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Transport equations for composite nucleons and deconfined quarks in quark-nuclear matter (QNM) are derived.
QNM is a many-body system containing hadrons and deconfined quarks. The starting point is a microscopic
quark-meson coupling (QMC) Hamiltonian with a density-dependent quark-quark interaction. An effective
quark-hadron Hamiltonian containing canonical hadron and quark field operators is constructed using a map-
ping procedure. For high densities, the effective Hamiltonian contains interactions that lead to quark decon-
finement. Transport equations of the Ueling-Ullenbeck-Vlasov type for quarks and nucleons are obtained using
standard many-body techniques with the effective quark-hadron Hamiltonian.

I Introduction

The study of the properties of high density hadronic mat-
ter is one of the most important problems in contemporary
physics. The possibility of creating in laboratory a new state
of matter through collisions of heavy nuclei has become
feasible in recent years, with widespread opportunities for
understanding several aspects of the strong interactions and
matter in superdense stars and at the origin of the universe.
One of the central questions in this field is the identification
of the appropriate degrees of freedom to describe the differ-
ent phases of hadronic matter. At densities much higher than
the nuclear saturation density, a phase of deconfined matter
composed of quarks and gluons is expected to occur. The
study of the properties of such a state is possible with the
methods of perturbative quantum chromodynamics (QCD).
On the other hand, the study of matter at densities not much
higher than the saturation density of nuclear matter - like the
one existing in dense stars - is very complicated. The com-
plication is due to the fact that this phase of matter is char-
acterized by nonperturbative QCD phenomena and the use
of tractable models and drastic approximations is presently
the only practical way of tackling the problem.

The quark-meson coupling (QMC) model [1] is a very
useful model to study the different phases of hadronic mat-
ter. It is formulated in terms of quark-gluon degrees of free-
dom and is devised in such a way to incorporate in an ex-
plicit way hadron structure in the nuclear many-body prob-
lem. In this model, low-density hadronic matter is described

as a system of independent baryons interacting through ef-
fective scalar- and vector-meson degrees of freedom which
couple directly to the quarks. At very high density the
quarks and gluons become deconfined and the entire system
is confined by a bag, or potential. For a list of references and
recent work, see Ref. [2].

In a recent paper [3] the QMC model was generalized
to include quark deconfinement at high density. Starting
from a relativistic quark potential model [4], a change of
Fock-space representation is implemented through a unitary
transformation. The unitary operator is constructed in an
extended Fock space in such a way that single composite-
hadrons of the model are redescribed in terms of elementary-
particle field operators. The unitary operator is constructed
as a power series in the bound-state wave functions of the
composite hadrons and application of the unitary opera-
tor on the original quark Hamiltonian leads to an unitar-
ily equivalent Hamiltonian containing quark and explicit
hadron degrees of freedom is constructed. The transformed
Hamiltonian is composed of a sum of hermitian Hamiltoni-
ans endowed with a clear physical interpretation. In partic-
ular, one of such effective Hamiltonians describes the de-
confinement of quarks. The new representation is known as
the Fock-Tani representation [5]. In the present paper we use
the lowest-order effective Hamiltonian to study properties of
quark nuclear matter. Of particular interest are the equation
of state (EOS) and transport equations for nucleons and de-
confined quarks. We derive the Vlasov-Uehling-Ullenbeck
(VUU) equations [6] for the distribution functions of nucle-
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ons and quarks in QNM. A numerical example is presented
for the static EOS’s for pure nuclear matter and QNM.

II The Model and the Effective
Quark-Hadron Hamiltonian

In the model of Ref. [3], a single-nucleon state in nuclear
matter can be written in a second-quantized notation as (re-
peated indices are summed over)

|α〉 = B†
α|0〉, B†

α =
1√
3!

Ψµ1µ2µ3
α q†µ1

q†µ2
q†µ3

, (1)

where theq†µ’s are constituent-quark creation operators,
Ψµ1µ2µ3

α is the Fock-space nucleon amplitude. The quark
creation and annihilation operators satisfy canonical anti-
commutation relations. In Eq. (1),α denotes the spatial
and internal quantum numbers of the nucleons, as internal
and c.m. energies and the spin-isospin quantum numbers.
The quark indicesµ identify the spatial and internal quan-
tum numbers as momentum, spin, flavor and color. The am-
plitudeΨµ1µ2µ3

α is taken to be orthonormalized.
The amplitudeΨµ1µ2µ3

α corresponds to a bound state of
three constituent quarks, such that each constituent quark
satisfies a Dirac equation of the form
[
−i~α · ~∇+ β0m∗

q + 1/2(1 + β)V (r)
]
ψ(r) = E∗

q ψ(r),
(2)

wherem∗
q = mq − gq

σ σ0, E∗
q = ε∗ − gq

ω ω0.
In the situation that quarks remain confined to the in-

terior of nucleons, the internal structure of the nucleon is
manifest in the effective mass of the nucleon in medium [1].
In the mean field approximation, the energy density of sym-
metrical nuclear matter can be written as

E

V
= 4

∫ kF

0

d3p

(2π)3
E∗

N (p) +
1
2
m2

σσ2
0 +

1
2
m2

ωω2
0 , (3)

whereρB = B/V is the baryon density andmσ andmω

are the masses ofσ0 andω0, andE∗
N =

√
p2 + M∗2

N . The
explicit form ofM∗ is given in Ref [3]. The values of mean
fields are determined as usual [1]:ω0 follows from its equa-
tion of motion andσ0 is determined minimizingE with re-
spect toσ0.

Now, the situation with deconfined quarks and compos-
ite hadrons simulataneously present in the system is very
complicated, because the standard many-body techniques
cannot be directly applied to the composite-hadron creation
and annihilation operatorsB†

α andBα. This is because their
anticommutation relations are noncanonical, namely

{Bα, B†
β} = δαβ −∆αβ , {Bα, Bβ} = 0, (4)

where

∆αβ = 3Ψ∗µ1µ2µ3
α q†ν3

[
Ψµ1µ2ν3

β − 1
2
Ψµ1ν2ν3

β q†ν2
qµ2

]
qµ3 . (5)

In addition, one has

{qµ, B†
α} =

√
3
2
Ψµµ2µ3

α q†µ2
q†µ3

, {qµ, Bα} = 0. (6)

These equations reflect the internal structure of the hadrons,
Eq. (6) in particular shows that the quark and nucleon field
operators are not kinematically independent. It is precisely
the noncanonical nature of these anticommutators that com-
plicates the mathematical treatment of QNM.

One way to proceed is to change representation, such
that composite field operators are redescribed in terms of
elementary-particle field operators in an extended Fock
space. This is done as follows. Initially, fictitious orideal
nucleons are introduced in close correspondence to the real
single-nucleon states. Next, a unitary operator is constructed
in the extended Fock space such that

|α〉 = B†
α|0〉 −→ U−1|α〉 ≡ |α) = b†α|0), (7)

where

{bα, b†β} = δαβ , {bα, bβ} = 0, (8)

andq|0) = b|0) = 0. In addition, in the new representation,
one has{qµ, bα} = {qµ, b†α} = 0 . The unitary operatorU
is constructed as a power series in the bound state ampli-
tudeΨ. The meaning of this expansion can be understood
as follwos. The term∆αβ plays no role and can be taken to
be zero in situations that quarks remain confined in the inte-
rior of the nucleons, such as in systems at low densities. In
this case there is no significant overlap of the internal struc-
tures of different nucleons andU = 1. As the density of the
system increases, quarks in different nucleons start to over-
lap and∆αβ cannot be neglected. The construction ofU as
an expansion in powers ofΨ’s takes into account the effects
of the overlap of the internal quark structures of different
nucleons.

When the unitary operatorU is applied to the mi-
croscopic quark Hamiltonian, one obtains [5] an effective
Hamiltonian that describes all possible processes involving
free quarks and composite nucleons. The quark Hamiltonian
of Eq. (2) can be written as

Hq = Tq + Vqq = T (µ) q†µqµ +
1
2
Vqq (µν; σρ) q†µq†νqρqσ,

(9)
whereVqq is the confining potential. Application ofU to
Hq leads toHeff = U−1HqU . The first nontrivial effects
of the internal structure of the nucleons comes in withU at
first-order inΨ,

H
(1)
eff = Tq + Hb + Ṽqq + Vbq + · · · , (10)

where · · · indicate terms not relevant for our discussion
here [5].

In Eq. (10), Hb = Tb + Vbb, whereTb is a single-
nucleon energy andVbb is an effective nucleon-nucleon in-
teraction without quark exchange.Hb leads to the normal
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QMC model, in which the many-body system is described
by nonoverlapping nucleons - no quark-exchange. In partic-
ular, it describes Fock terms in the QMC model [7].

The termṼqq contains two-quark and three-quark inter-
actions. WhenΨ is a bound-state eigenstate of the original
quark Hamiltonian, one obtains [5]

Vqq =
1
2

Vqq(µν;σρ) q†µq†νqρqσ − EαB†
αBα. (11)

This interaction leads to a quark Hamiltonian that has a pos-
itive semidefinite spectrum [5], i.e. the transformed Hamil-
tonian involving only quark operators describes only pro-
cesses in the continuum.

The termVbq is our main focus in this paper. It is given
by

Vbq = Vbq(µ1µ2µ3, β)q†µ1
q†µ2

q†µ3
bβ + h.c., (12)

with

Vbq(µ1µ2µ3, β) =
1√
6

[
Hq(µ1µ2;σρ)Ψσρµ3

β

− Hq(µν; σρ)Ψσρτ3
β ∆(µ1µ2µ3; µντ3)

]
,

(13)

where ∆(µντ ; σρλ) =
∑

α Ψµντ
α Ψ∗σρλ

α . It can be
shown [5] that whenΨ is a stationary state ofHq, Vbq = 0.
The meaning of this is that the baryon bound state in stable
against spontaneous decay in the absence of external pertur-
bations, as in vacuum. The crucial observation [3] is that in
a many-body system, the confining quark-quark interaction
in general can become modified due to a variety of effects.
Suppose we generate an effective quark-hadron interaction
as in Eq. (12) usingΨ’s that are eigenstates of the QMC
Hamiltonian, but instead of the original confining interac-
tion V (r) we use aV (r) that is deconfining. Then the term
Vbq is nonzero. This means thatVbq will give rise to pro-
cesses that lead to the decomposition of the nucleons into
three quarks and vice-versa.

The interesting point now is to obtain the distribution
functions for nucleons and quarks in the medium as a func-
tion of the total baryon density. The point is that at low den-
sities,Vbq = 0 and there will be only nucleons in the system.
As the density increases, at some critical density the poten-
tial V (r) starts to deconfine quarks and the systems becomes
a mixture of nucleons and unconfined quarks. An important
question to be answered is the following. Given att = 0 an
initial quark-nucleon configuration and a density-dependent
V (r), what are the relative fractions of nucleons and quarks
at timet = T? For sufficiently low densities, this question
can be answered in the context of a VUU equation [6] for
nα andnµ.

III Vlasov-Uehling-Ullenbeck Equa-
tions for Quark-Nuclear Matter

We start defining the nucleon and quark density matrices as

ρb(β, α) ≡ 〈Φ|b†αbβ |Φ〉, ρq(ν, µ) ≡ 〈Φ|q†µqν |Φ〉.
(14)

The nucleon and quark creation and annihilation operators
satisfy canonical anticommutation relations, since they are
in the Fock-Tani representation. The time evolution of the
nucleon density matrixρb(β, α) is given by

i
d

dt
ρb(β, α) = [ρb(β, α),Heff ]

= 〈Φ|([b†α, Heff ]bβ + b†α[Heff , bβ ]
)|Φ〉.

(15)

A similar equation is obtained for the quark density matrix
ρq(ν, µ),

i
d

dt
ρq(ν, µ) = [ρq(ν, µ), Heff ]

= 〈Φ|([q†µ,Heff ]qν + q†µ[Heff , qν ]
)|Φ〉.

(16)

In order to evaluate the commutators in the equations
above, one needs to know the structure ofHeff in terms of
the b andq operators. The effective HamiltonianHeff in
Eq. (10) contains two terms of the “usual” form, i.e. terms
with a single-body kinetic plus two-body potential energies,

Hb = E(α)b†αbα +
1
2
V (αβ; δγ)b†αb†βbγbδ, (17)

H̃q = T (µ)q†µqµ +
1
2
Ṽqq(µν;σρ)q†µq†νqρqσ, (18)

whereE(α) = 〈Ψα|Hq|Ψα〉, Ṽqq describes quark-quark in-
teractions in the continuum only and is unable to bind three
quarks into nucleons [5].Heff also contains a nondiagonal
term of the form

Ṽb =
∑

α 6=β

E(α, β)b†αbβ , (19)

whereE(α, β) = 〈Ψα|Hq|Ψβ〉 - in order to make clear the
restrictionα 6= β we have made use of the summation sym-
bol. This term is obviously zero ifΨ is an eigenstate ofHq,
but in the present case that we use an unconfiningV (r) it is
nonzero. The most interesting term inHeff for us isVbq of
Eq. (12). It leads to nucleon breakup and nucleon recombi-
nation.

The two terms inHeff of the “normal” form, Eqs. (17)
and (18), lead to the usual VUU equations [6] and therefore
will not be discussed at the moment. Since we are working
in lowest order inΨ, it is natural to consider a first-order
perturbated wave function for the many-body system in the
following form

|Φ〉 = |Φ0〉+ |Φb〉+ |Φbq〉, (20)

where the unperturbated term|Φ0〉 is the product of time-
dependent Hartree-Fock (TDHF) state vectors of nucleons
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and quarks and the perturbated terms|Φb〉 and |Φbq〉 are
given by

|Φb〉 =
∑

α,β

1− eiωt

ω
E(α, β)b†αbβ |Φ0〉, (21)

|Φbq〉 =
∑

α,β

1− eiωt

ω

[
Vbq(µ1µ2µ3, α)q†µ1

q†µ2
q†µ3

bα

+ V ∗
bq(µ1µ2µ3, α)b†αqµ3qµ2qµ1

]
|Φ0〉. (22)

We make now the assumption of diagonal density matrices,
which amounts to assuming

ρb(β, α) = δαβnb(α), ρq(ν, µ) = δµνnq(µ), (23)

wherenb(α) andnq(µ) are the density distributions of nu-
cleons and quarks, respectively. The contributions to the
VUU equations from the different components of|Φ〉 in
Eq. (20) for the time evolution ofnb(α) andnq(µ) can be
written a sum of contributions of the separate components,

since there is no mixing of the different components of|Φ〉
in the expectation values of Eqs. (15) and (16).

The component|Φ0〉 of |Φ〉 leads to the usual TDHF
contribution and will not be discussed at the moment. The
evaluation of the contribution of|Φb〉 is relatively easy. It
can be written as

d

dt
nb(α)

∣∣∣
|Φb〉

= 2π
∑

β 6=α

|E(α, β)|2δ(Eα − Eβ)

×
{

nb(β) [1− nb(α)]− nb(α) [1− nb(β)]
}

. (24)

The term in curly brackets represents the effect of the Pauli
exclusion principle and can easily be interpreted: the distri-
bution functionn(α) will be changed positively (first term)
by filling unoccupied statesβ, or it will be diminished by
removing occupied statesβ (second term).

The derivation of the contribution of the component
|Φbq〉 of |Φ〉 is much more complicated. After a rather
lengthly calculation, the contribution for the equation for
nb(α) can be written as

c

d

dt
nb(α)

∣∣∣
|Φbq〉

= 2π
∑

µ′ν′σ′
6|Vbq(µ′ν′σ′, α)|2δ(Eα − Eq′s)

{
[1− nb(α)] nq(µ′)nq(ν′)nq(σ′)

−nb(α)
[
1− nq(µ′) + 3nq(µ′)nq(ν′)− nq(µ′)nq(ν′)nq(σ′)

]}
,

whereEq′s = Eµ′ + Eν′ + Eσ′ . And the contribution for the equation fornq(µ) can be written as

d

dt
nq(µ)

∣∣∣
|Φbq〉

= 2π
∑

α′ν′σ′
18|Vbq(µ′ν′σ′, α′)|2δ(Eq′s − Eα′)

×
{[

1− nq(σ′) + nq(ν′)nq(σ′) + 2nq(µ)nq(ν′)− nq(ν)nq(ν′)nq(σ′)
]
nb(α′)

−nq(µ)nq(ν′)nq(σ′)
[
1− nb(α′)

]}
,

where nowEq′s = Eµ + Eν′ + Eσ′ .
d

The numerical solution of the VUU equations is not sim-
ple, and explicit solutions will be presented elsewhere. The
techniques used in Ref. [8] might be particularly useful in
the present context. In order to have a feeling of what can
be expected for an explicit solution, in the following section
a static EOS for QNM is obtained.

IV Equation of State

One expects that for a given baryon densityρB = B/V ,
whereB is total baryon number, the equilibrium solution of
the VUU equations discussed in the previous section give
rise to two Fermi seas, one for baryons and one for quarks.
The two Fermi seas satisfy the constraint

∑
α

nb(α) = ZB,
∑

µ

nq(µ) = (1− Z)B, (25)

whereZ measures the fraction of nucleons in the medium.
Of course, the problem is to estimate the value ofZ.

Here we follow Ref. [3], but instead of the linearly rising
confining potential used there, we use an harmonic oscilla-
tor,

V (r) =
1
2

k r2 e−µ2 r2
, (26)

whereµ is a function ofρB such that it is zero forρB ≤ 3ρ0,
whereρ0 is the saturation density of normal nuclear matter,
and forρB > 3ρ0 it is given byµ = ρB/3ρ0−1. The aim of
changingV (r) is to investigate the sensitivity of the results
to the confining potential. The energy density of the system
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can be written as

E

V
= 4

∫ kb
F

0

d3p

(2π)3
E∗

N (p) +
1
2
m2

σσ2
0

1
2
m2

ωω2
0

+ 12
∫ kq

F

0

d3k

(2π)3
E∗

q (k), (27)

where the Fermi momentakb
F andkq

F are given as

ρb = 2(kb
F )2/3π2, ρq = 2(kq

F )2/π2, (28)

with ρb = ZρB and ρq = (1 − Z)ρB , and E∗
q (k) =√

k2 + m∗2
q .

Of course, the hard problem is to calculate the factorZ.
Here we use a perturbative approach to evaluateZ, follow-
ing Ref. [3]. We usemq = 313 MeV and k = 1 GeV.
The coupling constants in the present case are found to be
gq

σ = 6.34 and3gq
ω = 5.67, and the incompressibility is

K = 253 MeV. The EOS’s for nuclear matter and QNM are
shown in Fig. 1. As in Ref. [3], one sees that the present
EOS of QNM is softer then the one of pure nuclear matter,
and presents small differences with the latter for densities
close to the deconfining density.

0 2 4 6 8 10

B/ 0

0.9

1.0

1.1

1.2

E
/B

(G
e
V

)

Figure 1. The solid line is the EOS of pure nuclear matter and the
dashed line is the EOS of QNM.

V Conclusions

A model was introduced to study quark deconfinement in
hadronic matter. The model is based on a relativistic micro-
scopic quark Hamiltonian with a density dependent quark-
quark interaction. Nucleon and deconfined quark degrees of
freedom are treated on equal footing using a mapping pro-
cedure. Transport equations of the VUU-type were obtained
and the static EOS for pure nuclear matter and QNM were
calculated. Future work includes the numerical solution of
the VUU equations and the study of implications of our EOS
for the phenomenology of compact stars.
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