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This is an introductory course to the Lanczos Method and Density Matrix Renormalization Group Algorithms
(DMRG), two among the leading numerical techniques applied in studies of low-dimensional quantum models.
The idea of studying the models on clusters of a finite size in order to extract their physical properties is briefly
discussed. The important role played by the model symmetries is also examined. Special emphasis is given to
the DMRG.

1 Introduction dimensional systems. Both thermal and quantum fluctuation
effects are larger in lower dimensions.
From a mathematical point of view, quantum mechanics Secondly, there are in fact real systems which display
can be regarded in many respects as an eigenvalue problena high degree of low-dimensionality, at least in condensed
Typically, one has to to calculate eigenvalues and eigenvec-matter physics.
tors of Hamiltonians. Very often, especially in low temper- Thirdly, one-dimensional systems share the possibility
ature problems, the knowledge of the ground state and thewith higher-dimensional systems of undergoiggantum
first few excited states yields considerable insight into the phase transitionas some parameter is varied while hold-
physics of a given system. Symmetry properties and the ing the temperature fixed dt = 0. In experimental situa-
known guantum numbers of the desired state can be usedions, this parameter could be pressure or doping, for exam-
to reduce the Hilbert space. However, even a large reduc-ple, such as in the case of high-temperature superconduc-
tion factor will eventually be overcome by the exponential tors where, upon the variation of doping, the ground state
growth. This means that requirements for memory and run- changes from antiferromagnetic to superconducting.
ning time of relatively small systems can be prohibitive, This manuscript is organized in the following way. In
even for the best computers, when a full diagonalization Section 2 the Hamiltonians for the Hubbard—- J and
of a finite cluster is attempted. Typically, many degrees of Heisenberg models are defined. These models and their
freedom have to be integrated out of the original problem to generalizations are aimed to describe the microscopic fea-
make it accessible to present day computer capacities. tures of matter. Besides that, they present rich mathemati-
These notes consist of an introductory course to the cal aspects. In Section 3, the idea of studying the models
Lanczos Method and Density Matrix Renormalization on clusters of a finite size in order to extract their physical
Group Algorithms(DMRG), two among the leading numer- properties is discussed. The important role played by the
ical techniques applied in studies of low-dimensional quan- model symmetries is also examined. In Section 4 the Lanc-
tum models. Another important numerical technique, the zos method is presented and some of its most popular gen-
Quantum Monte Carlo, is discussed by R. R. dos Santos.eralizations discussed. In Section 5 we start by examining
The numerical approach allows for a direct and unbiased cal-the basic ingredients of the DMRG method and presenting
culation of physical properties for finite clusters, from which the two kinds of DMRG algorithms. Then, the way mea-
a phase diagram can be constructed. surements of observables are performed in DMRG is dis-
For those outside the field of one- or two-dimensional cussed and, finally, the most important additions to the orig-
quantum systems it may seem that working on problems atinal method are briefly mentioned. Section 6 contains some
such low dimensionalities is completely irrelevant to three- final comments and the acknowledgments.
dimensional reality. However, there are in fact many reasons
for working in low-dimensional physics, in both statistical
mechanics and other fields. 2 Modes
First, restricting the study to one dimension continues to
demonstrate itself as an efficient and effective laboratory for In this Section we present some representative quantum
the development and consideration of new theoretical ideas,models. These models and their generalizations have wide
many of which are intended for application to real higher- applicability in statistical mechanics as well as in condensed
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matter physics. .

2.1 The Hubbard M ode€l

A starting point for the microscopic approach to elec-
tron motion in crystals may be obtained by analyzing the
energy levels of the atoms involved. Lattice models are
used, because the atomic structure in the physical systems
determines the possible places at which the electron can be
found. If two neighboring atoms have overlapping orbitals
with very similar energies, the orbitals can hybridize and al-
low electrons to travel from one atom to the other. On the
other hand, the repulsion between electrons is very strong
due to their charge. The simplest approximation for the in-
teraction between the electrons is to restrict it to the case
when both electrons are on the same site (or atom). On-site
Coulomb repulsion and nearest-neighbour (n.n.) hopping
are already the terms of the Hubbard model[4, 5], which can
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The geometry of the lattice. The lattice structure
can introduce frustration, and its symmetry properties
greatly influence the behaviour of traveling electrons.

The boundary conditions (BCj.e., whether the lat-
tice is open, closed or has some special condition at
its surface.

¢ The filling or density,

n = % Z(nw')a (2.5)

where(...) denotes a ground state expectation value.

The temperaturd” which is the third energy scale
along witht andU.

be characterized by the Hamiltonian

Higwp = —t Z (c;'(,cj(I + h.c.) + Uznnnu, (2.1)
(ij)o i

wherec:fa (cjo) is a creation (annihilation) operator for an
electron of spinc =1, | in a Wannier orbital at lattice site
i and (ij) denotes n.n. pairs. In the sum, bonds) are
summed over only once each. Heris the matrix element
for tunneling from one lattice site to a neighbouring are,
the overlap of n.n. electron wavefuctions. The lettiexs

denote the Hermitian conjugate of the immediately preced-

ing term. The fermionic operators obey the anticommutation

relations
{Cia,c;r-ﬁ} = 6ij6a5 (22)

and
{cm,cjg} = O (23)

Also, n;, = c;facw is the number operator for electrons of
sping at sitei, andU the Coulomb repulsion. The charge
or number operator at sitds

n; = an =Nt + Ny (24)

g

The states of the model are given by specifying the four

possible configurations of each site (its level can either be

empty, contain one electron with either of two spins, or two
electrons of opposite spins) on a lattice madé aites.
However, the knowledge of the parameteasndU is not

The first term in Hamiltonian Eq. (2.1) is called hopping
term and the second one Coulomb term. The hopping term
alone can be shown to lead to a conventional band spec-
trum and one-electron Bloch levels in which each electron
is distributed throughout the entire crystal (a metal). The
Coulomb term alone would favor local magnetic moments,
since it suppress the possibility of a second electron (with
oppositely directed spin) at singly occupied sites (an insula-
tor). When both terms are present the competition between
them brings about a transition between the metallic phase
and the Mott insulating phase[6].

2.2Thet — .J Model

If the Hubbard model is considered in the limit where
U/t is large, thestrong coupling limit the number of dou-
bly occupied sites is small. This leads to the derivation of
effective models, most prominently thhe- .J model[7]. In
thet — J model, the Hubbarb model complexity is reduced
by projecting out the states with double occupancy. Using
this procedure one gets the- J Hamiltonian

Hy=—tY (@T(,éﬁ, + h.c.)

(if)o

enough to characterize the system. One also needs to knowwhere

e The dimensionality of the systerne., whether it is a
one-dimensional (1D) chain, a two-dimensional (2D)
plane or a full three-dimensional (3D) system.

g=1o" 00"

I |
+JZ <si .S — an]) , (2.6)
(i5)
Si=> el tdascis (2.7)
af
is the electron spin operator at sitevith
—i 1 0
)0 5] @9
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being the Pauli matrices. The tilde on theperatorsinthe 3 The study of finite-size systems
hopping term refers to the fact that a creation operator can-
not introduce an electron on a site where another electron,Having set up Hamiltonians which are believed to con-
even of the opposite spin, is already located. Formally, one tain the physics we are interested on, we are left with the
would express this as formidable task of calculating measurable quantities to gain
some understanding of the models.
Here we choose to work with two unbiased numeri-
& =ecl (1-ni_,) and, thusé;, = (1 —ni_,)cis- cal techniques, namely, Lanczos and DMRG. These meth-
(2.9) ods are unbiased.€., in contrast to mean-field based ap-
In the derivation of theé — J model from the Hubbard  proaches) in the sense that they do not make an initial as-
model, one takes into account intermediate double occupan-sumption on the nature of the ground state of the system.
cies between states which are suppressed by their high enHowever, as we will see later, each of these numerical meth-
ergy but help to lower the kinetic energy by making the elec- ods has its limitations.
trons more mobile. In such processes, an electron hops on  In studying finite-size systems the general idea is to con-
an already occupied site, then either electron can hop backstruct a matrix representation of the Hamiltonian for a given
to the original site. Double occupancies are forbidden in the number of sites (system size). The Hamiltonian is then diag-
t—J model, but the physics can be included by adding an ad- onalized in order to obtain the spectra and calculate measur-
ditional term. Since the intermediate processes in the Hub-able quantitiese.g, spin and charge correlation functions.
bard model are only possible if the electrons on the adjacentWe repeat this calculation for systems of different sizes and
sites have opposite spin, this term can be described by an in-extrapolate the results toward an infinite size system, (
teraction that favors the singlet state compared to the triplettowards the thermodynamic limit). This agenda is usually
state. This is precisely what the second term in Hamiltonian well succeeded provided that we have enough data for a re-
Eq.(2.6) does. To show this, we note th&t- 5; has two liable extrapolation. The number of lattices with different
eigenvalues: if the two electrons are in a singlet state, thesizes needed for the extrapolation procedure to converge de-
eigenvalue is -3/4, and if the electrons form a triplet, the en- pends heavily on the model being studied and even on the
ergy is 1/4. If the effect of th%ninj-term is included, one  set of parameters being used for a given model. The Finite

gets the following energies from theterm: Size Scaling theory[8] is specially useful when critical be-
haviour is present since, in this case, a strong dependence
one or both sites unoccupied 0 of the physical quantities on the system size is expected[9].
spins on both sites forming a triplet state 0 However, in many cases a fairly good ideia of the properties
spins on both sites forming a singlet state-J. in the thermodynamic limit can be achieved by examining

just a few system sizes. The models we are dealing with in-
Therefore, the term effectively lowers the energy for Volve many parameters g, », ¢, U, and.J in the models of
states in which two electrons with opposite spin are on ad- Section 2). In order to build up a phase diagram we have to

jacent sites. From second order perturbation theory of the Systematically cover the model parameter space to see how
Hubbard model we obtais = 4¢2/U[7]. the physical quantities depend on each of these parameters.

We can roughly divide the above task in two steps:

2.3 The Heisenberg Model e Build up a representation for the Hamiltonian, diago-
In the case of half-filingn = 1), whenn; = 1 for all nalize it, and calculate the measurable relevant quan-

sites, hopping becomes impossible inthe/ model. In ad- tities.
dition, theinmj-term is reduced to a constant. Thus, both
terms can be neglected and the J model at half filling is

a spin 1/2 Heisenberg model,

¢ Interpret the results and construct the phase diagram.

The second step strongly depends on the model being
o o studied and on what kind of physics we are looking at. If
Hppeis = JZ (Si : Sj) . (2.10) the subject being studied is an advanced topic in physics (as
(i5) it usually is), then a considerable experience in that field of
research might be necessary to carry that step out. On the
It is important to remember that this is an effective model, other hand, the first one is, in principle, much simpler and
i.e., although the spins in the model are localized they are jnyolves the knowledge of basic concepts in quantum me-
meant to describe a system of mobile electrons. $hesS; chanics and numerical analysis; topics covered in most un-
interaction is called a spiexchangenteraction. dergraduate courses in physics. The Lanczos and DMRG are
All these models were originally designed to describe tools for carrying out the first step. To understand why such
physical systems. The Heisenberg model was introducedspecial techniques are needed let us suppose the Heisenberg
before the Hubbard model and is not restricted to just spin model is to be studied on a lattice bfsites. Each site has
1/2 systems. The restriction in the above case resulted fromtwo possible states: spin up and down. A lattice with
the fact that electrons are spin 1/2 fermions. sites ha®Q” states and this is the dimension of the Hamilto-
A possible generalization for these models is to extend nian matrix. Similarly, for the — J and Hubbard models
the n.n. summation to more distant neighbours. we have3’ and4”, respectively. Due to this exponential
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growth with . even small lattices (typically 10 sites or so) (§)2 is much more difficult to specify, and also quite diffi-
generate Hamiltonians too big to be handled by present-daycult to measure, since in terms of the fundamental operators

computers using standard diagonalization algorithms. c;o itis extremely non-local:
3.1 Symmetries (S)?= > L iossciscl toltseis,  (35)
In the process of constructing a representation for the aijofvo

Hamiltonian it is very useful to take advantage of the model . ) . -
symmetries. Many models, including those presented in wherei and;j both run throughout the entire lattides., they

Section 2, exhibit conservation of total spin number, total 40 NOtjust representn.n. terms. However, in cases in which
spin in thez-direction and total chargee., choosing the direction of quantization in theaxis is arbi-

trary, i.e., in which there is full rotational (06U (2)) sym-

[H, (5’)2} = [H,S*] = [H,N] = 0, (3.1)  Mmetry, the eigenvalues éf, N, and S? will be independent
of the eigenvalues & #, which may assume any value rang-
whereH is the model Hamiltonian and ing from —S to S. This can be quite useful in determining
the total spin quantum numbgérof the ground state if it is
S =356 (3.2)  only possible to specify the projectid in the method of
i investigation.
N = an (3.3) Let us denote by (S*) the ground state in the sector
- specified by the spin projectiasy. If E(S*) < E(S* + 1)
andE(S?) = E(S* - 1) =... = E(S%,,,), where
In addition, these operators also commute with one another,
ie., ) B . _ | 0 if S*integer (3.6)
[(5)2,55} =[S*,N] = [N, 52] -0, (34 min =1 L if §* half-odd-integer :

so that the eigenvalues éf, §,5%, andN are simultane-  then the absolute ground statieg( that in the Hilbert space
ous good quantum numbers, which we will denote simply unrestricted by the specification 6f) contains a state of
by E,S(S + 1), 5%, andN respectively: In the numerical  spinS* and no states of any higher spin.

treatment of a given model it is possible to consider eigen-  Strongly correlated electron models also often exhibit a
states which simultaneously diagonaliZeand all opera-  particle-holesymmetry. This symmetry relates the creation
tors associated with its symmetries. We do this by choosing of an electron to its destruction in the following way. Con-
to work in a representation in which the symmetry opera- sider the transformation

tors are always diagonal, selecting a subspace or sector of

Hilbert space with particular eigenvalues of those operators, PH: ¢y — (—1)icZT(,.
and diagonalizindg? in this particular sector. As exempli-

fied below, total spin in the-direction and total charge are  Under this transformation, the n.n. hopping terms transform
easily implemented. However, total spin quantum number according to

]

(3.7)

PH: ¢l cip10+he — —cwc;-rﬂ’(I + h.c. = c;rﬂ’acw +he =c cii1q+ he, (3.8)

remaining unchanged under this transformation. However, the number operators transform according to

PH :n;, = c;racig — cigc;fa =1- c;racig =1-n;, (3.9
PH:N — 2L-— N, (3.11)

and similarly the conduction electron spin operator transforms according to

PH:35 = (s7,s!,s]) — (—s{,s!,—si)=R3; (3.12)
PH:S =(5%,8Y,5%) — (-S%,8Y,—-5%) =RS (3.13)
PH:S* — &2 (3.14)

LIt will be clear from the context whether 8 or N we mean the operator or its eigenvalue.
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Here R represents a spin rotation oybout they-axis. If

this particle-hole symmetry applies to the full Hamiltonian,
i.e. not only to its non-interacting kinetic part as shown here
but also its interaction terms, then there will be a one-to-one

59

where

correspondence between eigenstates with quantum number

(E,S,S* N) and(E,S,—S% 2L — N). In particular, if

we wish to determine the properties of a system away from
half-filling, we need only do this below half-filling and the
physics above half-filling will be identical.

In order to reduce finite size effects it is common to work
with periodic boundary conditions (PBC) to eliminate the
lattice surface in given a direction. In this case, the system
gains translational invariance in that directforiThis sym-
metry expresses itself through the commutatiorHotvith
the translational operatdt, which can be defined as

T|dvds...dr—1dp) = |dods...drds), (3.15)
]

o =C[1+U+U*+U"+ ...

whereU = ¢!Z*T and C' a normalization constant. If
¢r = 0 then is not possible to construct a state with mo-
mentumk from |dyds...d;,—1dy). Note thatS, N, S#, andk
are simultaneous good quantum numbers.

Another symmetry shared by all the models introduced

|d1d2...dL_1dL> = |d1> & |d2>®, ery ®|dL_1> & |dL>

(3.16)
andd; is the state at site(e.g, for the Hubbard model; can
be either one electron with spin up or down, two electrons
with opposite spins, or an empty site). In Eqg. (3.15) we have
assumed, for the sake of simplicity, a one-dimensional lat-
tice of sizeL. In higher dimensions translational invariance
in each direction can be treated separately. The eigenvalues
of T aree’T*, k=0,1,2,...,L — 1, which we will label
by the numbek. An eigenstate;, of T with eigenvalue:
is given by

+ UM |dids...dr—1dL), (3.17)

In the presence of charge-conjugation symmetry we can
choose to work only witl§'* < 0 or only with.S# > 0.

Let us consider the — .J model on a chain with four
sites under PBC. Each site can be in one of the following

and Section 2 and many others is the charge-conjugationstates: one electron with spin p 1)) or down (| 1)),

symmetry. This symmetry implies a one to one cor-

or empty (|0)). The dimension of total Hilbert space is

respondence between eigenstates with quantum numbeB’ = 3* = 81.. We divide the Hilbert space in sectors

(E,S,S% N) and (E,S,—S% N) and is present if the
Hamiltonian commutes with the parity operator, whose ef-
fect is to flip the particle spif| 11 00 1) — | L 100 J)).

]

L4 [07 0’07 ]‘]
e [1,0.5,0,1][1,0.5,1,1][1,0.5,2,1][1,0.5,3,1]
i [270,073]

Honos = %(l0 0ty +10
¢’E22,)0,0,3] = %(I0 0L1)+10
¢E23,)0,0,3] =

o [2,0,1,3]
‘bg,)o,m] = %(IOON) +1il0
¢E22,)0,1,3] = %(IOOH) +1il0
¢E23,)0,1,3]

2In fact, a cyclic BC is enough to gain translational invariance.

labeled by the quantum numbers S#, andk. Below, we
denote each sector By, S#, k, (dimension of the sectdr)
and write down the states for some illustrative cases.

110y +]1400)+]4001))
LTOy+14100)+[1004)

210101+ 10L0)+]0L0) +]L010)

140)—[1400)—i[L001))
L10)—[4100)—i[1001))

SI0T0 1) +il T0L0)~0L01) —i LO10))
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.[2507273]
</>E§,)o,2,3] = %(I00N>—IONO>+|N00>—|¢oo¢>)
¢E22,)0,2,3] = %(|00¢T>_|0¢T0>+|¢T00>—|TOO¢>)
600 = 210101~ [10L0)+0L01) ~|L010)
.[270>373]
Olrns %(loom—ilomm—|uoo>+i|¢ooT>)
¢f§og,3] %(|00¢T>—i|0¢T0>—|¢T00)+z’|¢00T>)
¢E§,)o,3,3] %(|0T0i>—i|T0¢0>—|O¢0T>+i|¢0T0>)
.[27]—>072]
o = SU00LL 10110 +]LL00)+]1001))
1
¢[(22,)1,0,2] = ﬁ(|0¢0i>+|¢0¢0>)
o [2,1,1,1]
6P = 5100 L1 +i01L0) ~ | 1100) ~i 100 1))
.[271>272]
6o = (0011 —100L0)+]1100)+]1001))
1
Sonaz = 510400 =11010)
.[27]—>37]—]

6 sn = 50011 ~il0 110~ 1400) +i]L00))

e [3,0.5,0,3][3,0.5,1,3] [3,0.5,2,3] [3,0.5,3, 3]
e [3,1.5,0,1][3,1.5,1,1][3,1.5,2,1] [3,1.5,3,1]
e [4,0,0,2][4,0,1,1] [4,0,2,2] [4,0,3, 1]

e [4,1,0,1][4,1,1,1] [4,1,2,1] [4,1,3, 1]

o [4,2,0,1]

The above example gives an ideia of how helpful sym- tor[2, 0,0, 3] can be broken into two subspaces, indexed by
metry implementation can be. Indeed, a further reductionin W = —1 ([2,0,0,—1,1]) and +1([2, 0,0, 1, 2]), and given
the Hilbert space can be achieved in some cases by considby:
ering a lattice reflection symmetry, namél, H.;] = 0,
where e [2,0,0,—1,1]

Wdids...dp_1dy) = |drdp—1...dody). (3.18) "

B ora) = o=@ 0 — 905
The eigenvalues dii’ are +1 and -1. For instance, the sec- [2:0.0,=1.1] 7 /5 12:0.0.3] [2,0.0.3]
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e ([2,0,0,1,2]) state that is is orthogonal to the previous two as
(1) _ 1w (2) _ ~(WH ) W)
Po001,2 = E(%,o,os] + 92,0,0,3) |th2) = Hlty) i) 1) (Goldo) o). (4.2)
¢E22,)0,0,1,2] = ¢E23,)0,0,3]' It can be easily checked thé&bg|v2) = (¥1|t2) = 0. The

procedure can be generalized by defining an orthogonal ba-
In higher dimensions, besides reflection with respect to sis recursively as
different axes, rotations by several angles are also available. )
Note that these operations might or might not commute with Y1) = Hlvhi) — ailys) = bilthi-1), (4.3)
the translational operator depending on the valuk.ofor
instance, reflection symmetry can not be employed to break
sectorf2, 0, 1, 3] in sub-sectors. (Wl HIyi) B2 (Wi |s)
By implementing the model symmetries we can signif- YT Wl T T (i |ihir)
icantly reduce the computational effort required for diag- ) o
onalizing the Hamiltonian. In some cases we can study SUPPlemented by, = 0, [¢—1) = 0. Inthis basis, it can be
lattices large enough to reveal bulk properties using stan- Shown that the Hamiltonian matrix becomes,
dard routines to diagonalize each sector of the Hamilto-

wherei = 0,1, 2, ..., and the coefficients are given by

(4.4)

a by 0 0

nian. For instance, a># Heisenberg system can be bf ai by 0

fully diagonalized if most symmetries discussed above are 0 b b
H= 2 G2 by .. (4.5)

implemented[10]. Since this approach yields the full spec- 0 0 by as ... |’
trum we can construct the exact partition function for the )
system and, therefore, obtain the thermal behaviour exactly

at arbitrary temperaturé. o N
y P i.e, itis tridiagonal as expected. Once in this form the ma-

trix can be diagonalized using standard library subroutines.
4 LanczosMethod However, note that to diagonalize completely the model be-
ing studied on a finite cluster a number of iterations equal

In this Section, an algorithm is presented which allows us t0 the size of the Hilbert space (or of the subspace under
to determine numerically the ground state and some excitedconsideration) is needed. In practice this would demand a
states for Hamiltonian operators on finite clusters. The basicconsiderable amount of CPU time. However, one of the
idea of the Lanczos method[11, 12] is that a special basis can@dvantages of this technique is that accurate enough infor-
be constructed where the Hamiltonian has a tridiagonal rep-mation about the ground state can be obtained after a small
resentation. Once in this form the ground state of the matrix Number of iterations (typically of the order 6100 or less).

can be found easily using standard library subroutines suchThe ideia behind Lanczos method is a systematic improve-
asNumerical Recipesr IMSL. ment of a given variational state that is used to represent

The tridiagonal matrix is constructed iteratively. First, it the ground state [14]. The procedure just described assumes
is necessary to select an arbitrary normalized vegtgy in that H isaan herm|t|ar_1 matrix. If that is not the case then a
the Hilbert space of the model being studied. The overlap 9eneralized algorithm is needed[15].
between the actual ground staf,), and the initial state ~ The eigenvalues of (4.5) steadily approach the lowest
|tho) should be nonzero. If na priori information about eigenvalues _ofH and its elgenst_ates are expanded in the
the ground state is known, this requirement is usually easily Lanczos basig);). Each statg:);) is represented by a large
satisfied by selecting an initial state witandomlychosen ~ Set of coefficients, when it is itself expanded in the basis
coefficients in the working basis that is being used. If some Sélected to carry out the problem.§ the basis used in ex-
other information of the ground state is known, like its total @mple of Section 3). Thus, in practice, it is not convenient
momentum and spin, then it is convenient to initiate the iter- t0 Store each one of the;) vectors individually, since such
ations with a state already belonging to the subspace having? Procedure would demand a memory requirement equal to
those quantum numbers (and still with random coefficients the size of Hilbert space sector multiplied by the number of
within this subspace). Lanczos steps. A simple solutlt_)n to this prqblem consists

After |1o) is selected, we define a new vector by apply- of running the Lanczos _subrou_tlrlmce For instance, if
ing the HamiltonianA to the initial state. Subtracting the [P0} = >_; fil¢i), then in the first run the coefficients

projection ovell),), we obtain are obtained, and in the second the vectgr$ are system-
atically reconstructed one by one and used to buildilug)
(tho| H|tho) in the original basis.
[1) = Hlto) — (tho]tho) o), (4.1) A common difficulty with the Lanczos method is that fi-

nite precision arithmetic causes thg) to lose their orthog-
that satisfiegyo|v1) = 0. Now, we can construct a new onality. A consequence of that is the appearance of spurious

3As discussed below, this is a commodity we will not have when working with Lanczos or DMRG methods.
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eigenvalues (and eigenstates) in the spectra. One fix is toabout the system as possible. For every physical systems we
repeatedly reorthogonalize, which is too costly since, in this should use a different basis depending on physical insight
case, allly;) have to be stored. Another is to partially re- we have about the system. For instance, if we know that
orthogonalize, and a third option is to ignore the problem. there is a tendency to dimerization then it is convenient to
We can choose the latter if just the extremal (lowest or high- construct a basis of dimers. A well chosen basis leads to
est few) eigenvalues are needed, which is often the case. Aa better representation pF,) for a given number of states
final way of avoiding the problem is to stop the Lanczos kept in the truncation procedure.
whenever the problem starts to appear, calculate the ground  The efficiency of the truncation technique depends heav-
state, and use it as an initial sta& ) to restart the Lanczos ily on the model being studied. In particular, it seems
procedure. This resets the basis but keeps the informationsuitable for problems with gaps in the spectrum (like a
from the previous Lanczos running. By pushing this ideia spingap)[23].
to its limit, we can always perform just two Lanczos steps
(i.e., work just with |9} and|v1)), diagonalize a 22 ma- . . . .
trix, and use its lowest eigenstate as a new). Thisisthe D Density Matrix Renormalization
so-calledmodified Lanczd&6, 17]. _T_he modified Lanczos Group Algor ithms
converges more slowly than the original Lanczos but has the
convenience of hav@ng the gr.ound.state always at hand. Ang 1 Overview
even more pedestrian technique is fhever methof 9],
which consists of successively applying the Hamiltonianto ~ The basic agenda to overcome the system size limita-
the initial state until all excited states are filtered out and tions is to use a basis in which the ground state can be rep-
only the ground state remains. This procedure is the slowestresented by only a few base states. In other words, a pro-
in speed of convergence, but in simple problems is enoughcedure must be found to identify or construct the important
and easy to program. states and neglect or discard all others so that the piece of
One of the greatest appeals of the Lanczos method is thethe Hilbert space one operates on remains small. The trun-
possibility of calculatingdynamicalproperties of a given  cated Lanczos, briefly discussed in the previous Section, is
Hamiltonian in finite clusters[18, 12]. The technique per- a possible approach to this agenda. It has the advantage o
mits accurate calculations of energy and momentum depen-working with a basis formed by states that have an intuitive
dent dynamic correlation functions which are observable in meaning so that the results can be easily interpreted. In ad-
scattering experiments, such as Neutron Scattering (spin dy-dition, dynamical information can be obtained without dif-
namics) and Photoemission Spectroscopy which measurediculty. The DMRG technique we are about to discuss is an
the spectral function of the system[13]. alternative approach to that agenda. The innovation of the
Since Lanczos yields a number of excited states anotherDMRG is that it does not hold on to a specific basis, but op-
interesting possibility is the calculation of finite-temperature timizes the basis it uses in the steps leading to the calculation
quantities. Examples of successful attempts in this front are of the ground state. A disadvantage of the DMRG method is
Refs. [20] and [21]. that the base states chosen by the algorithm are not intuitive,
The main limitation of Lanczos technique is the size of and the description of the state requires the measurement
the clusters that can be studied. Recently, attempts haveof observables. For the measurement process, one needs
been made to reach larger cluster. The basic ideia is therepresentation of the operators in the current basis. Con-
following. If |#;) is a complete basis we are working with, Sequently each operator that needs to be measured must b

then the ground state can be formally represented as stored, and every time the basis is changed all of them have
to be transformed. This is expensive in time and memory.
|To) = Z gil i) (4.6) Another disadvantage is that dynamical information cannot
i be easily obtained.

In general, all$;) contribute significatively for the sum but, Historically, DMRG has its roots in the renormalization

in some cases, it might happen that several states have ver?ergﬁg zggrgﬁ)cchkiglo?;?srﬁ)i ?gr \Ilgltlt?coe:][SZAfskergsr(])?S\ilnsr:)%\'g
small weightg;. In fact, for most models studied a very P 9 y

. ) . original approach, the basic idea is to start with a small sys-
small percentage of the states in the basis dominate the surr,gem that can be handled exactly. The svstem size is then
in Eq. (4.6). This suggests that useful results can still be . Y- y

) ) . o . increased without increasing the size of the Hilbert space

obtained if a large part of the Hilbert space is simply dis- : . -2
: - until the desired system size is reached.

carded. TheruncatedLanczos[22] implements this idea by Increasing the svstem without increasing the Hilbert
systematically enlarging and reducing the working Hilbert space is t igall dor¥e in tWo Steps: 9
space in a controlled way and by keeping a fixed number of P ypically ps:
states (typically a million or so) in the basis. The number e The system size is increased, and as a consequence
of states kept represent a very small percentage of the total the Hilbert space grows at the same time.
Hilbert space but the algorithm is designed to search for and
keep the dominant states in sum Eq. (4.6). Itis also impor- e The Hilbert space is truncated to its original size keep-
tant to choose a basjg;) which uses as much information ing the system size constant.
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To characterize such menormalizationprocedure two  If |by)...|b,) and|d,) ... |dp) represent, respectively, the
basic questions have to be answered: basis of block and a site then the basis of the enlarged block
. can be constructed from the direct product
e How is the enlargement done ?

e Which criterion to apply in the second step to differ- [bk) = 1bi) @ |d). (6.1)

entiate between the states we will keep from those we

will discard ? The dimension of the Hilbert space B is the product of

the dimensions of the Hilbert space®fl, m) and a sitei.e,

In Wilson's approach, we start with blocks of a certain 77 x D. A possible mapping ofandj-values ontd:-values
(small) size. In the first step, two such blocks are linked to in Ed. (5.1)isk = (i — 1)D + .
form a block which is twice as large. The Hamiltonian of )
this larger block is then exactly diagonalized and its eigen- site @
states are used as base states. The criterion for keeping states
is their energy, and only eigenstates whose energy lies below
a certain threshold are kept. The states which are kept char-
acterize the new block that is again linked to an identical
block, and the process is iterated. block B(l,m) ¢6:-----090
This approach proved to be very effective for the Kondo " i
model[24]. However, for other strongly correlated systems
like those in Section 2 it was not successful[25]. The main
reason for this failure lies in choosing the block eigenstates
as the states to be kept. Since the block was not previously ;
connected to the rest of the system ( another identical blockenlarged ®e0::: - "0 | —.
in the case above ) its eigenstates have inappropriate feahjock B ‘
tures at the block ends, making them a poor choice as a ba- | |
sis to represent the ground state of a larger system, formed

by putting together two (or more) blocks. This problem was Figure 5.1. Representation of the basic elements of the DMRG al
pinpointed by White and Noack in Ref. [1] and an attempt gorithm. The thick line connecting the block and the site represents

was made to fix it by combining eigenstates from several 5 the interaction terms between them present in the Hamiltonian.
different blocks under various BC. Let us see how DMRG

fixes this problem.

5.2 Enlargement and Reduction in the DMRG
Procedure | |

As mentioned in Section 5, the two most important char-

system grows and how the decision is made on which states
are kept in the Hilbert space by the truncation step. In this Figure 5.2. The superblock consist of two enlarged block con-
Section, these elements of the DMRG procedure will be dis- nected to each other. The two sites in the middle are the last added
cussed. How these elements are used in the global DMRGsites to the respective blocks. In the case of a Heisenberg chain the

" . . . two enlarged blocks are connected only by the exchange of these
algorithm will be the subject of the subsequent Sections. 0 qitac

Figure 5.1 shows the most important structures used in

the DMRG algorithm. The elementary unit is a site, and is

described by the state (i = 1,..., D), in whichthe site 0 5 nerplockHamiltonian (Fig. 5.2). The superblock con-
can be foqnéi. A block B(l,m) consists of a number of  gicis o two enlarged blocks connected to each other. In Fig.
;ltesl an_d its HamlltonlarHB contains only terms involv- g » open boundary conditions (OBC) are applied to the su-
ing the sites inside the block. To represéiif, m) andHp  perplock. These BC are the most widely used in DMRG for
we associate am-dimensional basis where is in general jt yields the best results for a given computational effort. We
smaller than the full Hilbert space of the block. The states will discuss PBC latter.

in the basis are grouped in symmetry sectors labeled by a  The DMRG method focus on a single eigenstate of the
set of quantum numbere.g, S* andN), which makes7 g superblock Hamiltonian (usually the ground state), called
a block-diagonal matrix. We also store the matrix elements the target state which is used to construct the density
of Hp between these states. The block is grown by adding matrix’>. The ground state of the superblock is calculated
a site to it, and together they form tlealarged blockB . (using Lanczos or any other method). We then eliminate the

The next step in the DMRG method is the formation of

4Here, the index is not labeling a site in a lattice but the states accessible to a given site. For indiareel, and2 for the Hubbard and Heisenberg
model, respectively.
5t is possible to target several eigenstates simultaneously but, for a given computational effort, the accuracy decreases rapidly.
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states from the basis of the enlarged block that contributeto be connected to another block in the next step, when a
the least to the ground state of the superblock. To calculatenew superblock will be formed. By using the density ma-
those, the density matrix is used. trix states we somehowwook into the futureand adapt the
The concept of the density matrix was developed in sta- block for it. BesidesH g we also need to store other opera-
tistical mechanics[26] by considering the problem of a sys- tors representing the sites at the border of the block. These
tem in contact with a much larger bath. The ground state of operators are necessary to construct the interaction betweer
the universei.e. system and bath, is known, and the ques- the block and the site, when forming the enlarged block and
tion is which states of the system contribute the most to this also needed to be transformed according to Eq. (5.4).
ground state. This is what the density matrix cantellus. One  To illustrate the DMRG steps of enlargement and trun-
can express the ground state of the universe (the superblockgation, a full DMRG step for the antiferromagnetic spin 1/2
in a basis that is the tensor product of the basis vectors of theHeisenberg chain will be performed[27]. The starting point
system (one of the enlarged blocks) and the bath (the otheris a blockB(1, 2) of a single site. The possible states of the

enlarged block), single site are
mxDm'xD
o b1y = 1), [b2) = 1) (5.5)
To) = D D ailb) @ [by). (5.2)
=1 j=l1 For convenience the up/down basis is chosen. The basis it-

self is not stored. The only data that is stored are the opera-
tors needed to progress the algorithm namely, the operators
needed to build the Hamiltonians for the enlarged block and
the superblock.

Hence many of the eigenstates of the system contribute to
the one ground state of the universe. The density matrix of
the system is given by

m'xD For one isolated site without external fields the Hamilto-
piir = Z ijaj ;. (5.3) nian is zero. Since the up/down basis was chosen, the othel
j=1 operators are the spin matrices given by
We show an actual example of such a calculation below. The 1 . B B
i i ; i i St =_ (0" +i0Y), S*= 0" (5.6)
density matrix has the same dimension and block-diagonal D) J 27 - :
structure of the Hamiltonia# ., for the enlarged block. If
we denote byu,) (a = 1,...,m x D) the eigenstates of To build the enlarged system, another site is added. In this

and byw, its eigenvalues thed_  w, = 1 andw, is the case the basis of the block is the same as the basis of the
probability of the system being in the state,) given that ~ added site,
the universe is in the stat@,). |di) = [1), |da2) = |1, (5.7)
This is the information we need to decide which states to
keep in a renormalization group approach. In order to make and the operators look the same as those of the block. Thus.

an optimal decision of which states to discard and which the basis of the enlarged block is, by Eq. (5.1),
to keep, it is a good criterion to consider the weight of

the states in the ground state of a larger system, which we o) = 1)

eventually want to describe. We must orderilag) by their 5y = |t (5.8)

eigenvalues in a decreasing order and use theditthose sy = i1

states with largest eigenvalues to form a new basis for the ) = L)

enlarged blockB¢, which will then become3(l + 1,m). In 4 '

symbols, t The HamiltonianH . for the enlarged blocB(2,4) has non-
Hp(1,m) = O He O, (54) zero elements, and describes the interactions of the sites ir

where the rows of the: x (m x D) matrix O are formed B(2,4). H, consists of thé{ g, describing the interactions
by the|u,) previously selected. The change of basis in Eq. within the block, and the interactions between the rightmost
(5.4) renormalizes the Hilbert space, cutting its size back to spin of the block and the new site. In the above basis the
m. Constructed in this way, the blocks are being prepared Heisenberg Hamiltonian of the enlarged block is

]
1 .
H, = HB®Id+§(S;®55+S;®Sj)+5g®55 (5.9)
_ (00N (L0
— \0 o0 0 1
LLI(0 1y (00N (0 0Y (01
20 0 10 10 00
1/1 0 1 0
+Z<0 —1>®<0 —1)
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and it looks as follows:

1 0 0 0
m=glo o0 (510
0 0 0 1
|
In Eq. (5.9) the indice$ andd refer to the operators act- In addition to the Hamiltonians of the enlarged blocks,

ing on the Hilbert space of the block and the site, respec- one needs representations of the spin operators of the right-
tively, and I is the unit matrix. In this first step we have most site of the enlarged block. In order to construct repre-
m = D = 2 but, as the block grows in size in the follow- sentations foiS+, S—, andS~ in the basis of the enlarged
ing steps we will haven > D. Note that only representa- block we have to calculate the tensor product of the unit ma-
tions for the Hamiltonian of the block and for the operators trix of the block Hilbert space and the operator in the repre-
S+, §—, andS* of the rightmost site of the block and the sentation of the basis of the rightmost site. For instance, the
new site are needed to construct the enlarged block. (S;F)e matrix, theS+-operator of the spin on théghtmost

The superblock is constructed by taking the enlarged site in the basis of the enlarged block, is given by
block as the left block and connecting it to another enlarged
block on the right (Fig. 5.2). In the so-calléafinite size R +_ (10 01
method discussed in the next Section, the right block is the (5r)e =T ® 855 = ( 01 ) @ ( 0 0 ) - (61D
same as the left block, only spatialigflectedso that the site
last added to the left block is connected with the site added Representations fdiS, ). and(S?). are obtained in a sim-
last to the right block. The rightmost site of the left block ilar way. The basis for the superblock is the tensor product

becomes the leftmost of the right block. of the bases from the two enlarged blocks being connected:
]
[T111) |b)
[t114) |b5)
[t141) |b5)
[T |bi)
[T411) |b5)
, [T414) |bg)
AN AN AN A
2 2 _ _ _ 8
) | © | o) IS R e L) ) 512
|b) |bf) 4 4 4114 [bio)
) [b1)
D) [b12)
[H411) |b15)
[T |b14)
[ |bi5)
D |bi6)

In general,|b$) and|b;e) are distinct basis. Assuming that we want to calculate the ground state properties, it is possible to
exploitS* conservation and the fact that the ground state belongs to the subspaée with. Therefore, we can concentrate
only on states in this symmetry sector:

By = |bg)
sy = |bg)
b5y = |b3) (5.13)
AR
By = jbg)
5y = [bfs).

The Hamiltonian of the superblock consists of three parts:iritexnal Hamiltonians of the two enlarged blocks and the
exchange arising from the spin interacting at the connection between them:

’

7 7 ]_ ’
Hy=H @l +I.oH +3 [(S;f)e ® (S, )e + (S7)e @ (S7)e| + (SP)e ® (S2)., (5.14)
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where the prime refers to operators in the Hilbert space of the second enlarged block forming the superblock. We now bu
representation fof ; in the basié,bf(o)):

1 0 2 0 00
0o -1 2 2 00
1 2 2 -3 0 2 0
(0 _ 2
HP=710 2 0 -3 2 2 (5.15)
o 0 2 2 -10
o 0 0 2 01
The ground state energy éf° is £, = (1/4)(3 + 21/3) and the corresponding eigenvector is
1
14+4/(3)
1 -2-3
|¥g) = ——— (5.16)
_2_\/§
24/3(24+ V3
V3R+V3) | 3
1

In order to decide which states of the left enlarged block are the most important for the ground state of the superblock
uses the density matrix given by Eq. (5.3). Combining Egs. (5.12) and (5.13) we obtain

167 159) @ [bie)

5”) 55) ® [by)

B3 | | sy @b (5.17)
153" bs) @ [bs) | '
15y [b5) @ |b5°)

165 b3 @ |br°)

This allows us to identify the coefficients; in Eq. (5.2) (andin Eqg. (5.3)) and they are all zero exceptfar as2, ass3, ass, ass, a
For the density matrix we get

0 0
11+6vV3  —2(5+3V3)
—2(5+3v3) 11+6V3
0 0

p=— (5.18)

12(2 +V/3)

OO O
_ o O O

Note thatp and H, (Eq. (5.10)) share the same block- In the present simple cadé. andp have the same eigen-
diagonal structure. The eigenvaluesmfre (1/12)(2 + vectors. That is the reason why the above transformation
V3) ~ 0.02 for each of the triplet states an@1 + diagonalizedi.. The same transformation is done with the
12v/3)(12(2 + v/3)) ~ 0.94 for the singlet state. The base Other operators that will be needed for future calculations.
states are then ordered according to the size of the respectiv€ne example is thé*-operator, which has the following
eigenvalues, with the singlet state (largest eigenvalue) com-representation in the new basis

ing first. The transformation matri¢ in Eqg. (5.4) is given 1 0 0
by SF=0(SH.0"=— ( ) . (5.21)
V21 0
o= (0 UvZ -1/v2 0 (5.19)
1 0 0 0/’ ' Note that, even though a site has been added to [B¢tk2)

to form block B(2, 2), the dimension of Hilbert space did

After determining the basis and the transformation, the rep- not change, due to the truncation performed. The states
resentations of all operators used to describe the enlargeckept in the truncation are those with higher probability to
block are changed to the new basis. Applying the transfor- pe found in the ground states of the superblock system.
mation to theH, (Eq. (5.10)) leads to In this example we have performed the truncation in the
Hilbert space in order to illustrate the procedure. In a practi-
cal calculation the system in our example would be too small
to already start the truncation. Usually, we know from the

1/ -3 0
HB(Z,,Q)ZOHeof:Z( 01 ) (5.20)
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beginning how many states will be kept. Thus, in the first close to a phase transition line or inside a critical (massless)
steps the block is grown (sites are added) without truncation phase the strong quantum fluctuations tend to reduce accu-
until the number of states needed to describe the block be-racy. In the example above we discarded two of the triplet
comes larger than the number of states we want to keep states leading to a truncation error of 0.04, which is unac-
If we had, for instance, decided to keep = 20 states in ceptably high. Truncation errors in actual calculations are
the computation, the chain would be grown to a size of 5 usually kept smaller thatD —*.
sites with2® = 32 states, which is the first block size with In this Section the focus was on one DMRG step. En-
Hilbert space dimension exceeding 20. Then, a truncation largement of the block by adding a site, the formation and
would create a blocB(5, 20) from an enlarged blockwith 5  diagonalization of the superblock, the calculation of the den-
sites and in the following steps all blocks would have dimen- sity matrix, and the truncation procedure were discussed. In
sion 20, even though they represented a increasing numbethe next Sections we describe how several DMRG steps are
of sites. combined to calculate the properties of a given model.

We often use the sum of the density matrix eigenvalues
of the discarded state$ ¢ Z;”Zl wy) as ameasure forthe 5.3 Theinfinite system algorithm
severity of the truncation. The goal is to keep this hum- o )
ber as small as possible. In many cases it has been found The first implementation of the DMRG method was
that this number is roughly proportional to the error in the the infinite system algorithm[2, 3]. The goal was to use
energy[28]. The proportionality factor is of course model- DMRG’S_ advantage to decouple the system size and th_e size
dependent. In doped fermionic models, we need to keepOf the Hilbert space and cfalculate ground state energies of
more states to achieve a good accuracy than in a spin modellrge systems,e., system sizes that are unreachable for ex-
Even for a given model the accuracy for a given truncation act diagonalizations, eventually converging to the thermo-
may depend on the parameters being used in the calculadynamic limit.
tion (e.g, couplings and symmetry sector). For instance,

a) B(l,m) _.—.— B(l,m)
b) !
B(I+1,m)
c) B(I+1,m) —.—.-.— B(l+1,m)
d) |
B(I+2,m)

Figure 5.3. Two DMRG steps of the infinite system algorithm; see text for discussion.

In the infinite system algorithm, the left enlarged block is trix with respect to the left enlarged block.
connected to its own mirror image on the right side, so that
the number of sites of the superblock is increased by two 4. Change basis of the left enlarged block to the eigen-

in each step. Growing the block and truncating the Hilbert basis of the density matrix, keep only the states
space is done as explained in Section 5. Schematically the with the largest density matrix eigenvalues. The trans-
algorithm can be described as follows: formed, truncated left enlarged block becomes the
1. Grow the chain to a size in which its Hilbert space di- block for the next iteration.
mension is just larger tham, the number of states to
be kept. This is the first enlarged block. 5. This block s enlargedle., a site is added on the right.

2. Form the superblock by adding an identical enlarged
block on the right such that the sites, which were
added last, are next to each other.

6. Continue with step 2 until convergence is reached.

In Fig. 5.3, two successive iterations of the infinite sys-
3. Diagonalize the superblock, calculate the density ma- tem algorithm are shown. The starting point is a block with

61n this initial steps with no truncation the matiiX has dimensiorfm x D) x (m x D) and Eq. (5.4) becomes a simple change of basis.



68 André Luiz Malvezzi

[ sites that is described by a basis withstates. Enlarge- sizeL is how present since it has been calculated in the pre-

ment and construction of the superblock (step 2), leads tovious sweep. When the optimal basis for a specific size of

the situation portrayed in Fig. 5.3.a. the left block is determined with DMRG, the result is stored
After diagonalizing the superblock, finding the transfor- and used in the next sweep as best possible guess for the op

mation, and truncating the enlarged block according to its timal states describing the right block. The steps of the finite

density matrix (steps 3 and 4), one arrives at the situation system algorithm are compiled in the following list:

depicted in Fig. 5.3.b. The new block describes a chain with . o ] ]

[ +1 sites, but uses a basis with onlystates. Enlarging the 1. In the first sweep use the infinite size a_lgorlthm until

block (step 6) and building the superblock (step 2) leads to the superblock size reaches the chain gizender in-

the situation in 5.3.c, and the procedure is repeated. vestigation. After every t_runcatlon save all operators
From the computational point of view the most difficult of the reduced block to disk.

part is the calculation and the subsequent diagonalization -

of the superblock Hamiltonian. The diagonalization can be 2. Enlarge the left block size+ 1.

done with the Lanczos method but any other mettend, ( . Read a block of siz& — [ — 2 from disk; this is the

the Davidson algorithm[29]) can be used. The computa- right block.

tional effort depends on the size of the Hamiltonian matrix

and accuracy needed for the ground state. Since the su-

perblock Hamiltonian is block-diagonal, diagonalizing only

the sector that has the proper quantum numbers reduces the

matrix by a factor that depends on the superblock, block, and

model. Typically it is of order 10-20. Since the total Hilbert 6. Diagonalize the superblock, calculate the density ma-

w

N

. Enlarge the right block to the siZe— [ — 1.

5. Form the superblock from right and left enlarged
blocks.

space for the superblock has dimensi@nx m) 2, the most trix with respect to the left enlarged block.

important determining factor for the size of the Hamiltonian

is the numbern of states kept in the block. In actual calcu- 7. Change the basis of the left enlarged block to the
lationsm is typically a few hundred of states and is limited eigenbasis of the density matrix, keep only the
due to restrictions in computer memory and CPU-time. As states with the largest density matrix eigenvalues, save
we work with different models, the sizB of the Hilbert the block with the basis to disk. The transformed,
space for a single site also affects the computational effort truncated left enlarged block becomes the left block
needed to reach a given accuracy in the results. for the next step.

To summarize: in the infinite system algorithm, the sys-
tem size is increased in each step while the number of states
kept to describe the blocks is constant. The goal is to grow
the chain to a long-enough length, so that the energy and
short range correlations around the center have converged.
The convergence is checked by keeping track of the dif-
ference AE, between the ground state energy of the su-
perblocks in two sucessive stéps

8. Continue with step 2 until the right block becomes a
single site

9. If the right block is a single site, begin a new sweep
over the systeni,e. construct a superblock with a left
enlarged block containing two sites. Continue with
step 3 until convergence is reached.

. . To illustrate the progress of the algorithm, two general
5.4 The Finite System Algorithm steps are portrayed in Fig. 5.4.

In the finite system algorithm the goal is no longer to At first glance Fig.5.4 looks like Fig.5.3. In fact the al-
reaches the thermodynamic limit, but rather to restrict our- gorithms are very similar. The left bock is enlarged, the su-
selves to a finite system siZe In the beginning, until the  perblock is constructed and diagonalized (Fig.5.4.a). Then
superblock size reaches the system size, the algorithm isthe density matrix for the left enlarged block is constructed
identical to the infinite size algorithm. When the system and the block is reduced (Fig.5.4.b). This reduced block is
size reached,, i.e. the enlarged block hag/2 sites, the then again enlarged, the superblock is built up and so on.
left block is grown further but on the right an enlarged block The difference between the two algorithms is that the right
with a smaller number of sites is used in order to keep con- block in Fig. 5.3 has the same number of sites the left
stant the number of sites in the superblock. As soon as theside. In the finite system algorithm the right enlarged block
decreasing size of the right block reachs a single site the pro-always complements the left one to the target Sizad thus
cedure is stopped. One such iteration in which the left block becomes shorter, while the later grows.
has been calculated for all possible sizes, nearly up, s As an example, let us consider a calculation for the
called asweepover the system. After one sweep is done, Heisenberg chain witl. = 16 sites and a truncation of
we start all over with a small left block. However, fromnow m = 24 states. The following superblocks have to be
on, the information about the best representation of the right formed:
block that complements the left block to the desired system

T(AFp)/2 converges to the ground state energy per site in the thermodynamic limit.
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a) B(I,m) —o-.-o— B(L--2,m)
b) |
B(l+1,m)
c) B(l+1,m) _._._ B(L-I-3,m)
d) |
B(I+2,m)

Figure 5.4. Two DMRG steps of the finite system algorithm, see text for dicussion.

e Initial sweep:
[B(1,2),B(1,2)][B(2,4),B(2,4)][B(3,8),B(3,8)] [B(4,16),B(4,16)]
[B(5,24),B(5,24)][B(6,24),B(6,24)] [B(7,24),B(7,24)] [B(8,24),B(6,24)]
[B(9,24),B(5,24)] [B(10,24),B(4,16)][B(11,24),B(3,8)] [B(12,24),B(2,4)]

¢ Following sweeps:
[B(1,2),B(13,24)][B(2,4),B(12,24)] [B(3,8),B(11,24)]
[B(4,16),B(10,24)][B(5,24),B(9,24)][B(6,24),B(8,24)]
[B(7,24),B(7,24)] [B(8,24),B(6,24)] [B(9,24),B(5,24)]
[B(10,24),B(4,16)] [B(11,24),B(3,8)] [B(12,24),B(2,4)]

If the ground state of the superblock is even under re- tions for the doped — J model with the samen usually
flection symmetry, left and right side can be interchanged. need roughly twice as many sweeps, even for smaller sys-
That means that the reduced left blocks stored during thetem sizes.
first half of a sweep (when the size of the left block is smaller The first sweeps do not yield very accurate results. Their
thanL/2) can be already used as right blocks in the second purpose is to generate a good set of blocks of different
half of the same sweep. However, if the ground state of the sizes. Therefore, the first sweeps are normally done with
superblock does not show reflection symmetry, the reduceda small number of states. When convergence is approached
blocks from the left and right side have to be constructed and the number of states kept in the truncation can be increased
stored independently. Therefore, in the absence of reflectionin order to improve accuracy. This helps saving CPU-time,
symmetry stored space and CPU-time are doubled. specially wherl is large.

The finite system algorithm is terminated when conver-
gence is reachede. when the energy in succeeding sweeps 5.5 Measurement of observables
does not improve (decrease) any more. It happens, how-  The ground state energy of the superblock is determined
ever, that the energy stays on a certain level for two or three every time the superblock is diagonalized. The value is used
sweeps only to further decrease afterwards. Therefore, ongo determine whether convergence is reached. It turns out
cannot just compare the energies of the last two sweeps perthat in the finite system algorithm the energy is lowest when
formed. The convergence behaviour of the model should the two blocks forming the superblock have the same size.
be taken in account. This behaviour can be investigated by Therefore, thisymmetricconfiguration is used to measure
looking at small systems, where calculations are inexpen-also all other observables in which one is interested.
sive. The number of sweeps necessary for convergence de- Unfortunately the values for the other observables, such
pends strongly on the system size the number of states  as theS* value of a certain spin or the spin correlation be-
keptm, and the model itself. Fermionic models need more tween spins on different sites, are not as easily obtainable as
sweeps than spin models, specially when they are dopedthe energy.
Typically, spin models converge in less than 10 sweeps, even  This is caused by the change of basis that is performed
for fairly large chains . = 100 or larger), while calcula-  in every step. Even if we start out with a base where the
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demanded properties of the basis states are known, or couldVhen another site, thg + 1)th, is added, the representation
easily be calculated, this knowledge fades fast with the re- of the operator also has to be adjusted according to
peated linear combination of basis states of new base sys-
tems. Of course we could keep track, for instance|,%f) (57)541 = (57); ® Ia, (5.24)
for each site in each state but the computational effort would
be enormous.

The way that is chosen is to carry out the measurement
by actually evaluating the operator in the ground state. The
expectation value aof* on sitei is calculated as

and truncated witl© ;. Following this procedure we al-
ways have a representation of the operator in the current ba-
sis.

When itis time to perform measuremernts, when both
(S7) = (Wo|S7|To). (5.22) blocks forming the superblock have the same size, we only
. . ) have to find the representation of the operator in the Hilbert
Thls |s_the tex_tb_ook formulg, but th.e difficulty of appl_ymg space of the superblock. I6.g, the operator is acting on
it here is not visible from this equation. The problemis the ' gjie inside the left block this means tensorizing it with the

basis. The ground state is expanded in a basis that evolveq, s element acting on all remaining spaces, namely, the two
in every step of the algorithm and could not have been an- central sites and right block.

ticipated at the beginning. . . o
When the St s adde to te ok, the represeri 11 STl Le: e e s cloe o e e of e
tion of the.5"-operator in the basis of the enlarged block is the m,easurement is carrie% out. Due to tth)a truncations that
known (in Eqg. (5.11) the calculation is done f§f ). But in O ' .
go with this procedure, the accuracy is decreased. We ex-

general this it too early to measufs;), because the sym- ect a greater accuracy from observables on sites close tc
metric configuration was not yet reached. In order to still P -~ acy
the middle of the chain.

have the right representation {§f in the symmetric config- ) ) _
uration, the matrix has to be updated and stored every time ~ The issue is somewhat more complicated for nonlocal
the basis changes. Updating means that the basis change h&Peratorse.g. spin correlations likeC's (i, j) = (S7S57).

to be performed oi$. If (S7)$ denotes the representation In general one could just take_ the representations of the in-
of the S=-operator on sité in the Hilbert space of the en-  Volved S*-operators and multiply them, when the symmet-

larged block withj sites § > i) andO; is the matrix that ric configuration is reached. However, there is a more accu-
transforms and cuts the basis before addingsitel, the rate way to proceed. As an example, we consider a spin-spin

representation o # after the truncation is correlation wherg = i + 1 and the symmetric configura-
‘ tion is reached aL /2 = i + 2. The representation of the
(S9); =0 (55)50}. (5.23) two operators at the chain size i+2 are
|
(52 = (0 (0l ® S)ON) @ 1)OL,, @ Iy (5.25)
(S35 = (Ol ®57)0L,) @ 1.

Therefore, one gets for the spin correlation
(87851542 = (0iy1 ((0i(ly ® 59)0]) © 11)0L,, (011 (I @ §9)0),,) @ I, (5.26)

Another way of calculating the matrix is to multiply the two operators as soon as possible. In this case the operation ca
done when the enlarged block size is 1, which gives

Ciliyi+1))ir1 = Oin (0s(Ly ® S7)O)) @ L) (I, ® 57)OL,.,. (5.27)
Then, from now on(C's (4,4 + 1)),41 is tranformed as a whole. Its representation for the enlarged block withsites is

(Cs(iyi+1))5 = Csiyi +1))ip1 ® La. (5.28)

Comparing Eqg. (5.26) with Eq. (5.28) the difference is only With the truncation, however, this is no longer true, as one
a aO:f 1+10i41-factor between the two'*-operators. With-  can immediately see calculatiig O with the projector in
out the truncation of states it would have been the product Eqg. (5.19). The facto@;ﬁrloi“ leads to a loss of accuracy
of two unitary matrices and thus be a unit matrix. The two in the matrix multiplication since instead of multiplying the
ways of calculatindC (i, + 1))§, , would be equivalent.  matrices, only their projections are multiplied. This error
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becomes worse the further the siteandj in C(4,5) are When DMRG procedure converges to a fixed point the
apart, because every separating site adds anothed péir superblock ground state can be simply written as a matrix-

For DMRG procedure this means that we have to use theproduct form and also be rederived through a simple vari-
latter approach, multiplying the operators as soon as possi-ational ansatz making no reference to the DMRG construc-
ble. Prior to the calculation, a list of the observables that we tion. These very interesting analytical results are obtained in
are interested in measuring has to be made. When growingRef. [32] and give some insight into the mechanisms work-
the chain, then-siteoperators are stored as soon as they are ing behind DMRG algorithms.
generated and updated every time the basis is changed. The
products otwo-siteoperators are formed and stored as soon .
as on has a representation for both operators, then they arf,6 Conclusionsand aCknOWIedgmentS
also updated. In the case of operators that involve more sin-
gle site operator®.g.pairing operators, we have to proceed
in the same way.

If we are measuring correlations between sites located
on different blocks we can not multiply them before the
symmetric configuration is reached. This means that mea-
surements of correlations across the center will always have
larger error than correlations where both sites are located in
the same block.

From these explanations it has hopefully become clear
that measuring observables involve additional storage and

mont process s started 2 ate 24 possible n th caloufaiong, "6 uhor i hankiul 1o those too manyto name here
P P Who carefully read this manuscript helping to improve it in

after convergence has been reached. In the infinite size al- .
. ; : ) many ways. The author also acknowledges hospitality at the
gorithm we restrict ourselves to the sites close to the middle y way g priaity

of the chain, which were the last to be added. In the finite Instituto de Sica de 80 Carlos - USP and the financial
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sweeps when the energy has not converged yet.
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