
Brazilian Journal of Physics, vol. 33, no. 2, June, 2003 333

A Representation of the Virasoro Algebra Via Wigner-Heisenberg
Algebraic Technique to Bosonic Systems
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Using the Wigner-Heisenberg algebra for bosonic systems in connection with oscillators we find a new repre-
sentation for the Virasoro algebra.

1 Introduction

In 1950, Wigner[1] proposed the interesting question, ”Do
the equations of motion determine the quantum-mechanical
commutation relations?” and found as answer a general-
ized quantum rule for the one-dimensional harmonic os-
cillator. In the next year, Yang [2] found the coordinate
representation for the linear momentum operator. Yang’s
wave mechanical description was further studied by Ohnuki
et al. [3] and Mukunda et al. [4]. Recently, the general
Wigner-Heisenberg (WH) oscillator algebra [5, 6, 7, 8] has
been investigated in the context of the deformed algebra [9].
There, the author shows that finite-dimensional representa-
tions of the deformed parafermionic algebra with internal
Z2-grading structure. The superealization of the WH alge-
bra has been independently considered in two works [8, 10].

The Virasoro algebra has been several applications in lit-
erature, let us point, for stance, the connections with the con-
formal group [11], construction assu(1, 1) extension [12],
supervirasoro [13] and quantum algebras [14].

In this work, starting from the Wigner-Heisenberg alge-
braic technique for the bosonic systems in connection with
general oscillator, we find a new representation for the Vira-
soro algebra.

This work is arranged in the following way. In Section
II, we present the WH algebra. In Section III, a representa-
tion of the modified Virasoro algebra is found. The conclu-
sions are drawn in the Section IV.

2 The WH algebra

The Wigner Hamiltonian expressed in the symmetrized bi-
linear form in terms of the mutually adjoint abstract opera-

tors â±, defined by

ĤW =
1
2
(p̂2

x + x̂2) =
1
2
[â−, â+]+ =

1
2
(â−â+ + â+â−),

(1)
where

â± =
1√
2
(±ip̂x − x̂). (2)

Wigner showed that Heisenberg’s equations of motion

[ĤW , â±]− = ±â±, (3)

do not necessarily entail in the usual quantum rule

[a−, a+]− = 1 ⇒ [x̂, p̂x]− = i, ~ = 1, (4)

but a more general quantum rule [2, 3, 4] given by

[â−, â+]− = 1 + cR̂ =⇒ [x̂, p̂x]− = i(1 + cR̂), (5)

wherec is a real constant, related to the ground state en-
ergyE

(0)
W ≥ 0 by virtue of the positive semi-definite form

of ĤW
1

|c| = 2E(0) − 1, (6)

which is called Wigner parameter.
The basic (anti-)commutation relations (1) and (3), to-

gether with the derived relation (5), are referred to as consti-
tuting the WH algebra. It is a parabose algebra [5] for the de-
gree of freedom. The WH algebra is obtained by combining
also the requeriment thatx̂ satisfies the classical equation of
motion (̈̂x + x̂ = 0).
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1Note that the casec = 0 corresponds to the usual oscillator withE(0) = 1
2
, ~ = ω = 1.
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Note thatR̂ is an abstract operator satisfying the proper-
ties

[R̂, â±]+ = 0 ⇒ [R̂, ĤW ]− = 0;

R̂† = R̂−1 = R̂, R̂2 = 1, (7)

where one has used the following notation for the
(anti- ) commutation relations:[A,B]+ ≡ AB + BA and
[A,B]− ≡ AB −BA. Besides, we have

HW = â+â− +
1
2
(1 + cR̂)

= â−â+ − 1
2
(1 + cR̂). (8)

Abstractly (O’Raifeartaigh and Ryan [6], Boulware and
Deser [7])R̂ is the Klein operator,±exp{iπ(ĤW −E

(0)
W )}.

In the mechanical representation first investigated by
Yang[2],R̂ is realized by the Parity operatorP :

P |x >= | − x >⇒ PxP−1 = −x,

PpxP−1 = −px, P−1 = P, P 2 = 1. (9)

Indeed, Yang [2] found the coordinate representation for the
momentum operatorpx as given by

p̂x −→ px = −i
d

dx
+ i

c

2x
P, x̂ −→ x, (10)

â± −→ a±c
2

=
1√
2

(
± d

dx
∓ c

2x
P − x

)
. (11)

Yang’s wave mechanical description was further investi-
gated in [3, 4].

3 Modified Virasoro algebra

The elements of the Virasoro algebra [11, 13] will be repre-
sented in terms of ladder operatorsa± of quantum oscilla-
tors with or without deformation.

A. Canonical representation of the Virasoro al-
gebra

The conformal group,G, in 2 dimensions consists of all
general transformations:

Γ : z → ξ(z), Γ̄ : z̄ → ξ̄(z̄), (12)

whereΓ is a group of the more general transformation with
one coordinate, or equivalently is a group of thediffeomor-
phism transformationsin one dimension. The same situation
for Γ̄. Then,G is given by the direct product, viz.,

G = Γ⊗ Γ̄. (13)

In the literature,Γ andΓ̄ are usually referred to as chi-
ral and anti-chiral components of the conformal algebra in
2-dimensions. The algebra associated to theΓ is calledthe
Witt algebraor the classical Virasoro algebra(L0).

If G is the algebra associated to the groupG, then:

G = L0︸︷︷︸⊕ L0︸︷︷︸ . (14)

Witt Witt

Infinitesimal transformations of the groupΓ are: z →
z + ε(z), whereε(z) is an infinitesimal analytical function.
It can be represented as an infinite Laurent series, viz.,

ε(z) =
∑

n

εnzn+1, n ε z. (15)

Therefore, the Lie algebraL0 of the Γ coincides with the
algebra of differential operators defined inC− {0} :

`n = zn+1 d

dz
, n = 0,±1,±2, · · · . (16)

The commutation relations have the following form:

[`n, `m] = (n−m)`n+m. (17)

We shall denote the algebra (17) asL0, which admits a
unique 1-dimensional central extension:

Lκ = L0 ⊕ κ (The Virasoro algebra), (18)

with the following commutation relations

[`n, κ] = 0

[`n, `m] = (n−m)`n+m + κ
m3 −m

12
δn+m,0,(19)

where the value of the central charge“κ′′ is the parameter
of the theory into the context of Quantum Field Theory. The
generators̀−1, `0, `1 form the subalgebrasl(2,R) ⊂ L0.

In this subsection, we consider the oscillatory represen-
tation of the elements for the Virasoro algebra without mod-
ification. Using the canonical commutation relation of the
quantum mechanics (4), we obtain the following commuta-
tor:

[(a−)n+1, a+]− = (n+1)(a−)n, n = 0, 1, 2, · · · . (20)

From this commutator, we see that the Virasoro operators
for the unidimensional harmonic oscillator can be defined
by

Ln =
{

(a−)n+1a+,
a−(a+)n+1,

(21)

which satisfy the following Virasoro algebra:

[Ln, Lm]− = (n−m)Ln+m, (22)

wheren ≥ 0 andm ≥ 0. Next, we consider the oscillatory
representation in terms of the Wigner oscillator.

B. Deformed Virasoro algebra

Let us now consider the modified Virasoro algebra in
terms of new ladder operators which satisfy the generalized
commutation relation given by Eq. (5). Indeed, considering
Ln = (a−)n+1a+, we see that the Eq. (20) becomes:
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c

[(a−)n+1, a+]− =
{

(n + 1)(a−)n + cP (a−)n, n = 2k
(n + 1)(a−)n, n = 2k + 1,

(23)

d
wherek = 0, 1, 2, 3 · · · . Now we investigate the three pos-
sible cases for the Virasoro algebra.
Case (i): Two even indexes.

In this case, the Virasoro algebra is not changed, i.e.

[L2n, L2m]− = 2(n−m)L2n+2m. (24)

Case (ii): Two odd indexes.
In this case, the Virasoro algebra is not also changed, i.e.

[L2n+1, L2m+1]− = 2(n−m)L2n+2m+2. (25)

Case (iii): One even index and one odd index and vice-verse.
In this case, the Virasoro algebra is changed, i.e.,

[L2n, L2m+1]− = 2(n−m)L2n+2m+1−(1−cP )L2n+2m+1.
(26)

Note that we get an anomalous term containing the parity
operatorP . Besides, we can obtain the three possible cases
for the Virasoro adjoint operatorsL†n = a−(a+)n+1.

The question we formulate now is the following: What
is the behaviour of the Virasoro operator on the autokets of
the Wigner oscillator quantum states? To answer this ques-
tion, one must first note that the Wigner oscillator ladder
operators on autokets of these quantum states are given by

a−c
2
|2m,

c

2
> =

√
2m|2m− 1,

c

2
>

a−c
2
|2m + 1,

c

2
> =

√
2(m + E(0))|2m,

c

2
>

a+
c
2
|2m,

c

2
> =

√
2(m + E(0))|2m + 1,

c

2
>

a+
c
2
|2m + 1,

c

2
> =

√
2(m + 1)|2m + 2,

c

2
> . (27)

A detailed analysis on this question will appear in a forth-
coming paper.

4 Conclusion

In this work, we analyze the Wigner-Heisenberg algebra to
bosonic systems in connection with oscillators and, thus, we
find a new representation for the Virasoro algebra. Acting
the annihilation operator(creation operator) in the Fock basis
| 2m+1, c

2 > (| 2m, c
2 >) the eigenvalue of the ground state

of the Wigner oscillator appears only in the excited states
associated with the even(odd) quanta given by Eq.(27). We
show that only in the case associated with one even index
and one odd index in the operatorLn the Virasoro algebra is
changed.

The super-realization of the Wigner-Heisenberg algebra
proposed by Jayaraman and Rodrigues [8], and indepen-
dently by Plyushchay [10], has been changed to investigate
a potential model that describes a hydrogen atom with para-
statistics [15].
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