+1 
 Ib (5.25)

(Szi+1)
e
i+2 = (Oi+1(Ib 
 Sz)Oy

i+1)
 Id:

Therefore, one gets for the spin correlation

(Szi S
z
i+1)

e
i+2 = (Oi+1((Oi(Ib 
 Sz)Oy

i )
 Id)O
y
i+1(Oi+1(Ib 
 Sz)Oy

i+1)
 Id: (5.26)

Another way of calculating the matrix is to multiply the two operators as soon as possible. In this case the operation can be
done when the enlarged block size isi+ 1, which gives

Cs(i; i+ 1))i+1 = Oi+1(((Oi(Ib 
 Sz)Oy
i )
 Id)(Ib 
 Sz))Oy

i+1: (5.27)

Then, from now on,(Cs(i; i+ 1))i+1 is tranformed as a whole. Its representation for the enlarged block withi+ 2 sites is

(Cs(i; i+ 1))ei+2 = Cs(i; i+ 1))i+1 
 Id: (5.28)

Comparing Eq. (5.26) with Eq. (5.28) the difference is only
a aOy

i+1Oi+1-factor between the twoSz-operators. With-
out the truncation of states it would have been the product
of two unitary matrices and thus be a unit matrix. The two
ways of calculating(Cs(i; i + 1))ei+2 would be equivalent.

With the truncation, however, this is no longer true, as one
can immediately see calculatingOyO with the projector in
Eq. (5.19). The factorOy

i+1Oi+1 leads to a loss of accuracy
in the matrix multiplication since instead of multiplying the
matrices, only their projections are multiplied. This error
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becomes worse the further the sitesi andj in Cs(i; j) are
apart, because every separating site adds another pairO yO.

For DMRG procedure this means that we have to use the
latter approach, multiplying the operators as soon as possi-
ble. Prior to the calculation, a list of the observables that we
are interested in measuring has to be made. When growing
the chain, theon-siteoperators are stored as soon as they are
generated and updated every time the basis is changed. The
products oftwo-siteoperators are formed and stored as soon
as on has a representation for both operators, then they are
also updated. In the case of operators that involve more sin-
gle site operators,e.g.pairing operators, we have to proceed
in the same way.

If we are measuring correlations between sites located
on different blocks we can not multiply them before the
symmetric configuration is reached. This means that mea-
surements of correlations across the center will always have
larger error than correlations where both sites are located in
the same block.

From these explanations it has hopefully become clear
that measuring observables involve additional storage and
calculations. In order to save computer time the measure-
ment process is started as late as possible in the calculations,
after convergence has been reached. In the infinite size al-
gorithm we restrict ourselves to the sites close to the middle
of the chain, which were the last to be added. In the finite
size algorithm measurements are not performed in the initial
sweeps when the energy has not converged yet.

It is generally difficult to estimate the error on the values
for the observables other than the energy for which it has
been established that the error is proportional to the trun-
cation error as discussed before. Unfortunately there is no
known method to calculate the error of the observables from
any other measured quantity. However, by checking how
stable the results are as we change the numberm of states
kept in the truncation, we can have a qualitative control of
the error. The error on the energy is generally smaller than
that of the observables because it is a quantity that averages
over the sum of many terms.

5.6 General remarks

When working with fermionic models such as the Hub-
bard andt � J models we have to implement the anticom-
mutation of the fermionic operators Eqs. (2.2) and (2.3)[30].

In order to implement PBC in DMRG a specific su-
perblock configuration is required[3]. DMRG performs
poorly under PBC. Typically, if a given accuracy is obtained
under FBC withm states kept in the truncation, thenm2

states will be needed to achieve the same accuracy under
PBC[3].

An important improvement to DMRG involves keeping
track of the wave function from step to step and perform
a transformation into the basis corresponding to the current
superblock. Since a good initial guess speeds up the Lanczos
or Davidson convergence, this saves time in the diagonaliza-
tion of the superblock[31].

When DMRG procedure converges to a fixed point the
superblock ground state can be simply written as a matrix-
product form and also be rederived through a simple vari-
ational ansatz making no reference to the DMRG construc-
tion. These very interesting analytical results are obtained in
Ref. [32] and give some insight into the mechanisms work-
ing behind DMRG algorithms.

6 Conclusions and acknowledgments

The field of numerical simulations can stand by itself as a
third way of doing science and its interaction with experi-
ment and theory is very fruitful. We believe that scientific
research in nearly every area in physics can benefit from it.
As the power of nowadays computers increases rapidly the
relatively new field of numerical simulations gains more and
more prominence. To keep up with the advances in the hard-
ware new methods and algorithms are being developed and
traditional ones are being improved. The two techniques
examined here are typical examples of such methods and
algorithms.
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