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Particle-in-cell (PIC) methods allow the study of plasma behavior by computing the trajectories of finite-size
particles under the action of external and self-consistent electric and magnetic fields defined in a grid of points.
In this work, the Finite Element Method (FEM) is used in order to obtain the self-consistent fields. An electro-
static PIC-FEM computational code for simulation of one-dimensional (1D) and two-dimensional (2D) plasmas
was developed based on two available and independent codes: the first one a 1D PIC code that uses the Finite
Difference Method and the other a FEM code developed at the Instituto de Estudos Avancados (IEAv). The
Poisson equation is solved and periodic boundary conditions are used. The ion background that neutralizes the
total plasma charge is kept fixed and uniformly distributed in the domain of study. The code is tested by study-
ing the fluctuations of the plasma in thermal equilibrium. In thermal equilibrium a plasma sustain fluctuations
of various collective modes of electrostatic oscillations, whose spectral distribution can be analytically obtained
by using the fluctuation-dissipation theorem and the Kramers-Kronig relation. In both 1D and 2D cases, there
are excellent agreement between the spectral distribution curves predicted theoretically and those obtained by
simulation for finite size particles and long wavelengths.

I Introduction

In this work, we use the particle-in-cell (PIC) model, orig-
inated from the work of J.M. Dawson [1, 2, 3] in the
late fifties, for the simulation of plasmas. In this model,
the plasma is represented by thousands of particles (actu-
ally macroparticles, since each particle used in the simula-
tion represents thousands of particles of a real experiment).
From the positions and velocities of these particles at a cer-
tain instant, we calculate the current and charge densities us-
ing one of various schemes of particle distribution to a grid
of points. The grid spacing∆x must be sufficiently small to
resolve the collective behavior of plasmas (typically∆x of
the order of the Debye lengthλDe).

Using these charge and current densities, we calcu-
late the self-consistent electric and magnetic fields via
Maxwell’s equations. Then, with these fields plus the ex-
ternally applied ones, we obtain the new particle positions
and velocities. Finally, we proceed along this basic cycle
with a∆t sufficiently small to resolve the highest frequency
of the problem (typically the plasma frequencyωpe).

In the PIC code, Maxwell’s equations are usually solved
by the Finite Difference Method (FDM) or by Fourier tech-
niques (specially when periodic boundary conditions are in-
volved). In the FDM, the fields are defined in a grid of
points, the derivatives are replaced by differences in the val-
ues of the field in adjacent grid points, and difference equa-
tions on the grid substitute the differential field equations.

Another approach is to apply the Finite Element Method
(FEM) instead of FDM to solve the Maxwell’s equations. In
FEM, the system is divided into subsystems of simple ge-
ometry (for example, triangles and/or rectangles for a two-
dimensional program), which are called finite elements. In-
side each element, the values of the fields are calculated
by means of interpolation functions, for example polyno-
mials. The shape of the interpolation in the elements is de-
fined by field values, and sometimes its derivatives, at the
nodal points. The field derivatives are obtained by deriv-
ing the interpolating functions, and the field equations are
approximated by minimizing integral (integro-differential)
equations obtained by variational principles or by applying
the weighted residual method to the differential equations
and boundary conditions.

The FEM has advantages in treating elliptic and
parabolic equations when compared with the FDM. The as-
sociation of boundary conditions to nodal points, mesh re-
finement, and the adoption of different mesh types (mixed-
mesh) become easy in the finite element method. Moreover,
the finite element method has advantages of optimization
and accuracy [4]. A short description of FEM is presented
in section II.

In this work, we evaluate the performance of a compu-
tational program that couples the FEM and PIC methods by
calculating fluctuations in a Maxwellian plasma, and we de-
duce theoretical expressions for the spectral distribution of
the electric field energy considering finite-size particles. We
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developed the computational program based on two inde-
pendent codes. The first one is a 1D PIC modeling software
developed by Kruer [5]. This code uses the Finite Differ-
ence Method (FDM) in order to compute the self-consistent
field. The second one is a 1D and 2D FEM code fully de-
veloped at the Instituto de Estudos Avancados (IEAv). In
section II, we present the numerical method used. In section
III, we present some results of the simulations in the 1D and
2D cases, and deduce expressions that allow us to compare
the simulation results with the theoretical ones. Finally, in
section IV we present some conclusions.

II Numerical model

In particle simulation, we attempt to study the behavior of
plasmas by following the motion of a great number of parti-
cles. Since it is too expensive to compute the self-consistent
motion of the plasma by calculating the force on each parti-
cle due to every pair interaction, a spatial grid is introduced
on which the charge and current density are accumulated;
electric and magnetic fields are stored in the grid as well.

In this work, we adopt an electrostatic model, i.e., only
electric fields are considered. The basic scheme of this
model is very simple. First, we accumulate the charge den-
sity on the grid from particle positions and velocities. Sec-
ond, we solve Poisson’s equation on the grid to find the elec-
tric potential and the electric field. Finally, we interpolate
the electric field on the grid to the particles position and use
the interpolated force on Newton’s equations of motion to
determine new particle positions and velocities. Then, we
repeat this cycle as many time steps as necessary to study
our system.

Numerous algorithms are available for the charge accu-
mulation process in the spatial grid, such as NGP (nearest
grid point) and PIC (particle-in-cell) [6]. In this work, we
are using the PIC modeling. In this method, a point charge
at xi is assigned to its nearest grid points by using a lin-
ear interpolationW (x). Particle pushing is done with the
second-order accurate leap-frog technique.

The electrostatic field generated by a certain charge dis-
tribution can be obtained from the solution of Poisson’s
equation:

∇2 Φ(~r) = ρ(~r) , (1)

with boundary conditions:

Φ = φs , in Γ1, (2)

and
∂Φ
∂n

= fs in Γ2 (3)

whereΓ = Γ1 + Γ2 is the surface that delimits the do-
main of studyΩ. Fig. 1 shows the domain and delimit-
ing surfaces for both a one-dimensional (1D) and a two-
dimensional (2D) domain.

(a)

(b)

Figure 1. Limiting surfacesΓ1 andΓ2 for (a) a one-dimensional
domain and (b) a two-dimensional domain.

An approximated solutionφ for the differential equa-
tion (1) can be obtained by applying the Weighted Residual
Method (WRM). A complete description of this method can
be obtained in several basic literature on the FEM [7, 8]. In
WRM, the integral of the residueI over the entire domainΩ
is imposed equal to zero:

I =
∫

Ω

P1R1dΩ +
∫

Γ1

P2R2dS +
∫

Γ2

P3R3dS = 0 (4)

with:
R1 = ∇2 φ(~r) − ρ(~r) (5)

R2 = φ − φs (6)

R3 =
∂φ

∂n
− fs. (7)

The time independent weighting functions,P1, P2, andP3,
are chosen arbitrarily. Only one condition must be imposed
on these weighting functions: they must be sufficiently reg-
ular in order to obtain finite integrals.

By applying the first Green’s identity to equation 4, re-
sults:

c
∫

Ω

−→∇P1
−→∇φ dΩ−

∫

Ω

P1ρ dΩ +
∫

Γ1

P1
−→n · −→∇φ dS +

∫

Γ2

P1
−→n · −→∇φ dS+
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∫

Γ1

P2 (φ− φs) dS +
∫

Γ2

P3

(
fs − ∂φ

∂n

)
dS = 0. (8)

The fifth integral can be eliminated by imposing that the solution satisfies identically the Dirichlet boundary condition inΓ1.
As the weighting functions are arbitrary,P1 is chosen equal to zero inΓ1, resulting:

∫

Ω

−→∇P1
−→∇φ dΩ−

∫

Ω

P1ρ dΩ +
∫

Γ2

P3fsdS +
∫

Γ2

(P1 − P3)
∂φ

∂n
dS = 0. (9)

d

Without loss of generality,P3 is chosen equal toP1, in
order to eliminate the fourth integral in (9). Additionally, in
this work the Neumann condition inΓ2 is always homoge-
neous, e.g.,fs = 0 (there is no electric current applied in
the domain of study).

The resulting integral equation:
∫

Ω

−→∇P1
−→∇φ dΩ−

∫

Ω

P1ρ dΩ = 0 (10)

represents the weak formulation for the Poisson equation
[7, 8]. We apply the FEM in order to evaluate Eq.(10) .

Figure 2. A triangular finite element mesh for an arbitrary domain.

In the FEM, the domainΩ is subdivided into elements
of simple geometry, such as, lines and curves in 1D simu-
lations, triangles and rectangles for 2D simulations, tetrahe-
dra, parallelepipeds, and prisms for three-dimensional (3D)
simulations. Each element defines a subdomain namedΩγ .
The Fig. 2 illustrates a triangular mesh for an arbitrary do-
main of study. These elements of simple geometry, named
finite elements, must obey the following rules in order to
constitute a consistent mesh:

- the sum of the area of each element results in the do-

main area

(
⋃

γ=1...NE

Ωγ = Ω

)
; and

- the elements do not intersect each other(
⋂

γ=1...NE

Ωγ = 0

)
. NE is the number of elements in

which the domain is decomposed.

The finite element mesh follows all boundaries of the
geometric model even for a complex geometry. Due to this
characteristic, the attribution of boundary conditions to the
mesh points is easier than in the FDM, because it is not nec-
essary to treat mesh points that do not coincide with the ge-
ometric lines.

Inside each element, the approximated value of the de-
pendent variable is calculated from a finite set of linearly
independent base functions (compact support). This set de-
pends on the family and approximation order of the used
elements. Fig. 3 shows two examples of the triangular ele-
ments family and the base function set for each case. The
functions L1, L2, and L3 are given by:

Li =
ai + bix + ciy

2∆
where∆ is the area of the triangle and the coefficients a, b,
and c are obtained from the coordinates of the vertices of the
triangle:

ai = εijk(xjyk − xkyj)
bi = εijk(yj − yk)
ci = εijk(xk − xj)

εijk is the three-dimensional Levi-Civitta symbol [9]. The
indices i, j, and k vary from 1 to 3.

Figure 3. Triangular element family – elements of first and second
order.
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The derivation of these expressions for triangular ele-
ments and for elements of other families is presented in [7].

In general, the shape of the interpolation functions in
the element is defined by the values of the dependent vari-
ables and, sometimes, their derivatives, in some points of
the element, the nodal points. The dependent variables,
and, when necessary, their derivatives, are named nodal vari-
ables. Thus, one or more nodal variables are computed in
each nodal point. The number of nodal variables depends
on the formulation adopted for the solution of a given prob-
lem. In the formulation adopted in this work, there is only
one nodal variable: the electric potential.

In this way, the scalar potential in a elementγ is written
as a sum of the base functionsN

(γ)
i :

φ(γ)(~rj) = N
(γ)
i (~rj)φ

(γ)
i , i = 1, ....n0 (11)

whereφ
(γ)
i are the potential values on the nodal point i and

n0 is the number of nodal points of the element. Notice that
we are using the summation convention. The base functions
have the following properties on the nodal points:

N
(γ)
i (~rj) = δij (12)

whereδij is the Kronecker’s delta. This means that the base
functions assume the value one when the index of the nodal
point, j, coincides with the index of the base function, i, and
is zero in any other nodal point. The base functions for a de-
termined element are valid only in the limits of this element.

In the FEM, we also let the integro-differential equation
(10) be equal to zero for each element, which allows us to
write them individually:

∫

Ωγ

−→∇P
(γ)
1 .

−→∇φ(γ) dΩ−
∫

Ωγ

P
(γ)
1 ρ(γ) dΩ = 0 (13)

whereΩγ corresponds to the element domain.
In order to solve the residual equation, we have only

to choose convenient weighting functions. In the finite el-
ements approximation, inside each element the number of
unknowns is equal to that of nodal variables. Consequently,
we must choose the same number of weighting functions.
The weighting functions inside each element coincide with
the base functions used to describe the dependent variables
(Galerkin’s method):

P
(γ)
i = N

(γ)
i (14)

resulting for the residue equation in each element:

(∫

Ωγ

−→∇N
(γ)
i .

−→∇N
(γ)
j dΩ

)
φj −

∫

Ωγ

N
(γ)
i ρ(γ) dΩ = 0

(15)
with i = 1,2,...,n0.

A matricial notation can be used to represent the integral
equation set (15):

[K]{φ}T = {b}T (16)

where:

[K] =
∫

Ωγ

[gradN ]T [gradN ] dΩ (17)

{φ} =
{

φ1 φ2 φ3 · · · φn0

}
(18)

{b} =
∫

Ωγ

{N} ρ(γ) dΩ (19)

{N} =
{

N1 N2 N3 · · · Nn0

}
(20)

[gradN ] =




∂{N}
∂x1

∂{N}
∂x2· · ·


 , (21)

andxi stands for the ith coordinate in a k-dimensional space.
For example, for the one-dimensional case, we use a lin-

ear element in first order approximation (two nodal points,
which correspond to the vertices of the line element), with
linear interpolation functions given by:

N1(x) =
x12 − x

l
(22)

N2(x) =
x− x11

l
(23)

in which

x11 : is the coordinate of the left nodal point,

x12 : is the coordinate of the right nodal point,

l : is the length of the element,

x : is the coordinate inside the element,

and the following matrices for the element:

[gradN ] = [
∂{N}

∂x
] =

1
l

[−1 1], (24)

[K] =
1
l2

∫ [
1 −1

−1 1

]
dΩ =

1
l

[
1 −1

−1 1

]
,

(25)

{b} =
∫
{N}ρ dΩ =

lρ

2
[1 1] . (26)

After the calculation of the matrices of each element,
we assemble the global system, i.e., the matricial system in-
cluding all the nodal points. Because to each nodal point is
associated a unique identification number in the system, the
process of assemblage is simple. Each finite element matrix
connects the set of nodal points of the element, and hence
the values calculated for an element of the matrix can be
added directly in the global matrix in the positions indicated
by the number of the nodal points. An elegant mathemati-
cal treatment of the global matrix assemblage is presented
in [8]. The global matricial system is given by:

[KG]{φG}T = {bG}T (27)
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where[KG] is a symmetric and sparse matrix, of order NP x
NP (NP is the total number of nodal points of the grid). The
vectors{φG} and{bG} have dimension NP.

The electric potential on the grid is obtained by solv-
ing (27). In this work, we adopted the ICCG (Incomplete
Cholesky Conjugate Gradient) method [10] to solve the sys-
tem, because the matrix[KG] is sparse, real, and positive
definite.

III Results

In this section, we show the results of simulations obtained
with the developed electrostatic PIC-FEM (1D and 2D) nu-
merical code. We applied the code to the study of fluctua-
tions in a stable plasma.

Even in a Maxwellian plasma, there are fluctuations.
Plasma waves are Cerenkov-emitted and Landau-damped.
The balance between emission and absorption leads to
thermal-level field fluctuations.

In spite of Vlasov theory and particle models simu-
late collisionless plasmas, electric field fluctuations do not
emerge from a Vlasov model because these fluctuations are
connected in a basic way with the discreteness of the plasma.
Consequently, particle models have to be used to calculate
such fluctuations.

In order to obtain the electric field energy fluctuation
spectrum theoretically, the test-particle picture is used [11].
In this model, it is considered the motion of a test charge in
the Vlasov fluid (plasma described by the Vlasov equation).
After some time, the test particle polarizes the plasma, that
is, the particle get “dressed”. This means that in a plasma,
the Coulomb potential (potential of interaction between par-
ticles in vacuum) is modified because of collective effects,
each negative charge attracts a cloud of positive charges and
vice versa. From this potential and the corresponding den-
sity fluctuation, the spectral distributionE2

k of the electric
field can be obtained (k stands for k-space, or Fourier space).

At present, experiments are being conducted to ob-
serve the process of particle “dressing” in a non-equilibrium
plasma. This process has a predicted time scale of the order
of (ωpe/2π)−1, which corresponds to 70 femtoseconds for
a plasma with density of2 1018 cm−3. The precision of the
existing models can be verified by using pulsed lasers last-
ing 27 femtoseconds to probe the plasma [12, 13]. However,
for a Maxwellian plasma there is a well established result for
the spectral distribution of the averaged longitudinal electric
field energy given by [14]:

〈
E2

kL

8π

〉
=

Te

2
1

1 + k2λ2
De

(28)

for a system of lengthL and transverse area equal to one.Te

is the electron temperature in energy units.
This result can also be analytically obtained using the

fluctuation-dissipation theorem and the Kramers-Kronig’s
relation [4].

To compare this result deduced for a test charge (point
electron) with the results of our simulations, we must re-
member that we are simulating the physics of a plasma of
finite-size macroparticles. The finite-size effects are un-
avoidably associated with the interpolation function used to
relate quantities to the grid. The macroparticle effect is due
to the fact that each simulation particle represents thousands
of electrons in a real experiment.

It can be shown that in k-space the charge density for
a finite-size particle simply equals the charge density for
a point particle system multiplied by a shape factorS(k).
Thus, we can rewrite most of the plasma theory for the finite
size particle system by replacing the chargeq by qS(k) [4].

However, here, there is an additional difficulty since
there are really two sources for the “finite-sizeness” of the
particles. One is the above mentioned use of an interpola-
tion functionW (x) to relate particle quantities to the grid.
This can never be avoided in a PIC code. A second pos-
sible source is the use of various kinds of filter functions
S(x), either in real space or k-space. The effective par-
ticle shape is then the convolution of these two functions∫

W (x)S(x− x′)dx, or in k-space,W (k)S(k) [15].
The considerations above imply that we have to modify

the termk2λ2
De in Eq. (28) in order to take into account

finite-size effects. But macroparticle effects also lead to al-
teration of Eq.(28). This modification comes from the fact
that the temperature used in the formula must not be that
of the electron, because in the statistical basis of Eq. (28),
what matters is the freedom of kinetic motion. In the simu-
lation, the free random motion is not assigned to an electron
of energy 1

2mev
2
e (whereme is the electron mass, andve

its velocity), but to a macroscopic particle of energy1
2mpv

2
p

(wheremp is the macroparticle mass andvp its velocity).
Therefore, we should interpretTe asTp =< 1

2 mpv
2
p >,

with Tp the macroparticle temperature (in units of energy).
Based on all the above considerations, the theoretical ex-

pression for the spectral distribution of the averaged lon-
gitudinal electric field energy for a plasma of finite-size
macroparticle can be written:

〈
E2

kL

8π

〉
=

Tp

2

(
1 +

k2λ2
De

S2(k)W 2(k)

)−1

. (29)

In this work, we compare the results of our simulations with
this expression.

We know all terms of Eq. (29) but one. The unknown
term isS(k) (sinceW (k) is obtained fromW (x), the pre-
scribed interpolation function), that is, the filtering term.

In order to determine this filter, let us consider a sim-
ple problem, that is, the normalized one-dimensional Gauss’
law∇xEx = ρ. In the theoretical case, applying a Fourier
transform to this equation we obtain

Exk =
ρk

ikx
(30)

To determineS(k), let us look at what happens in parti-
cle models that use Fourier transform methods to calculate
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the electric field, because in this case they use a prescribed

S(k) given bye−
k2a2

2 ( with a of the order ofλDe) filtering
out the short-wavelength (ka > 1) modes, lowering the ef-
fective collision frequency, and thus allowing realistic sim-
ulations with fewer particles. In this case they have for the
one-dimensional Poisson equation:

Exk =
ρkS(k)

ik
=

ρke−
k2a2

2

ik
(31)

with the wavenumberk=kx.
In our case, applying the finite element formulation for a

Fourier mode, we have from the one-dimensional Poisson’s
equation

Exk =
∆x sin(k∆x)ρk

i4sin(k∆x
2 )

. (32)

Comparing this expression with Eqs. (30) and (31) per-
mits us to determineS(k) for our case, which is given by
(for the normalized case∆x = 1):

S(k) =
sin(k) k

4sin(k
2 )

(33)

Figure 4. The filtering effect of the factor that multipliesρk (Eq.32)
for the finite element method (similar to the finite difference case
[5]) and for the Fourier transform method [16], compared to the
theoretical result.

In Fig. 4, we present the terms multiplyingρk (in fact the
log10 of these terms) in the one-dimensional Poisson’s equa-
tion for the theoretical model, for the finite element method
(similar in this case to the finite difference case referred to as
Kruer’s case [5]), and for the Fourier transform method (re-
ferred to as Decyk’s case [16]). The figure shows the filter-
ing effect mentioned above, since the terms associated with
FEM and Fourier transform decrease with k when compared
with the theoretical result. Actually, the deducedS(k), Eq.
(33), acts as an unintentionally applied filter.

In the 1D simulations, we considered periodic boundary
conditions with immobile ions as charge neutralizing back-
ground. With these boundary conditions, the electrons that
leave the system from one side are placed at the other side.

We used a grid of 50 points,N = 5000 particles, grid spac-
ing ∆x = λDe, thermal velocityvt = λDeωpe, time step
∆t = 0.2ω−1

pe , and we run the code until100ω−1
pe .

In the 1D case, we used in the PIC-FEM code a lin-
ear interpolation function, whose Fourier transform is given
by W (k) = (sin (k/2) / (k/2))2. Introducing this value of
W (k) andS(k) from Eq. (33) into expression (29), normal-
izing, and rearranging the terms, we obtain:

ck =
E(k)2N

v2
tx

=


1 +

λ2
Dek

2

( sink
2 )2( sin( k

2 )
k
2

)2



−1

(34)

wherev2
tx is the normalized square of the thermal velocity

of the particles.
The time average of the valuesE(k)2 are obtained di-

rectly from the computational simulation, and these values
can be compared with the values given by the expression
(34).

In Fig. 5, we present the results obtained from the sim-
ulation (actually,log10 of the results) as a function of k,
and the theoretical curvelog10ck. We observe an excellent
agreement, except for values of k near zero (very long wave-
lengths). In this region, there is some deviation from the
thermal equilibrium. Presumably, this is due to the fact that
modes with longer wavelengths are less susceptible to atten-
uation, and for this reason, they do not reach the equilibrium
as fast as modes with smaller wavelengths. Besides, we note
that in the simulation the time average is taken over a finite
time interval, differently of what occurs in theory.

Figure 5. The theoretical spectral distribution of the electric field
energy (solid curve) compared to the 1D PIC-FEM simulation
(dots).

In the 2D simulations, we also considered periodic
boundary conditions with immobile ions as a charge neu-
tralizing background. Equally, in this case, electrons that
leave from the sides of the rectangular grid are placed in the
other side. We used a grid of 64 points in the x-direction and
128 points in the y-direction. We usedN = 294, 916 parti-
cles, grid spacings∆x = ∆y = λDe, thermal velocities of
vt = λDeωpe in both directions,∆t = 0.2ω−1

pe , and we run
the code until325ω−1

pe .
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In the PIC-FEM code, we used linear interpolation func-
tions in the x and y directions. In this case, the expression
from the electric field average energy of the fluctuations de-
pends onkx andky and is given by

c (kx, ky) =
(E2

x(kx, ky) + (E2
y(kx, ky))N

(v2
tx + v2

ty)
=

(
1 +

4(sin2(kx

2 ) + sin2(ky

2 ))2λ2
De

(sin2(kx) + sin2(ky))W 2
1 (kx)W 2

2 (ky)

)−1

(35)

whereW1(k) = W2(k) = (sin (k/2) / (k/2))2.
In the simulation we used a constant value forky (nor-

malized) equal to2π (61/128), a value arbitrarily chosen
among the possible values ofky.

In Fig. 6, we present the results of the PIC-FEM code
for the 2D simulations adopting a constantky. There is a
good agreement with the theoretical results. The same ob-
servations made in the 1D case, for the region ofkx near
zero remain valid. We also note greater deviation from the
theoretical curve, than in 1D case, fact also observed with
Fourier transform particle models [17].

Figure 6. The theoretical spectral distribution of the electric field
energy (solid curve) compared to the 2D PIC-FEM simulation
(dots).

IV Summary

In this work, a 1D and 2D electrostatic computational code
was developed in order to study problems that involve
bounded collisionless plasmas. The code is based on the
coupling of two numerical techniques, the FEM and the PIC
modelings. The FEM is largely used in engineering and,
in this work, it substitutes the FDM, traditionally applied in
plasma physics. One of the advantages of the FEM is the
handling of arbitrary boundaries, which can be accurately
represented by an unstructured mesh. This feature allows
the simulation of devices that present a complex geometry.
The boundary condition handling advantages were not ex-
plored in this work.

The computations were done considering a plasma in
thermal equilibrium and periodic boundary conditions in a
rectangular domain, i.e., the plasma is in an open domain.

The computer model is tested by calculating the fluctua-
tion spectrum of plasma in equilibrium. To make this com-
parison, we developed also a theoretical expression for the
fluctuation spectrum of plasmas of finite-size macroscopic
particles. We obtained an excellent agreement between the
results of our simulations and the expressions developed.

Acknowledgements
This work was supported by FAPESP (grant n.

99/12468-8). The authors acknowledge Dr. V. Decyk for
fruitful discussions.

References

[1] J.M. Dawson and A.T. Lin,Particle Simulation, Handbook of
Plasma Physics - V.2 -(Elsevier Science Publishers 1984)

[2] J.M. Dawson, Rev. of Mod. Phys.55, 2 (1983)

[3] R. Hockney and J. Eastwood,Computer Simulation Using
Particles(McGraw-Hill, New York, 1981).

[4] T. Tajima, Computational Plasma Physics: With Applica-
tions to Fusion and Astrophysics. (Addison-Wesley Publish-
ing Company, 1989)

[5] W.L. Kruer,The Physics of Laser Plasma Interactions,
(Addison-Wesley Publishing Company, 1988)

[6] C.K. Birdsall and A.B. Langdon,Plasma Physics via Com-
puter Simulation(McGraw-Hill, New York, 1985)

[7] O.C. Zienkiewicz and R.L. Taylor,The Finite Element
Method, 4th edition, V.1 and 2(McGraw-Hill, London)

[8] P.P. Silvester and R.L. Ferrari,Finite Elements for Electrical
Engineers, 2th edition (Cambridge University Press, 1990)

[9] G. Arfken, Mathematical Methods for Physicists, 2nd edi-
tion, (Academic Press, 1970)

[10] O. Axelsson,Iterative Solution Methods(Cambridge Univer-
sity Press, 1996)

[11] N.A. Krall and A.W. Trivelpiece, Principles of Plasma
Physics(McGraw-Hill 1973)

[12] R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstre-
iter, and A. Leitenstorfer, Nature,414, 286 (2001)

[13] H. Haug, Nature,414, 261 (2001)

[14] N. Rostoker, Nucl. Fus.1, 101 (1961)

[15] V.K. Decyk, Comp. Phys. Rep.4, 245 (1986)

[16] V.K. Decyk, F.S. Tsung, P.C. Liewer, P.M. Lyster, and R.D.
Ferraro,“Particle Simulation on Distributed Memory Parallel
Computers”, IPFR-UCLA Technical Report, PPG-1446, July
1992.

[17] A.C.J. Paes, N.M. Abe, V.A. Serrão, and A.Passaro, “Elec-
trostatic Models for Plasma Simulation: Coupling ‘Particle-
in-Cell’ to the Finite Element Method”, IEAv/CTA Technical
Report (In Portuguese) CTA/IEAv-EFA/NT-001/2001


