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Current Distribution in Fused Electrical Networks
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Electrical networks provide a natural model to study transport processes such us dielectric breakdown and metal
insulator transition in disordered inhomogeneous conductors. We present a calculation for current distribution
on an infinite hyper-cubic network due to an external applied current. This is used to compute, analytically, the
redistribution of current due to variations in the conductance of a finite number of elements of the network.

1 Introduction

Electrical network models can be used to study transport
phenomena in disordered systems. Examples of such sys-
tems include compacted mixtures of conducting and non-
conducting materials or homogeneous multi-phase system
with varying conductivity. Applications to disordered net-
works cover dielectric breakdown [1, 2, 3], metal-insulator
transitions [4], and brittle fracture in disordered solids [5, 6,
7, 8]. In particular,such models have provided insights on
critical phenomena [9], scale-invariant disorder [10, 9, 3],
and size-dependence of the system [11]. In this paper we
introduce an exact analytical technique to compute current
distributions on model networks.

In the “Effective Medium Theory”, the distribution of
current in a random network of conductances to which an
external current has been applied along a fixed direction
must be regarded as due to both an “external field” which in-
creases the mean current, and a “fluctuating local field” due
to deviations from a uniform medium. The “mean current”
is chosen so that the average of these fluctuation vanish.

We consider fused-conducting networks, where the
breakdown currents of an element is assumed to be propor-
tional to its conductance; i.e., breakdown of any conductor
occurs when the potential difference across it reaches a fixed
pre-set value. In the simplest case, conductances along each
axis of a hyper-cube are set equal. In Section II, we calculate
how an external current introduced at a node and removed
from an adjacent node is distributed on the network [12, 13].
The Green’s Function derived for this case can be used to
calculate the current distribution due to an external field on
a network from which a finite number of conductances are
removed. Several examples are shown in Section III, for two
and three dimensional networks. Subsequently, in section
IV, this method is generalized to consider networks where
conductances are reduced (as opposed to vanishing) beyond
a critical current. Section V presents discussions and con-
clusions.

2 Green’s Functions for Hyper-cubic
Network

Lets us consider an infinite d-dimensional hyper-cubic net-
work where all conductances along the mth direction (ûm)
are assumed to be equal to σm (m = 1, 2, ..., d) . In this
section we calculate the distribution of current on this net-
work due to a unit external current introduced at the ori-
gin and removed from an adjacent node, say a . This result
was obtained by using a Green’s function method by Kirk-
patric [12, 11] and is reproduced here for completeness.
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Figure 1. Scheme to compute the current distribution due to a unit
external current introduced at the origin and removed from an ad-
jacent node.

Denote the potential at the node n = (n1, n2, ..., nd) ,
by V (n) and the current on the conductor joining nodes n
and n + ûm by Jm(n) ; then,

Jm(n) = σm [V (n) − V (n + ûm)] . (1)
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The potentials V (n) can be obtained using the Kirchhoff’s rule at each node; i.e.,

∑d
m=1 σm {[V (n) − V (n + ûm)]

+ [V (n) − V (n − ûm)]} = (δn,0 − δn,a) ,
(2)

where the term in the right side is the externally applied current. Eqn. (2) is easily solved by using the Fourier transform
V̂ (k) =

∑
n e−inkV (n) , which satisfies

∑d
m=1 2 σm [1 − cos(ûm · k)] V̂ (k) =

(
1 − e−iak

)
.

Thus

V̂ (k) = (1−e−ia k)∑ d
m=1 2 σm[1−cos(km)]

, (3)

where km = ûm · k. Hence

V (n) = 1/2

(2π)d

∫ π

−π dk ein k V̂ (k) , (4)

and

Jm(n) =
σm

2 (2π)d

∫ π

−π

eink

[
1 − e−ika − eikm + ei(km−ka)

]
∑d

m′=1 σm′ [1 − cos(km′)]
dk . (5)

Next, let us specialize to networks in two dimensions with equal conductances (σm = 1), and define a = û2 , α(n) ≡
Jy(n) and β(n) ≡ Jx(n) , see Fig. 1. In order to obtain expressions for α′s and β′s is also necessary to consider implicit
symmetries on the networks; i.e.,

α(nx,ny) = α(nx,−ny) = α(−nx,ny) = α(−nx,−ny),
β(nx,ny) = −β(nx,−ny) = −β(−nx,ny) = β(−nx,−ny).

(6)

These are easily obtained by taking into account the flux of current in the OABC cell and by reflecting it with respect to OA,
see Fig. 1.

Combining Eqns. (5) and (6) gives

α(n) = 1
π2

∫ π

0
[1−cos(ky)] cos(nxkx) cos(nyky)

2−cos(kx)−cos(ky) dk ,

β(n) = 2
π2

∫ π

0
sin(kx/2) sin(ky/2) sin [(nx+1/2)kx]

2−cos(kx)−cos(ky)

× sin [(ny + 1/2)ky]dk .

(7)

This analysis can be easily extended to compute the α’s and β’s in three dimensions. These are calculated using configu-
ration analogous to Fig. 1 with the unit external current is introduced along the û3 direction. Then

α(n) = 1
π3

∫ π

0
[1−cos(kz)] cos(nxkx) cos(nyky) cos(nzkz)

3−cos(kx)−cos(ky)−cos(kz) dk ,

βx
(n) = 2

π3

∫ π

0
sin(kx/2) sin(kz/2) sin[(nx+1/2)k] cos(nyky)

3−cos(kx)−cos(ky)−cos(kz)

× sin[(nz + 1/2)k]dk ,

βy
(n) = 2

π3

∫ π

0
sin(ky/2) sin(kz/2) cos(nxkx) sin[(ny+1/2) k]

3−cos(kx)−cos(ky)−cos(kz)

× sin[(nz + 1/2)k]dk .

(8)

�

Notice, now there are two possible directions for β′s (i.e. x
and y, respectively).

Values of α’s and β’s given by Eqn. (7-8) for several
n are given in the Appendix, and will be used for computa-

tion to follow. In particular α0 = 1/2 and 1/3 in two and
three dimensions respectively, as can be easily confirmed us-
ing arguments based on symmetry and superposition [12] .

The α’s and β’s can also be computed perturbatively by
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expanding the denominator as a series in powers of cos kj .
Expansion to fourth order gives results that are accurate to
within 2%.

3 Removal of Conductors in Net-
works

In this section we introduce a method to calculate the current
distribution on the network when a finite number of conduc-

tances are removed.

Consider a two dimensional isotropic (σx = σy = 1)
network with an externally applied unit electric field in
the y−direction. The currents on this configuration are
Jx(n) = 0 , Jy(n) = 1 , see Fig. 2(a).
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Figure 2. Scheme to compute the current distribution when a single conductance is removed. In sequence:(a) an isotropic network with a
current flow along the y−direction. In (b) a conductance is removed , and δ is the excess of current in a remaining element. Next in (c) , a
unit external current is introduced in order to compute δ. Finally (d) shows the configuration from which δ can be evaluated.

First, we enumerate changes in the current distribution
due to the removal of the conductor joining the origin to
(0,−1), the link OA in Fig. 2(b). The excess current δ on
any remaining element can be considered to be the redistri-
bution of the current that originally passed through the link
OA , i.e.(0, 0) − (0,−1), see Fig. 2(c). δ can be evalu-
ated using specific values of α’s and β’s by the following
procedure. Consider the complete network, with and exter-
nal current (1 + J) introduced at (0, 0) and removed from
(0,−1), as shown in Fig. 2(d). (1 + J) is chosen so that a
current J passes through (0, 0)− (0,−1), and the remainder
(= 1) passes through the rest of the network; i.e., this sec-
ond part is the solution to the problem illustrated in Fig. 2(c).
But from the discussion in Section II, the current passing
through (0, 0) − (0,−1) is α(0,0) × (1 + J). Hence,

J = α(0,0) × (1 + J) . (9)

Since α(0,0) = 1/2, we find that J = 1 and that the changes

of current in the network are given by,

� Jy(n) = (1 + J)α(nx,ny) = 2 α(nx,ny) ,
� Jx(n) = (1 + J)β(nx,ny) = 2 β(nx,ny) .

(10)

In particular , the current on conductances adjacent to that
removed in Fig. 2(b) is

Jmax = 1 + 2 α(1,0) = 4/π ,

as was given by Duxbury et. al. [11]
Finally, we provide results from the analogous calcula-

tion for cubic networks of fused conductances. For a single
fracture like in Fig. 2, J = 1/2 and the value of maxima
current for adjacent links are,

Jmax = 1 + α(1,0,0)(1 + J) = 1 + α(0,1,0)(1 + J)
= 1 + α(0,0,1)(1 + J) = 1.092625 .

(11)

Several applications of these formulae are given in
Ref. [15]
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4 Reduction of Conductances

The next problem we address is how the current distribu-
tion of the network changes if the conductance of one bond
changes to σ < 1 , while the remaining conductors are left
unchanged. The current passing thorough this link will de-
crease causing the remainder to be re-distributed onto the
rest of the network. We show how the values of these cur-
rents can be calculated.

In Fig. 3(a) we consider the bond OA has its conduc-
tance reduced to σ, and there is a current I passing through
it. The remainder (1 − I) is redistributed into the network
causing an excess of current δ on remaining elements. This
is evaluated using a procedure schematically depicted in
Fig. 3(c). Consider the complete network, and an external
current (1 − I + J) is applied at O and removed from A. It
is chosen so that a current J passes through the link OA and
the remainder (1−I) passes through the rest of the network.
Because of this construction, the changes in the current on
the cell OABC (in terms of α′s and β′s) are (as was dis-
cussed in Section II) ,
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Figure 3. Procedure to compute the current distribution when a
central conductance is reduced to σ (< 1). In (a) the conductance
on the link OA is set up to be σ and its current is I . Then the extra
current around its neighborhood is δ. An external current (1−I) is
introduced in order to compute δ, in Figure (b). Finally (c) shows
the configuration from which δ is evaluated.

J = α(0,0) (1 − I + J) ,
� Jx = β(0,0) (1 − I + J) ,
� Jy = α(1,0) (1 − I + J) ,
� J−x = −β(0,−1) (1 − I + J) .

(12)

Notice that in order to compute the variations of currents
we introduced an auxiliary variable, and the solution require
an additional condition. This is obtained by applying Kirck-
off’s rule into the cell OABC. Thus,

VOA = VOB + VBC + VCA

I/σ = � Jx + [1 + � Jy] + � J−x .
(13)

Solving (12) and (13), we find

J = (1 − σ)/(1 + σ) , (14)

and the changes in currents are:

I = 2σ/(1 + σ) ,
� Jx = 2β(0,0)(1 − σ)/(1 + σ) ,
� Jy = 2α(1,0)(1 − σ)/(1 + σ) ,
� J−x = −2β(0,0)(1 − σ)/(1 + σ) .

(15)

Notice that when σ = 0, we retain the results derived in
Section III.
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Figure 4. A network with the three conductances (in dashed lines)
set up equal to 0.5, and current distributions on the boundary of
this region. The scheme to compute the redistribution of current is
shown in (b).

Now we calculate the currents on the network shown in
Fig. 4(a). The dashed links (where σ < 1) are replaced
by externally applied currents as described earlier, as shown
in Fig. 4(b). These currents, J1 , J2 and J3 are calculated
using,
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J1 = α(0,0)(J1 − I1) + β(0,0)(1 + J2 − I2) + β(1,0)(1 + J3 − I3) ;
J2 = −β(−1,0)(J1 − I1) + α(0,0)(1 + J2 − I2) + α(1,0)(1 + J3 − I3) ;
J3 = −β(−1,−1)(J1 − I1) + α(−1,0)(1 + J2 − I2) + α(0,0)(1 + J3 − I3)

and,

I1/σ1 = [−β(0,0) + α(1,0) − β(0,−1)](J1 − I1) + [−α(0,1) + β(0,1)

+ α(1,1)](1 + J2 − I2) + [−α(1,1) + β(1,1) + α(2,1)](1 + J3 − I3) ;
I2/σ2 = [−α(0,1) + α(−1,1)](J1 − I1) + [−β(−1,0) + β(−1,−1)](1 + J2 − I2) + I3

+ [−β(0,0) + β(0,−1)](1 + J3 − I3) ;
I3/σ3 = [−α(0,2) − β(−1,2) + α(−1,2)](J1 − I1) + [−β(−2,0) + α(−2,0) + β(−2,−1)](1 + J2 − I2)

+ 1 + [−β(−1,0) + α(−1,0) + β(−1,−1)](1 + J3 − I3) .

�

The first set of equations are obtained imposing balance
of current, and the last ones from applying Kirchoff’s laws.
For particular case which considers σ1 = σ2 = σ3 = 0.5 ,
some of the currents on the network are given again in
Fig. 4(a) and their values were confirmed through numer-
ical integrations on 100 × 100 networks. Values for cur-
rents on dashed bounds are: J1 = 0.225; J2 = 0.495; J3 =
0.476, and I1 = 0.113; I2 = 0.748; I3 = 0.738, respec-
tively.

Next let us provide another application considering two

clusters interacting, in Fig. 5. Setting up the following val-
ues to conductivities: σ1 = 0.09, σ2 = 0.15, σ3 = 0.6,
and σ4 = 0.9, we have solved numerically 8 linear equa-
tions to obtain several values of currents which are shown
in the same Figure. The respective J’s values were: J1 =
0.0287, J2 = 0.0133, J3 = 0.2483, and J4 = 0.0767.

Finally we consider the three dimensional fractured net-
work depicted in Fig. 6. Using analogous arguments above,
the currents are computed from:

	

J1 = α(0,0,0)(J1 − I1) + βy
(−1,0,0)(J2 − I2) + βy

(0,1,−2)(1 + J3 − I3) ;
J2 = βx

(0,1,0)(J1 − I1) + α(0,0,0)(J2 − I2) + βx
(0,1,−1)(1 + J3 − I3) ;

J3 = −βy
(0,1,1)(J1 − I1) − βx

(0,−1,0)(J2 − I2) + α(0,0,0)(1 + J3 − I3) ,

and

I1/σ1 = [βx
(0,0,0) + α(1,0,0) − βx

(0,0,−1)](J1 − I1) + [α(−1,0,0) + βy
(−1,0,−1) − α(−1,1,0)](J2 − I2)

+ [βx
(0,1,−2) + βy

(1,1,−2) − βx
(0,2,−2)](1 + J3 − I3) ,

I2/σ2 = [α(0,1,0) + βx
(0,1,−1) − α(1,1,0)](J1 − I1) + [βy

(0,0,0) + α(0,1,0)

+ βy
(0,0,−1)](J2 − I2) − [βy

(0,1,−1) + βx
(0,2,−1) − βy

(1,1,−1)](1 + J3 − I3) ,

I3/σ3 = [βx
(0,2,1) − βy

(1,1,1) − βx
(0,1,1)](J1 − I1) + [α(1,−1,0) − βx

(0,−1,−1) − α(0,−1,0)](J2 − I2)

+ [βx
(0,0,0) + α(1,0,0) − βx

(0,0,−1)](1 + J3 − I3) + 1 .

�

Setting up conductivities to be σ1 = 0.5, σ2 = 0.25 and
σ3 = 0.1 we have obtained I1 = 0.0091, I2 = 0.0083 and

I3 = 0.1429, respectively. These conclusions were con-
firmed numerically.
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Figure 5. A network with four (reduced) conductances set up to σ1 = 0.09, σ2 = 0.15, σ3 = 0.6 and σ4 = 0.9 (in dashed lines). Some
currents on their neighborhood are also shown.
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Figure 6. A three-dimensional fractured network with three conductances settled up to σ1 = 0.5, σ2 = 0.25 and σ3 = 0.1 (in dashed
lines). Current distributions on their neighborhood is also shown.
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5 Discussions and Conclusions

We have presented a method to compute current distribu-
tions on infinite two and three dimensional networks, a fi-
nite number of whose conductances differ from unity. The
method can be used to calculate (for example) how break-
down strength of a networks reduces due to a “fracture” of
κ congruent locations whose conductances have “burned”.
The expression obtained from this calculation can be gen-

eralized to elastic networks, one of whose applications is
the determination of a relationship between the strength and
density of the trabecular bone, with possible applications in
using bone strength as a non-invasive diagnostic tool to iden-
tify patients with osteoporosis [15, 16].

We would like to thank discussions with C. Rajapakse.
This work is partially funded by the Office of Naval Re-
search, the National Science Foundation and the ICSC -
World Laboratory.

6 Appendix

Table 1: Values of several α(nx, ny)’s. In particular α(0, 0) = 1/2, and α(1, 0) = 1/2(4/π − 1).
ny

nx
0 1 2 3 4 5

0 0.50000 0.13662 0.04648 0.02019 0.01080 0.00670
1 0.13662 0.00001 0.01455 0.01174 0.00816 0.00571
2 0.04648 0.01455 0.00000 0.00404 0.00441 0.00383
3 0.02019 0.01174 0.00404 0.00000 0.00162 0.00208
4 0.01080 0.00816 0.00441 0.00162 0.00000 0.00080
5 0.00670 0.00571 0.00383 0.00208 0.00080 0.00000
6 0.00457 0.00413 0.00314 0.00205 0.00113 0.00045

Table 2: Values of β for the first pairs of (nx, ny) .

ny

ny
0 1 2 3 4 5

0 0.18169 0.04507 0.01315 0.00469 0.00205 0.00106
1 0.04507 0.03052 0.01596 0.00826 0.00451 0.00264
2 0.01315 0.01596 0.01192 0.00789 0.00510 0.00334
3 0.00469 0.00826 0.00789 0.00626 0.00464 0.00337
4 0.00205 0.00451 0.00510 0.00464 0.00384 0.00304
5 0.00106 0.00264 0.00334 0.00337 0.00304 0.00259
6 0.00062 0.00165 0.00225 0.00244 0.00236 0.00214

Table 3: Values of α ’s on the plane z = 0 , for pairs of (nx, ny).

nx

ny
0 1 2 3 4 5

0 0.33333 0.06175 0.01392 0.00404 0.00153 0.00073
1 0.06175 0.02323 0.00793 0.00298 0.00130 0.00066
2 0.01392 0.00793 0.00379 0.00184 0.00095 0.00054
3 0.00404 0.00298 0.00184 0.00109 0.00066 0.00041
4 0.00153 0.00130 0.00095 0.00066 0.00045 0.00031
5 0.00073 0.00066 0.00054 0.00041 0.00031 0.00023
6 0.00040 0.00038 0.00033 0.00027 0.00022 0.00017
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