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We study the Borel sum rule for the tensor amplitude of the processes J/ψ π → D̄ D∗, D̄ D, D̄∗ D∗ and
D̄ D∗. We also evaluate the cross sections as a function of

√
s. We find that our results are smaller than the

J/ψ π → charmed mesons cross sections obtained with models based on meson exchange, but are close to
those obtained with quark exchange models.

I Introduction

In relativistic heavy ion collisions J/ψ suppression has been
recognized as an important tool to identify the possible
phase transition to quark-gluon plasma (QGP). Matsui and
Satz [1] predicted that in presence of quark-gluon plasma,
binding of a cc̄ pair into a J/ψ meson will be hindered, lead-
ing to the so called J/ψ suppression in heavy ion collisions.
Over the years several experiments measured the J/ψ yield
in heavy ion collisions (for a review of data and interpreta-
tions see Ref.[2, 3]). In brief, experimental data do show
suppression. However, this could be attributed to more con-
ventional J/ψ absorption by comovers, not present in pA
collisions. In heavy ion collisions, part of the charmonium
interactions happens in the early stages of the collisions and,
therefore, at high energies (

√
s � 10−20 GeV) and one may

try to apply perturbative QCD. However, even in this regime,
nonperturbative effects may be important [4]. On the other
hand, a significant part of the charmonium - hadron inter-
actions occurs when other light particles have already been
produced. This kind of interactions happen at much lower
energies (

√
s ≤ 5 GeV) and one has to apply nonpertur-

bative methods. In this work we use the QCD sum rules
(QCDSR) technique [5, 6] to study the J/ψ−π dissociation.
In view of our relatively poor understanding of J/ψ reac-
tions in nuclear matter and considering the large discrepan-

cies between different model estimates, we believe that our
work adds to a better understanding of this important topic.

II The QCDSR Calculation

Let us start with the the four-point function for the process
J/ψ π → D̄ D∗:

Πµν = i

∫
d4x d4y d4z e−ip1.x e−ip2.0 eip3.y eip4.z

× 〈0|T {jπ(x)jD
∗

ν (y)jψµ (0)jD(z)}|0〉 , (1)

with the currents given by jπ = diγ5u, jD
∗

ν = uγνc,
jψµ = cγµc and jD = ciγ5d [6], where c, u and d are the
charm, up and down quark fields respectively, and p1, p2, p3

and p4 are the four-momenta of the mesons π, J/ψ, D∗ and
D respectively, with p1 + p2 = p3 + p4.

Following Reinders, Rubinstein, and Yazaki [6], and
others [7, 8, 9], we can write a sum rule valid only at p2

1 = 0
(at the pion pole if one neglects the pion mass). The per-
turbative diagram does not contribute with 1/p2

1 and, up to
dimension four, only the diagrams proportional to the quark
condensate contribute. After collecting the 1/p2

1 terms on
the theoretical side and taking the limit p1µ → 0 in the
residue of the pion pole, one obtains:

�

Π<q̄q>
µν = −2mc〈q̄q〉

p2
1

p1ν(p1µ + p2µ − 2p3µ) − p1µp2ν

(p2
3 − m2

c)(p2
4 − m2

c)
. (2)
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The phenomenological side of the correlation function, Πµν , is obtained by the consideration of J/ψ, π, D and D∗ state
contribution to the matrix element in Eq. (1):

Πphen
µν = − m2

πfπ
mu + md

m2
DfD
mc

mD∗fD∗ mψfψ Mαβ

(p2
1 − m2

π)(p2
4 − m2

D)

× gµα − p2µp2α/m
2
ψ

p2
2 − m2

ψ

gνβ − p3νp3β/m
2
D∗

p2
3 − m2

D∗
+ h. r. , (3)

�

where h. r. means higher resonances and the hadronic am-
plitude for the process J/ψ π → D̄ D∗ is given by

M = Mµν(p1, p2, p3, p4) εµ2 ε∗ν3 . (4)

We note that one has 1/p2
1 pole in Eq. (3) in the limit of

a vanishing pion mass. Contracting the hadronic amplitude
with the numerators of J/ψ and D∗ propagators in Eq. (3)
and comparing with Eq. (2), the structure defining Mµν in
Eq. (4) is easily identified. Therefore, defining

Mµν = ΛDD∗ (p1µp1ν − p1µp2ν − 2p1νp3µ) , (5)

we can write a sum rule for ΛDD∗ in any of the three struc-
tures appearing in Eq. (5). To improve the matching be-
tween the phenomenological and theoretical sides we fol-
low the usual procedure and make a single Borel transfor-
mation to all the external momenta (except p2

1) taken to be

equal: −p2
2 = −p2

3 = −p2
4 = P 2 → M2. The prob-

lem of doing a single Borel transformation is the fact that
terms associated with the pole-continuum transitions are not
suppressed [10]. In ref. [10] it was explicitly shown that
the pole-continuum transition has a different behavior as a
function of the Borel mass as compared with the double pole
contribution (triple pole contribution in our case) and contin-
uum contribution: it grows with M2 as compared with the
contribution of the fundamental states. Therefore, the pole-
continuum contribution can be taken into account through
the introduction of a parameter ADD∗ in the phenomeno-
logical side of the sum rule [8, 9, 10]. Thus, neglecting m2

π

in the denominator of Eq. (3) and doing a single Borel trans-
form in −p2

2 = −p2
3 = −p2

4 = P 2, we get

�

ΛDD∗ + ADD∗M2

m2
D∗ − m2

ψ

[
e−m

2
D/M

2 − e−m
2
ψ/M

2

m2
ψ − m2

D

− (ψ → D∗)

]

= −2mc〈q̄q〉 e−m
2
c/M

2

M2

mc(mu + md)
m2
πm

2
DmD∗mψfπfDfD∗fψ

, (6)

where we have transferred to the theoretical side the couplings of the currents with the mesons, and have introduced, in the
phenomenological side, the parameter ADD∗ to account for possible nondiagonal transitions.

For consistency we use in our analysis the QCDSR expressions for the decay constants of the J/ψ, D∗ and D mesons up
to dimension four in lowest order of αs:

f2
D =

3m2
c

8π2m4
D

∫ uD

m2
c

du
(u − m2

c)2

u
e(m2

D−u)/M2
M − m3

c

m4
D

〈q̄q〉e(m2
D−m2

c)/M
2
M , (7)

f2
D∗ =

1
8π2m2

D∗

∫ uD∗

m2
c

du
(u − m2

c)
2

u

(
2 +

m2
c

u

)
e(m2

D∗−u)/M2
M − mc

m2
D∗

〈q̄q〉e(m2
D∗−m2

Q)/M2
M , (8)

f2
ψ =

1
4π2

∫ uψ

4m2
c

du
(u + 2m2

c)
√

u − 4m2
c

u3/2
e(m2

ψ−u)/M2
M , (9)

�

where M2
M represents the Borel mass in the two-point func-

tion, uM is for the continuum threshold for the meson M ,
and we have omitted the numerically insignificant contribu-
tion of the gluon condensate.

The parameter values used in all calculations are mu +

md = 14 MeV, mc = 1.5 GeV, mπ = 140 MeV, mD =
1.87 GeV, mD∗ = 2.01 GeV, mψ = 3.097 GeV, fπ =
131.5 MeV, 〈qq〉 = −(0.23)3 GeV3. We parametrize the
continuum thresholds as uM = (mM + ∆u)2. Using the
Borel region 3 ≤ M2

M ≤ 6 GeV2 for the D∗ and D mesons
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and 6 ≤ M2
M ≤ 10 GeV2 for the J/ψ, we found good

stability for fD, fD∗ and fψ with ∆u ∼ 0.6 GeV. We
obtained fD = 155 ± 5 MeV, fD∗ = 195 ± 5 MeV and
fψ = 225 ± 10 MeV, which are acceptable values for these
decay constants .

III Results and Discussion

Using ∆u = 0.6 GeV, we obtain the QCD sum rule results
for ΛDD∗ + ADD∗M2 as a function of M2. We find that
they follow a straight line in the Borel region 8 ≤ M2 ≤
16 GeV2 [11]. The value of the amplitude Λ is obtained by
the extrapolation of the line to M2 = 0 [8, 9, 10]. Fitting

the QCD sum rule results to a straight line we get

ΛDD∗ � 17.71 GeV−2 . (10)

As expected, in our approach Λ is just a number and all
dependence of Mµν (Eq. (5)) on particle momenta is con-
tained in the Dirac structure. This is a consequence of our
low energy approximation.

Following the same procedure, we have also considered
the processes J/ψ π → D̄ D and J/ψ π → D̄∗ D∗. Simi-
larly to the case J/ψ π → D̄ D∗, in the OPE side the only
diagrams, up to dimension four, contributing with 1/p2

1 are
the quark condensate diagrams. Comparing the phenomeno-
logical and OPE sides of the correlators we can identify the
structure defining the hadronic amplitudes:

�

Mµ = ΛDD εµαβσp
α
1 pβ3pσ4 , (11)

and

Mµνα = ΛD∗D∗
[
pβ1pλ3pγ4(−ενβλγgαµ + εµβλγgαν − εαβλγgµν) + εµνβλ(p

β
1pλ4p3α

− pβ3pλ4p1α) + εανβλ(p
β
1pλ3p1µ + pβ3pλ4p1µ − pβ1pλ4p3µ + pβ1pλ3p4µ)

+ εαµβλ(−pβ1pλ3p1ν − pβ3pλ4p1ν + pβ1pλ4p1ν + pβ1pλ3p4µ)
]

. (12)

Performing a single Borel transform in −p2
2 = −p2

3 = −p2
4 = P 2, we get

ΛMM + AMMM2

m2
M − m2

ψ

fM (M2) = CM
mu + md

m2
πm

2
Mmψfπf2

Mfψ

× 2 〈q̄q〉e
−m2

c/M
2

M2
, (13)

where the subscript M stands for the D or D∗ mesons, with CD = m2
c

m2
D

, CD∗ = 1 and

fM (M2) =
e−m

2
M/M

2

M2
− e−m

2
M/M

2 − e−m
2
ψ/M

2

m2
ψ − m2

M

. (14)

The QCD sum rule results for ΛDD + ADDM2 and ΛD∗D∗ + AD∗D∗M2 as a function of M2 are obtained in a similar
way and the amplitudes ΛDD and ΛD∗D∗ are extracted by the extrapolation of the line to M2 = 0. We get [11]:

ΛDD � 12.25 GeV−1 , ΛD∗D∗ � 11.39 GeV−3 . (15)

Having the QCD sum rule results for the amplitude of the three processes J/ψ π → D̄ D∗, D̄ D, D̄∗ D∗, given in
Eqs. (5), (11) and (12) we can evaluate the differential cross section. After including isospin factors, the differential cross
section for the J/ψ π dissociation is given by

dσ

dt
=

1
96πsp2

i,cm

∑
spin

|M|2 , (16)

where pi,cm is the three-momentum of p1 (or p2) in the center of mass frame (with p1 (p2) being the four-momentum of the
π (J/ψ)):

p2
i,cm =

λ(s,m2
π ,m

2
ψ)

4s
, (17)

with λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, s = (p1 + p2)2, t = (p1 − p3)2.
In Eq. (16), the sum over the spins of the amplitude squared is given by
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∑
spin

|M|2 = MµνM∗
µ′ν′

(
gµµ

′ − pµ2pµ
′

2

m2
ψ

)(
gνν

′ − pν3p
ν′
3

m2
D∗

)
, (18)

for J/ψ π → D̄ D∗, with p3 (p4) being the four-momentum of D∗ (D).

∑
spin

|M|2 = MµM∗
µ′

(
gµµ

′ − pµ2pµ
′

2

m2
ψ

)
, (19)

for J/ψ π → D̄ D, and

∑
spin

|M|2 = MµναM∗
µ′ν′α′

(
gµµ

′ − pµ2pµ
′

2

m2
ψ

)(
gνν

′ − pν3p
ν′
3

m2
D∗

)(
gαα

′ − pα4 pα
′

4

m2
D∗

)
, (20)

for J/ψ π → D̄∗ D∗.

�

Using our QCD sum rule results we show, in Fig. 1, the
cross section for the J/ψ π dissociation. It is important to
keep in mind that, since our sum rule was derived in the limit
p1 → 0, we can not extend our results to large values of

√
s.
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Figure 1. Total cross sections of the processes J/ψ π → D̄ D∗ +
D D̄∗ (dashed line), D̄ D (dotted line) and D̄∗ D∗ (dot-dashed
line). The solid line gives the total J/ψ π dissociation cross sec-
tion.

Our first conclusion is that our results show that, for
values of

√
s far from the J/ψ π → D̄∗ D∗ threshold,

σJ/ψπ→D̄∗D∗ ≥ σJ/ψπ→D̄D∗+DD̄∗ ≥ σJ/ψπ→D̄D, in
agreement with calculations using meson exchange models
based on effective lagrangians, as discussed, for example,
in Ref. [12], but in disagreement with the results obtained
with the nonrelativistic quark model of Ref. [13], which
show that the state D̄∗D has a larger production cross sec-
tion than D̄∗D∗. Furthermore, our curves indicate that the
cross section grows monotonically with the c.m.s. energy
but not as fast, near the thresholds, as it does in the calcu-
lations in Refs. [12]. Again, this behavior is in opposition
to [13], where a peak just after the threshold followed by
continuous decrease in the cross section was found.

At higher energies, due to our low energy approxima-

tion, our approach gradually looses validity. In the fiducial
region, close to threshold, 4.1 ≤ √

s ≤ 4.3 GeV, we find
2.5 ≤ σ ≤ 4.0 mb and these values are much smaller than
those obtained with the effective Lagrangians without form
factors in the hadronic vertices, but agree in order of magni-
tude with the quark model calculations of [13].
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