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Stochastic Dynamics of Coupled Systems and Damage Spreading
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We study the damage spreading in the one-dimensional Ising model by means of the stochastic dynamics re-
sulting from coupling the system and its replica by a family of algorithms that interpolate between the heat bath
and the Hinrichsen-Domany algorithms. At high temperatures the dynamics is exactly mapped to the Domany-
Kinzel probabilistic cellular automaton. Using a mean-field approximation and Monte Carlo simulations we
find the critical line that separates the phase where the damage spreads from the one where it does not.

I Introduction

It is well known that most models studied in equilibrium
statistical mechanics, such as the Ising model, are defined in
a static way through the equilibrium Gibbs probability dis-
tribution associated with the Hamiltonian of the model. It
is desirable from the theoretical and numerical point of view
to assign a dynamics to such models. The stochastic dynam-
ics introduced by Glauber [1] is the prototype example of a
dynamics assigned to a static-defined model. The numerous
versions of the Monte Carlo method [2], used in statistical
mechanics are also examples of dynamics assigned to static-
defined models. All of them are markovian processes that
have the Gibbs probability distribution as the stationary dis-
tribution. In general they are either continuous time process
governed by a master equation [3-8] or probabilistic cellular
automata [8-13] The latter is defined by a stochastic matrix,
whose elements are the transition probabilities, and the for-
mer by the evolution matrix, whose nondiagonal elements
are the transition rates.

If we wish to simulate, for instance, the Ising model
we have to choose one of the possible stochastic dynam-
ics, since there are many. Having decided which dynam-
ics to use, that is, having decided which probabilistic rules
to use, we realize that there are several ways of doing the
actual simulation corresponding to the chosen probabilistic
rules. For instance, for the case of the probabilistic cellular
automaton used by Derrida and Weisbuch [10] to simulate
the Ising model, and which will concern us here, there are
several ways of realizing the dynamics. We may use the
so called heat-bath algorithm [14] or the algorithm intro-
duced more recently by Hinrichsen and Domany [15] or any
other we may invent. These algorithms govern the move-
ment of the system in phase space and they may be called
stochastic equations of motionin phase space. Different al-
gorithms may be the realization of the same probabilistic
rule or stochastic dynamics.

The description of a system either by the equation of
motion or by the time evolution of the probability are equiv-
alent. An analogy can be made with the Brownian motion
which can be described either by the Langevin equation or
by its associated Fokker-Planck equation [4, 8, 16, 17]. The
first is a stochastic equation of motion of a representative
point in phase space whereas the second governs the time
evolution of the probability distribution in phase space.

In the study of damage spreading [10,12,15,18-24] it has
been realized that algorithms that are realization of the same
probalistic rules may yield different results for the damage
spreading [21, 15, 22, 24], and they usually do. The damage
spreading is a procedure through which we may study the
sensibility of the time evolution of systems with respect to
the initial conditions. The procedure amounts to coupling
the system with a replica of it, each of them following the
same equation of motion. The coupling is acomplished by
the use of the same sequence of random numbers. The equa-
tion of motion for each system together with the use of the
same random number defines the equation of motion for the
coupled system from which we obtain thejoint transition
probability [12, 13] for the coupled system.

Suppose one uses an algorithm to couple a system and
its replica. This will lead us to a certain joint transition prob-
ability. If another algorithm is used, which is also a realiza-
tion of the same transition probability for a single system,
the joint transition probability will be distinct. The corre-
lation between system and replica will also be distinct and,
in particular, the Hamming distance which is a measure of
the damage spreading will be different. For example, in the
one-dimensional Ising model, the heat-bath (HB) algorithm
[14] will give no damage spreading whereas the Hinrichsen-
Domany (HD) algorithm [15] will exhibit a spreading of
damage above a certain temperature [15]. This is an im-
pressive example that the damage spreading is not an in-
trinsic static property of a given system, but depends on the
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algorithm, or the stochastic equation of motion, we use to
perform the actual simulation [15, 22].

In this paper we introduce a family of algorithms, or
equations of motion, spanned by a parameter that interpo-
lates between the HB and HD algorithms. The associated
transition probability corresponds, for all values of the pa-
rameter, to the Derrida-Weisbush (DW) probabilistic cellu-
lar automaton [10]. If we use this family of algorithms to
study the spreading of damage, as we will do here, the pa-
rameter will have no effect on each system separately since
for any possible value of the parameter the algorithm is re-
lated to the same transition probability. However, the joint
transition probability will depend on the parameter and the
properties of the system, including the damage spreading,
will also depend on the parameter.

A remarkable property of the dynamics introduced here
is that at infinite temperature it is exactly mapped to the
Domany-Kinzel (DK) probabilistic cellular automaton [9].
This gives support to a conjecture by Grassberger [22] ac-
cording to which the generic class of damage spreading tran-
sitions is the same as the directed percolation, to which the
transition ocurring in the DK probabilistic cellular automa-
ton belongs.

II Single system

Let us consider a one dimensional lattice where at each site
one attaches an Ising variableσi that takes the values+1 or
−1 and denote byσ = {σi} the set of all variables of the
lattice. The time evolution of the probabilityP`(σ) of state
σ at discrete timè is given by

P`+1(σ′) =
∑

σ

W (σ′|σ)P`(σ), (1)

whereW (σ′|σ) is the transition probability from stateσ to
stateσ′ which, for a probabilistic cellular automaton is given
by [8]

W (σ′|σ) =
∏

i

wPCA(σ′i|σ), (2)

wherewPCA(σ′i|σ) is the probability that sitei will be in
stateσ′i in the next step given that the present state of the
system isσ. The DW probabilistic cellular automaton [10]
for the one dimensional Ising model is defined by

wPCA(σ′i|σ) = wDW (σ′i|σi−1, σi+1), (3)

with
wDW (−1|σi−1, σi+1) = pi(σ), (4)

and
wDW (+1|σi−1, σi+1) = 1− pi(σ), (5)

where

pi(σ) =
e−βJ(σi−1+σi+1)

eβJ(σi−1+σi+1) + e−βJ(σi−1+σi+1)
. (6)

The sitei assumes the state−1 with a probabilitypi(σ)
that does not depend on the central sitei. If we choose the

linear size of the system to be even the dynamics is decom-
posed into two independent dynamics for each sublattice.
It is possible to show [10] that the DW probabilistic cellu-
lar automaton has as the stationary probability distribution
the Gibbs probability distribuiton associated with the Ising
model, namely,

P (σ) =
1
Z

exp{βJ
∑

i

σiσi+1}, (7)

whereβ = 1/kBT , so that it defines a stochastic dynamics
that can be assigned to the Ising model.

The transition probabilitieswDW (σ′i|σi−1, σi+1) are
shown in Table 1 where we used the parameterp defined
by

p =
e−2βJ

e2βJ + e−2βJ
. (8)

Table 1. Transition probabilities for the DW probabilistic
celular automaton

wDW + −
++ 1− p p
+− 1/2 1/2
−+ 1/2 1/2
−− p 1− p

The actual computer realization of a probabilistic cellu-
lar automaton can be made in several ways. Here, we in-
troduce a family of algorithms that are possible realizations
of the DW probabilistic cellular automaton. It has a free
parametera that interpolates between the HD and HB algo-
rithms. At each time step all sites of the lattice are updated
in a synchronous way by means of the following algorithm,
or equation of motion for the spin variables,

σ′i = sign{pi(σ)− ξi}, (9)

if σi−1 = σi+1 and

σ′i = sign
{

(a− ξi)(1− a− ξi)
(

1
2
− ξi

)}
(10)

if σi−1 6= σi+1 whereξi is a random number uniformly dis-
tributed in the interval[0, 1].

Whena = 0 one recovers the HD algorithm [15]

σ′i = sign{pi(σ)− ξi}, σi−1 = σi+1, (11)

σ′i = −sign{1
2
− ξi}, σi−1 6= σi+1, (12)

and whena = 1/2 one recovers the HB algorithm [14, 15]

σ′i = sign{pi(σ)− ξi}. (13)

It is straightforward to show that the algorithm defined by
Eqs. (9) and (10) yields the one-site transition probability
given by Eqs. (4) and (5) for any value of the parametera.
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III Coupled system

Let us denote byσ = {σi} and τ = {τi} the configura-
tions of the system and its replica, respectively. All sites of
the system and its replica are updated in a synchronous way
according to the algorithm

σ′i = sign{pi(σ)− ξi}, (14)

if σi−1 = σi+1 and

σ′i = sign{(a− ξi)(1− a− ξi)(
1
2
− ξi)}, (15)

if σi−1 6= σi+1 and

τ ′i = sign{pi(τ)− ξi}, (16)

if τi−1 = τi+1 and

τ ′i = sign{(a− ξi)(1− a− ξi)(
1
2
− ξi)}, (17)

if τi−1 6= τi+1. Notice that the random numberξi is the
same for both systems.

The coupled system will be described by a four-state
probabilistic cellular automaton defined by the time evolu-
tion

P`+1(σ′; τ ′) =
∑

σ

∑
τ

W (σ′; τ ′|σ; τ)P`(σ; τ) (18)

of the joint probabilityP`(σ; τ) of state(σ; τ) at discrete
time ` whereW (σ′; τ ′|σ; τ) is the joint transition probabil-
ity from state(σ; τ) to (σ′; τ ′), given by

W (σ′; τ ′|σ; τ) =
∏

i

w(σ′i; τ
′
i |σi−1, σi+1; τi−1, τi+1).

(19)
From the stochastic equation of motion given by Eqs. (14),
(15), (16), and (17), we deduce the joint transition proba-
bilities w(σ′i; τ

′
i |σi−1, σi+1; τi−1, τi+1) that the sitei of the

system and the replica assume the valuesσ′i and τ ′i , re-
spectively. The resultant joint transition probabilities are
displayed in Table 2 and are valid for0 ≤ a ≤ p. For
p < a ≤ 1, the algorithm yields a joint transition probabil-
ity which is independent ofa and is the one that results by
formally replacing, in Table 2,a by p. The joint transition
probability fulfill the following properties
∑

τ ′i

w(σ′i; τ
′
i |σi−1, σi+1; τi−1, τi+1) = wDW (σ′i|σi−i, σi+1),

(20)∑

σ′i

w(σ′i; τ
′
i |σi−1, σi+1; τi−1, τi+1) = wDW (τ ′i |τi−1, τi+1),

(21)
which reflects the condition that the system and the replica
follow their own dynamics independent of the coupling.

The joint transition probabilities satisfy also the follow-
ing properties. (a) Reflection symmetry in which the states
of sitesi−1 andi+1 are interchanged, that is,σi−1 ↔ σi+1

andτi−1 ↔ τi+1. (b) System-replica symmetry in which the
states of the system and the replica are interchanged, that is,
σi ↔ τi for all sites. (c) Up-down symmetry defined by the
transformationσi ↔ −σi andτi ↔ −τi for all sites.

The Hamming distance, which characterizes the damage
spreading, is defined by

Ψ =
1
2
〈1− σiτi〉, (22)

which is also the order parameter related to the damage
spreading phase transition.

IV Relation with the DK automaton

In this section we show an exact relation between the
stochastic dynamics defined in Section III and the DK prob-
abilistic cellular automaton [9]. If we letηi be the occupa-
tion variable attached to sitei, that is,ηi = 0 or 1 according
to whether sitei is empty or occupied by one particle, then
the transition probabilitieswDK(η′i|ηi−1, ηi+1) of the DK
cellular automaton is given by

wDK(1|00) = 0, (23)

wDK(1|01) = wDK(1|10) = p1, (24)

wDK(1|11) = p2. (25)

The DK cellular automaton displays a critical line in the
phase diagramp1 versusp2 that separates the absorbing
state, for which the density of particles is zero, and the active
state, for which the density is nonzero.

Now, let us denote byηi the coupling variable associ-
ated to the dynamics of Section III that takes the value1 or
0 according whetherσi 6= τi or σi = τi respectively, given
by

ηi =
1
2
(1− σiτi). (26)

The relation between the Hamming distance and the cou-
pling variables is just

Ψ = 〈ηi〉. (27)

The joint transition probabilities in the variablesηi andσi

are defined by

w̃(σ′i; η
′
i|σi−1, σi+1; ηi−1, ηi+1) =

= w(σ′i; τ
′
i |σi−1, σi+1; τi−1, τi+1), (28)

whereτi = σi(1− 2ηi)
Summing over the coupling variable we get the follow-

ing property

∑

η′i

w̃(σ′i; η
′
i|σi−1, σi+1; ηi−1, ηi+1) = wDW (σ′i|σi−1, σi+1),

(29)
which reflects, as in Eq. (20), the condition that the system
follows its own dynamics independent of the coupling. The
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Table 2. Joint transition probabilities for the coupled system

w +;+ +;− −; + −;−
++; ++ 1− p 0 0 p
+−; +− 1/2 0 0 1/2
−+;−+ 1/2 0 0 1/2
−−;−− p 0 0 1− p
++;−− p 1− 2p 0 p
−−; ++ p 0 1− 2p p
+−;−+ 1/2 0 0 1/2
−+;+− 1/2 0 0 1/2
+−; ++ 1/2− p + a p− a 1/2− a a
−+;++ 1/2− p + a p− a 1/2− a a
++; +− 1/2− p + a 1/2− a p− a a
++;−+ 1/2− p + a 1/2− a p− a a
−+;−− a 1/2− a p− a 1/2− p + a
+−;−− a 1/2− a p− a 1/2− p + a
−−;−+ a p− a 1/2− a 1/2− p + a
−−; +− a p− a 1/2− a 1/2− p + a

main property we wish to show, however, is that for infinite
temperature, that is, forp = 1/2 we have

∑

σ′i

w̃(σ′i; η
′
i|σi−1, σi+1; ηi−1, ηi+1) = wDK(η′i|ηi−1, ηi+1),

(30)
with the DK transition probabilites defined byp2 = 0 and
p1 = 1− 2a. This means that the subsystem defined by the
variables{ηi} follows a dynamics identical to the DK prob-
abilistic cellular automaton. From relation (27) it follows
that the Hamming distance coincides with the order param-
eter of the active state displayed by the DK automaton.

Yet for the casep = 1/2, it is easy to show that the joint
transition probability satisfies the property

w̃(σ′i; η
′
i|σi−1, σi+1; ηi−1, ηi+1) =

= wDW (σ′i|σi−1, σi+1)wDK(η′i|ηi−1, ηi+1), (31)

with the DK transition probabilites defined byp2 = 0 and
p1 = 1 − 2a. Therefore, theσ-subsystem and theη-
subsystem are statistically independent.

V Mean-field solution

The dynamic mean-field approximation has already been
used to study systems in nonequilibirum stationary states
[6, 7, 12, 27]. Here we set up equations for an approximate
solution of the equation that governs the time evolution of
the coupled system. We start by writing down the equations
that give the time evolution of the one-site and two-site prob-
abilities, namely,

P`+1(σ1; τ1) =
∑

σ0,σ2

∑
τ0,τ2

w(σ1; τ1|σ0, σ2; τ0, τ2)

×P`(σ0, σ2; τ0, τ2) (32)

and

P`+1(σ1, σ3; τ1, τ3) =
∑

σ0,σ2.σ4

∑
τ0,τ2,τ4

w(σ1; τ1|σ0, σ2; τ0, τ2)

×w(σ3; τ3|σ2, σ4; τ2, τ4)P`(σ0, σ2, σ4; τ0, τ2, τ4). (33)

From now on we will drop the subscript` and use the prime
for quantities calculated at timè+ 1. To obtain a set of
closed equations we use the approximation

P (σ0, σ2, σ4; τ0, τ2, τ4) =

=
1

P (σ2; τ2)
P (σ0, σ2; τ0, τ2)P (σ2, σ4; τ2, τ4), (34)

which defines the dynamic mean-field pair approximation.
The probabilitiesP (σ1; τ1) and P (σ1, σ3; τ1, τ3) can-

not be considered all independent variables. Taking into
account that they should have the reflection symmetry and
the system-replica symmetry and, in addition, assuming the
up-down symmetry the probabilities are related as follows

P (−; +) = P (+;−) =
1
2
Ψ, (35)

P (−;−) = P (+; +) =
1
2
Ω, (36)

P (−−;−−) = P (++;++) = A, (37)

P (+−;−−) = P (−+;−−) = P (−−; +−) =

= P (−−;−+) = P (−+;++) = P (+−; ++) =

= P (++;−+) = P (++;+−) = B, (38)

P (−+;−+) = P (+−; +−) = C, (39)

P (−−; ++) = P (++;−−) = D, (40)

P (−+;+−) = P (+−;−+) = E. (41)

These seven variables are not yet independent. Only three of
them can be considered independent which we choose to be
Ψ, B, andD. The others are related to them by the relations

Ω = 2P (+)−Ψ, (42)
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A = P (++)− 2B −D, (43)

C =
1
2
− P (++)− 1

2
Ψ + D, (44)

E =
1
2
Ψ− 2B −D, (45)

whereP (+) andP (++) are the one-site and two-site prob-
abilities corresponding to a single system. The exact equi-
librium solution of the one-dimensional Ising model gives
P (+) = 1/2 andP (++) = [1 + (tanh βJ)2]/4.

From the time evolution given by Eqs. (32) and (33)
and using Eqs. (43), (44), and (45) we obtain the following
closed equations forΨ, D, andB

Ψ′ = 2γD + 8αB, (46)

D′ = 4α2 B2

Ω
+ (4α2 + γ2)

B2

Ψ
+

+2γ(γ + 2α)
DB

Ψ
+ 2γ2 D2

Ψ
, (47)

B′ = 2αB − 4α2 B2

Ω
− 4α2 B2

Ψ
− 2αγ

DB

Ψ
, (48)

where
γ = 1− 2p (49)

and

α =
1
2

+ p− 2a. (50)

0.1 0.2 0.3 0.4 0.5
p

0

0.05

0.1

0.15

0.2

a

Figure 1. Phase diagram in the planea versusp wherep is re-
late to temperature by (8). The continuous line corresponds to the
mean-field approximantion and the circles to the Monte Carlo sim-
ulations.

A stationary solution of the evolution equation is such
that the stationary probabilityP (σ; τ) is zero whenσ 6= τ
which corresponds to no damage spreading (Ψ = 0). From
Eqs. (46), (47), and (48) we may obtain solutions with dam-
age spreading (Ψ 6= 0). The transition line is obtained by a
linear stability analysis of the solution aroundΨ = 0 and by
assuming that the variablesB andD vanishes linearly with
Ψ. Taking the limitΨ → 0 we find a transition line given by
the implicit equation

(1− α)2γ3 − 4α(3α2 − 5α + 2)γ2+

+4α2(13α2 − 16α + 5)γ − 8α(3α− 2) = 0, (51)

whose solution is shown in the phase diagram of Fig. 1. In
particular, whena = 0 (corresponding to the HD algorithm)
we haveγ = 2(1− α) which substituted in the equation for
the transition line gives

1− 9α + 33α2 − 59α3 + 53α4 − 20α5 = 0, (52)

whose solution isα = 0.696173 from which we getp =
0.196173 so thatJ/kBTc = 0.352597 andTc = 2.83610.
Whena = 1/2 (correspoding to the HB algorithm) there is
no transition.

At infinite temperature,p = 1/2, the mean-field transi-
tion line givesa = 1/6. Now, using the relationp1 = 1−2a
obtained from the equivalence with the DK automaton, and
taking into account the resultp1 = 2/3 obtained in [12]
in the pair approximation for the DK automaton we have
a = 1/6 in coincidence with our present result.

VI Numerical simulations

Our numerical simulations resulted in the transition line
shown in Fig. 1. Whena = 0 we have obtainedp =
0.285(1) which gives J/kBTc = 0.230(1) and Tc =
4.35(2) in agreement with the result by Hinrichsen and Do-
many [15], namelyJ/kBTc = 0.2305. At infinite temper-
ature,p = 1/2, the numerical results give a transition at
a = 0.0955(1). Now, using the relationp1 = 1 − 2a ob-
tained from the mapping of our model to the DK cellular au-
tomaton, we obtainp1c = 0.809(1) in agreement with previ-
ous Monte Carlo numerical results, namelyp1c = 0.8095(5)
[28].

2 4 6 8
lnt

−2

−1.8

−1.6

−1.4

−1.2

−1

lnΨ

Figure 2. Time dependent Monte Carlo simulations for the density
of damageΨ for a lattice with linear sizeL = 1000. Numerical
data are shown fora = 0.075 andp = 0.450, 0.453, 0.455, 0.457,
and0.460 from bottom to top.

The determination of the critical line was obtained by
using the time dependent method [26, 7, 22]. We started
with two one-dimensional lattices (system and replica) with
L = 1000 sites. Both lattices were initialized with com-
pletly independent random configurations so that half the
spins were damaged at the begining (Ψ = 1/2). The up-
date was done in a synchronized way by using the algorithm
defined by Eqs. (14), (15), (16), and (17), with the same



T. Toméet al. 463

random number for both lattices. The density of damages
Ψ(t), obtained by taking the averages over 2000 samples,
were collected fromt = 1 to t = 1500 Monte Carlo steps.
At the critical point we expect the following asymptotic time
behavior [22]

Ψ(t) ∼ t−δ. (53)

Therefore, a double-log plot ofΨ versust will be linear at
the critical point. In Fig. 2 we show how the critical value
of p was found whena = 0.075. Several values ofp, the
ones shown in Fig. 2, were checked in order to find a linear
behavior in a log-log plot ofΨ versust. Our estimate in this
case givespc = 0.455(1) for a = 0.075. The straight line
fitted to the numerical data givesδ = 0.16(1) in agreement
with a transition belonging to the direct percolation univer-
sality class [7]. For other values ofa the procedure was the
same.

VII Conclusion

We have introduced a family of algorithms to describe the
time evolution of the one-dimensional Ising model The fam-
ily of algorithms interpolates between the HB and the HD al-
gorithms and the resulting stochastic dynamics corresponds
to the DW probabilistic cellular automaton. Coupling a sys-
tem with its replica by using the same sequence of random
numbers, we have determined the joint transition probabil-
ity which defines a four-state probabilistic cellular automa-
ton. By using a dynamic pair mean-field approximation and
Monte Carlo simulations we have found that the stochas-
tic dynamics defined by the family of algorithms displays a
line of critical points separating a phase where the damage
spreads and a phase where it does not. One important fea-
ture of the joint stochastic dynamics studied here is that at
infinite temperature the joint dynamics is exactly mapped
into the DK probabilistic cellular automaton. This result
together with the Monte Carlo simulations give support to
a conjecture by Grassberger according to which the dam-
age spreading transition is in the universality class of the
directed percolation.
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