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We study the damage spreading in the one-dimensional Ising model by means of the stochastic dynamics re-
sulting from coupling the system and its replica by a family of algorithms that interpolate between the heat bath
and the Hinrichsen-Domany algorithms. At high temperatures the dynamics is exactly mapped to the Domany-
Kinzel probabilistic cellular automaton. Using a mean-field approximation and Monte Carlo simulations we
find the critical line that separates the phase where the damage spreads from the one where it does not.

| Introduction The description of a system either by the equation of
motion or by the time evolution of the probability are equiv-
It is well known that most models studied in equilibrium alent. An analogy can be made with the Brownian motion
statistical mechanics, such as the Ising model, are defined invhich can be described either by the Langevin equation or
a static way through the equilibrium Gibbs probability dis- by its associated Fokker-Planck equation [4, 8, 16, 17]. The
tribution associated with the Hamiltonian of the model. It first is a stochastic equation of motion of a representative
is desirable from the theoretical and numerical point of view point in phase space whereas the second governs the tim
to assign a dynamics to such models. The stochastic dynamevolution of the probability distribution in phase space.

ics introduced by Glauber [1] is the prototype example of a In the study of damage spreading [10,12,15,18-24] it has

nami ign ic-defined model. The numer . h S
dynamics assigned to a static-defined mode €nu eou%een realized that algorithms that are realization of the same

versions of the Monte Carlo method [2], used in statistical o . :
mechanics are also examples of dynamics assigned to staticF-’rObaIIStIC rules may yield different results for the damage

defined models. All of them are markovian processes thatSpr%dIng [21,15, 22, 24], and they usually do. The damage

have the Gibbs probability distribution as the stationary dis- zg;es?gllﬂg gsf ?hg rt(i)rcr:]eedg\r/(ce)lfjf:irgrt]l %? ;N glg;nvsv?/vﬂqha)r/eztuedé irc])e
tribution. In general they are either continuous time process, % i Iy nditions. The proced ry mounts t P in
governed by a master equation [3-8] or probabilistic cellular € al co ons. € procedure amounts to coupliing

automata [8-13] The latter is defined by a stochastic matrix, the system t‘.’v'th ? reptl.lca O_T_r']t’ each l9f them foIIovI\_nr;]g (’;hg
whose elements are the transition probabilities, and the for-SaMe equation of motion. The coupling 1S acomplished by

mer by the evolution matrix, whose nondiagonal elements E'he usfe oftt_he s%ame siquer][ce Otf rantc:]om n'LtJrrlnttr)]ers. Thef(:r(]que
are the transition rates. ion of motion for each system together wi e use of the

If we wish to simulate, for instance, the Ising model same random number defines the equation of motion for the

we have to choose one of the possible stochastic dynam-COUpled system from which we obtain tjmint transition

ics, since there are many. Having decided which dynam- probability [12, 13] for the coupled system.

ics to use, that is, having decided which probabilistic rules Suppose one uses an algorithm to couple a system anc
to use, we realize that there are several ways of doing theits replica. This will lead us to a certain joint transition prob-
actual simulation corresponding to the chosen probabilistic ability. If another algorithm is used, which is also a realiza-
rules. For instance, for the case of the probabilistic cellular tion of the same transition probability for a single system,
automaton used by Derrida and Weisbuch [10] to simulate the joint transition probability will be distinct. The corre-
the Ising model, and which will concern us here, there are lation between system and replica will also be distinct and,
several ways of realizing the dynamics. We may use thein particular, the Hamming distance which is a measure of
so called heat-bath algorithm [14] or the algorithm intro- the damage spreading will be different. For example, in the
duced more recently by Hinrichsen and Domany [15] or any one-dimensional Ising model, the heat-bath (HB) algorithm
other we may invent. These algorithms govern the move- [14] will give no damage spreading whereas the Hinrichsen-
ment of the system in phase space and they may be calledomany (HD) algorithm [15] will exhibit a spreading of
stochastic equations of motiam phase space. Different al- damage above a certain temperature [15]. This is an im-
gorithms may be the realization of the same probabilistic pressive example that the damage spreading is not an in-
rule or stochastic dynamics. trinsic static property of a given system, but depends on the
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algorithm, or the stochastic equation of motion, we use to linear size of the system to be even the dynamics is decom-

perform the actual simulation [15, 22]. posed into two independent dynamics for each sublattice.
In this paper we introduce a family of algorithms, or It is possible to show [10] that the DW probabilistic cellu-

equations of motion, spanned by a parameter that interpodar automaton has as the stationary probability distribution

lates between the HB and HD algorithms. The associatedthe Gibbs probability distribuiton associated with the Ising

transition probability corresponds, for all values of the pa- model, namely,

rameter, to the Derrida-Weisbush (DW) probabilistic cellu- )

lar automaton [10]. If we use this family of algorithms to _ 1 .

study the spreading of damage, as we will do here, the pa- Plo) = Z EXp{ﬁJZ:GZU’H}’ @

rameter will have no effect on each system separately since

for any possible value of the parameter the algorithm is re- where8 = 1/kpT, so that it defines a stochastic dynamics

lated to the same transition probability. However, the joint that can be assigned to the Ising model.

transition probability will depend on the parameter and the The transition probabilitieswpy (o|o;_1,0:,1) are

properties of the system, including the damage spreading.shown in Table 1 where we used the parametelefined

will also depend on the parameter. by
A remarkable property of the dynamics introduced here e—28J
is that at infinite temperature it is exactly mapped to the p= o287 | o287 (8)

Domany-Kinzel (DK) probabilistic cellular automaton [9].

This gives support to a conjecture by Grassherger [22] ac-

cording to which the generic class of damage spreading tran-

sitions is the same as the directed percolation, to which the Table 1. Transition probabilities for the DW probabilistic

transition ocurring in the DK probabilistic cellular automa- celular automaton
ton belongs. Wpw T _
++ | 1—p P
; +- 1/2 1/2
I Single system R RV
Let us consider a one dimensional lattice where at each site — p 1-p
one attaches an Ising variabigthat takes the values1 or
—1 and denote by = {0} the set of all variables of the The actual computer realization of a probabilistic cellu-
lattice. The time evolution of the probabiliti, (o) of state lar automaton can be made in several ways. Here, we in-
o at discrete timé is given by troduce a family of algorithms that are possible realizations
of the DW probabilistic cellular automaton. It has a free
Pra(') =Y W(d'|o)Py(0), (1)  parameten that interpolates between the HD and HB algo-
- rithms. At each time step all sites of the lattice are updated

_ - - in a synchronous way by means of the following algorithm,
WheI'EW(O'/|O') is the transition probablllty from stateto or equation of motion for the Spin variables,

states’ which, for a probabilistic cellular automaton is given
by [8] o; = sign{pi(o) — &}, ©)

W(o'lo) = | | wrcaloilo), &)
1?[ if 0,01 = Oit1 and

wherewpca(of|o) is the probability that sité will be in 1
states’ in the next step given that the present state of the o; = sign {(a &)1 —a—§&) <2 - Ei) } (10)
system isc. The DW probabilistic cellular automaton [10]

for the one dimensional Ising model is defined by if 01 # o,.1 whereg; is a random number uniformly dis-

tributed in the intervalo, 1].

wpea(@ilo) = wow (0|i-1, i), 3) Whena = 0 one recovers the HD algorithm [15]
with T @ o =sign{pi(0) =&}, o1 =i, (11)
and wpw (+1|oi_1,0i41) = 1 — pi(0), (5) Jg = —sign{% - &}, Oi 1 7 Oit1, (12)
where and wher: = 1/2 one recovers the HB algorithm [14, 15]
(o) ¢ o atoe) ©) o) = sign{pi(0) ~ &). (13)

T efJ(oicitoiv1) o e=BI(gicitoig1)’

It is straightforward to show that the algorithm defined by

The sitei assumes the statel with a probabilityp; (o) Egs. (9) and (10) yields the one-site transition probability
that does not depend on the central sitéf we choose the  given by Egs. (4) and (5) for any value of the parameter
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Il Coupled system andr;_; < 7i41. (b) System-replica symmetry in which the
states of the system and the replica are interchanged, that is

Let us denote by = {o;} andT = {7;} the configura-  ¢; < 7, for all sites. (c) Up-down symmetry defined by the

tions of the system and its replica, respectively. All sites of transformatiorv; < —o,; andr; « —r; for all sites.

the system and its replica are updated in a synchronous way  The Hamming distance, which characterizes the damage

according to the algorithm spreading, is defined by

o! = sign{p;() — &}, (14)

if 0;_1 = Oit1 and

\I/:%“.—O'i’i};), (22)

which is also the order parameter related to the damage
. 1 : o
of =sign{(a — &)1 —a— &)(5 — &) (15) spreading phase transition.

if 051 # 0411 and IV Relation with the DK automaton
Ti/ = Sign{Pi(T) - fi}» (16)

if 7,1 = Tit1 and

In this section we show an exact relation between the
stochastic dynamics defined in Section Il and the DK prob-
abilistic cellular automaton [9]. If we le; be the occupa-

. 1 tion variable attached to sitethat is,n; = 0 or 1 according

7 =sign{(a —&)(1 —a — 51)(5 &) (A0 o whether site is empty or occupied by one particle, then

] ] ] the transition probabilitiesup i (}]1:—1,n:+1) of the DK
if 7,_1 # 7;+1. Notice that the random numbéy is the cellular automaton is given by
same for both systems.

The coupled system will be described by a four-state wpr (1/00) = 0, (23)
probabilistic cellular automaton defined by the time evolu-
tion wpr (1|01) = wpg (1]10) = py, (24)
Ppyi(o's7) ZZW o'st'|o;T)Pe(o; ) (18) wpk (1[11) = ps. (25)

The DK cellular automaton displays a critical line in the

of the joint probability P, (o 7) of state(o;7) at discrete ~ Phase diagranp, versusp, that separates the absorbing
time ¢ whereW (¢'; 7’|o; 7) is the joint transition probabil- state, for which the density of particles is zero, and the active

ity from state(c; 7) to (o'; 7'), given by state, for which the density is nonzero. . .
Now, let us denote by); the coupling variable associ-
ated to the dynamics of Section Il that takes the valws

W(o';7'|o;T) w( Oi—1,0i41;Ti—1, Tit1 : ; i
| H T Tili 1, T 13 T Tig ) 0 according whethes; # 7, or o; = 7, respectively, given

(19) by
From the stochastic equation of motion given by Eqgs. (14), n; = 1(1 — o). (26)
(15), (16), and (17), we deduce the joint transition proba- 2
bilities w(o}; 7/|0i—1, 04415 Ti—1, Ti1) that the sitel of the The relation between the Hamming distance and the cou-
system and the replica assume the valagsand 7/, re- pling variables is just
spectively. The resultant joint transition probabilities are
displayed in Table 2 and are valid for < a < p. For U = (n;). (27)

p < a < 1, the algorithm yields a joint transition probabil-
ity which is independent of and is the one that results by The joint transition probabilities in the variablgs ando;
formally replacing, in Table 2¢ by p. The joint transition  are defined by
probability fulfill the following properties o,
WO mi|oi1, Tt 13 i1, Mig1) =

Zw( 05T |01, 00415 Tim15 Ti1) = wpw (03|00, 0iy1),

7! :w( 035 Z|0', 1,0i+1; Ti— 177-z—i-1) (28)
(20) wherer; = O'l(l — 2’[]1)
Z w(oh; m|oi_1, 0001571, Tiv1) = wpw (T} |Ti—1, Tix1)s Summing over the coupling variable we get the follow-
! ing property
(21)
which reflects the condition that the system and the replicaz onmiloi1, o1 i1, Miv1) = wpw (04|01, 0411),
follow their own dynamics independent of the coupling. n!
The joint transition probabilities satisfy also the follow- (29)

ing properties. (a) Reflection symmetry in which the states which reflects, as in Eq. (20), the condition that the system
of sitesi —1 andi+1 are interchanged, thatis;_; < 0,41 follows its own dynamics independent of the coupling. The
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Table 2. Joint transition probabilities for the coupled system

w +;+ +;— -+ -
5+ 1-p 0 0 P
- 1/2 0 0 1/2
—+—+ 1/2 0 0 1/2
—— == P 0 0 l—p
++;—— P 1—-2p 0 P
——++ p 0 1—2p P
o 1/2 0 0 1/2
—++— 1/2 0 0 1/2
+—4++ | 1/2—-p+a| p—a |1/2—-a a
—+++ | 1/2—p+a| p—a |1/2—a a
++4+—|1/2-p+a | 1/2—a | p—a a
++;—+ | 1/2—p+a |1/2—a| p—a a
—t;—— a 1/2—a | p—a |1/2—-p+a
+——— a 1/2—a| p—a |1/2—p+a
—— 4+ a p—a |1/2—a|1/2—p+a
—— - a p—a |1/2—a|1/2—p+a

main property we wish to show, however, is that for infinite and

temperature, that is, for= 1/2 we have

Z@(Ué;nﬂaiqa Tit15Mi-1,Mi41) = W (M |Mi-1,Mi+1),
(30)

with the DK transition probabilites defined g = 0 and
p1 = 1 — 2a. This means that the subsystem defined by the
variables{n; } follows a dynamics identical to the DK prob-
abilistic cellular automaton. From relation (27) it follows
that the Hamming distance coincides with the order param-
eter of the active state displayed by the DK automaton.

Yet for the case = 1/2, it is easy to show that the joint
transition probability satisfies the property

W0 1|01, i1 Mim1, i 1) =

= wDW(UHUiflaO'i+1)'wDK(771/‘|77i71a77i+1)a (31)

with the DK transition probabilites defined py = 0 and
P1 1 — 2a. Therefore, thes-subsystem and the-
subsystem are statistically independent.

V Mean-field solution

The dynamic mean-field approximation has already been
used to study systems in nonequilibirum stationary states
[6, 7, 12, 27]. Here we set up equations for an approximate
solution of the equation that governs the time evolution of
the coupled system. We start by writing down the equations
that give the time evolution of the one-site and two-site prob-
abilities, namely,

P£+1(01;7'1) = Z Z w(01§7—1|00702§7_0a7—2)

00,02 70,72

(32)

X Py(0g,02;T0,T2)

Pria(on,05m,7) = > Y w(o1;71]00,02; 70, T2)

00,02.04 T0,T2,T4
Xw(03;7'3|02,04;7'2,7’4)Pz(00702,04;7'0,7277'4)- (33)
From now on we will drop the subscriptand use the prime

for quantities calculated at timé+ 1. To obtain a set of
closed equations we use the approximation

P(og,09,04;70, T2, T4) =
_ 1
P(o9;72)
which defines the dynamic mean-field pair approximation.
The probabilitiesP(o1;71) and P(o1,03;711,73) can-
not be considered all independent variables. Taking into
account that they should have the reflection symmetry and

the system-replica symmetry and, in addition, assuming the
up-down symmetry the probabilities are related as follows

(34)

P(0g,02; 70, 72)P(02,04; T2, T4),

P(=4) = P(+;-) = 3, (35)

P(=5-) = P(+:4) = 29, (36)
P(——;—=) = P(++; ++) = 4, 37)

Pl+—=——)=P(—+i—)=P(—+-) =
=P(——;—+) = P(—+;++) = P(+—++) =

=P(++;—+)=P(+++-) =B (38)
P(—+;—+) = P(+—+-) =C, (39)
P(——;4++)=P(++;—) =D, (40)
P(—+;+—) = P(+—;—+) = E. (41)

These seven variables are not yet independent. Only three of
them can be considered independent which we choose to be
¥, B, andD. The others are related to them by the relations

QO =2P(+) -0, (42)
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A= P(++)-2B - D, (43) +40? (1302 — 16a + 5)y — 8a(3a —2) =0,  (51)
1 1 whose solution is shown in the phase diagram of Fig. 1. In
= 2 P(++) - 5\11 +D, (44) particular, wheru = 0 (corresponding to the HD algorithm)
1 we havey = 2(1 — «) which substituted in the equation for
E= 5\11 — 2B — D, (45) the transition line gives
whereP(+) and P(++) are the one-site and two-site prob- 1 —9a+ 330 — 5902 4 53a* —200° =0,  (52)

abilities corresponding to a single system. The exact equi-

librium solution of the one-dimensional Ising model gives whose solution isx = 0.696173 from which we getp =

P(+) =1/2andP(++) = [1 + (tanh 3.J)?] /4. 0.196173 so thatJ/kpT, = 0.352597 and7, = 2.83610.
From the time evolution given by Egs. (32) and (33) Whena = 1/2 (correspoding to the HB algorithm) there is

and using Egs. (43), (44), and (45) we obtain the following No transition.

closed equations fob, D, andB At infinite temperaturep = 1/2, the mean-field transi-
tion line givesa = 1/6. Now, using the relatiop; = 1—2a
V' =2vD + 8aB, (46) obtained from the equivalence with the DK automaton, and

taking into account the result; = 2/3 obtained in [12]

2 in the pair approximation for the DK automaton we have

B? B
D' =40®— + (40® + %)=+

Q Y a = 1/6 in coincidence with our present result.
DB D?
+2y(7 +20) == + 29° —, (47) : : :
v v VI Numerical simulations
B B2 DB
B’ =2aB — 40626 - 40&23 —207—5=  (48)  Our numerical simulations resulted in the transition line
shown in Fig. 1. Wherw = 0 we have obtainegp =
where 0.285(1) which gives J/kpT, = 0.230(1) and 7, =
vy=1-2p (49)  4.35(2) in agreement with the result by Hinrichsen and Do-
and many [15], namely//kpT. = 0.2305. At infinite temper-
1 5 50 ature,p = 1/2, the numerical results give a transition at
a=gtp-2a (50) 4 = 0.0955(1). Now, using the relatiop; — 1 — 2a ob-
tained from the mapping of our model to the DK cellular au-
0.2 ‘ ‘ ‘ tomaton, we obtaip;. = 0.809(1) in agreement with previ-
ous Monte Carlo numerical results, namgly = 0.8095(5)
[28].
0.15
a o1
0.05 |- 1 Iny
00.1 0.2 0‘.3 0.‘4 0.5
p
Figure 1. Phase diagram in the plamerersusp wherep is re-

late to temperature by (8). The continuous line corresponds to the
mean-field approximantion and the circles to the Monte Carlo sim- Int

ulations. Figure 2. Time dependent Monte Carlo simulations for the density

h of damage¥ for a lattice with linear sizd. = 1000. Numerical
data are shown far = 0.075 andp = 0.450, 0.453, 0.455, 0.457,
and0.460 from bottom to top.

A stationary solution of the evolution equation is suc
that the stationary probability?’(o; 7) is zero whero # 7
which corresponds to no damage spreadibig 0). From
Egs. (46), (47), and (48) we may obtain solutions with dam- ~ The determination of the critical line was obtained by
age spreading( # 0). The transition line is obtained by a using the time dependent method [26, 7, 22]. We started
linear stability analysis of the solution arouid= 0 and by ~ With two one-dimensional lattices (system and replica) with
assuming that the variablgs and D vanishes linearly with L = 1000 sites. Both lattices were initialized with com-
. Taking the limit — 0 we find a transition line given by  pletly independent random configurations so that half the
the implicit equation spins were damaged at the begining £ 1/2). The up-

date was done in a synchronized way by using the algorithm
(1 —a)?y® —4a(3a® — 5a + 2)y*+ defined by Egs. (14), (15), (16), and (17), with the same
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random number for both lattices. The density of damages [4] N. G. van KampenStochastic Process in Physics and Chem-
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were collected from = 1 to ¢ = 1500 Monte Carlo steps. [5] T. M. Liggett, Interacting Particle System@&pinger-Verlag,
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\Il(t) ~ 0 (53) [6] T. Tomé and M. J. de Oliveira, Phys. Rev.4®, 6643 (1989).
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