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Transport equations for composite nucleons and deconfined quarks in quark-nuclear matter (QNM) are derived.
QNM is a many-body system containing hadrons and deconfined quarks. The starting point is a microscopic
quark-meson coupling (QMC) Hamiltonian with a density-dependent quark-quark interaction. An effective
quark-hadron Hamiltonian containing canonical hadron and quark field operators is constructed using a map-
ping procedure. For high densities, the effective Hamiltonian contains interactions that lead to quark decon-
finement. Transport equations of the Ueling-Ullenbeck-Vlasov type for quarks and nucleons are obtained using
standard many-body techniques with the effective quark-hadron Hamiltonian.

| Introduction as a system of independent baryons interacting through ef-

fective scalar- and vector-meson degrees of freedom which
The study of the properties of high density hadronic mat- couple directly to the quarks. At very high density the
ter is one of the most important problems in contemporary duarks and gluons become deconfined and the entire system
physics. The possibility of creating in laboratory a new state IS confined by a bag, or potential. For a list of references and
of matter through collisions of heavy nuclei has become recent work, see Ref. [2].

feasible in recent years, with widespread opportunities for  |n a recent paper [3] the QMC model was generalized
understanding several aspects of the strong interactions angy include quark deconfinement at high density. Starting
matter in Superdense stars and at the Origin of the UniverSEfrom a relativistic quark potentia| model [4], a Change of
One of the central questions in this field is the identification Fock-space representation is imp|emented through a unitary
of the appropriate degrees of freedom to describe the differ-transformation. The unitary operator is constructed in an
ent phases of hadronic matter. At densities much higher tharextended Fock space in such a way that single composite-
the nuclear saturation density, a phase of deconfined mattefadrons of the model are redescribed in terms of elementary-
composed of quarks and gluons is expected to occur. Theparticle field operators. The unitary operator is constructed
study of the properties of such a state is possible with theas a power series in the bound-state wave functions of the
methods of perturbative quantum chromodynamics (QCD). composite hadrons and application of the unitary opera-
On the other hand, the StUdy of matter at densities not mUChtor on the 0rigina| quark Hamiltonian leads to an unitar-
higher than the saturation density of nuclear matter - like the ||y equiva|ent Hamiltonian Containing quark and exp|icit
one existing in dense stars - is very complicated. The com-hadron degrees of freedom is constructed. The transformed
plication is due to the fact that this phase of matter is char- Hamiltonian is Composed of a sum of hermitian Hamiltoni-
acterized by nonperturbative QCD phenomena and the useyns endowed with a clear physical interpretation. In partic-
of tractable models and drastic approximations is presentlyylar, one of such effective Hamiltonians describes the de-
the only practical way of tackling the problem. confinement of quarks. The new representation is known as
The quark-meson coupling (QMC) model [1] is a very the Fock-Tanirepresentation [5]. In the present paper we use
useful model to study the different phases of hadronic mat- the lowest-order effective Hamiltonian to study properties of
ter. It is formulated in terms of quark-gluon degrees of free- quark nuclear matter. Of particular interest are the equation
dom and is devised in such a way to incorporate in an ex- of state (EOS) and transport equations for nucleons and de-
plicit way hadron structure in the nuclear many-body prob- confined quarks. We derive the Vlasov-Uehling-Ullenbeck
lem. In this model, low-density hadronic matter is described (VUU) equations [6] for the distribution functions of nucle-
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ons and quarks in QNM. A numerical example is presented In addition, one has
for the static EOS’s for pure nuclear matter and QNM.

3
{qul} = \/;\IJZ#ZMSQLQQst {qu, Ba} =0. (6)
I The Model and the Effective
These equations reflect the internal structure of the hadrons

Quark'Hadron Hamiltonian Eq. (6) in particular shows that the quark and nucleon field

. . operators are not kinematically independent. It is precisely
ImnattTEr rgsr?f)leo\fvrl'i-\’tgﬁ[iarg ,a?szz:r:)gr:Z:g3(a:llr?t?znejtiz)etalgo?]uacéﬁg-th.e noncanonical natu_re of these anticommutators that com-
- plicates the mathematical treatment of QNM.
peated indices are summed over) . .
One way to proceed is to change representation, such

that composite field operators are redescribed in terms of

ja) = BL|0), B = ﬁ‘l’gmusqllqlquw @) elementary-particle field operators in an extended Fock

' space. This is done as follows. Initially, fictitious ideal

where theg’s are constituent-quark creation operators, nucleons are introduced in close correspondence to the rea
wrkzks s the Fock-space nucleon amplitude. The quark single-nucleon states. Next, a unitary operator is constructed
creation and annihilation operators satisfy canonical anti-in the extended Fock space such that
commutation relations. In Eg. (1}y denotes the spatial
and internal quantum numbers of the nucleons, as internal ) = BL|0) — U™ |a) = |a) = bl]0), (M
and c.m. energies and the spin-isospin quantum numbers.
The quark indices: identify the spatial and internal quan- Where
tum numbers as momentum, spin, flavor and color. The am-
plitude W#1#243 js taken to be orthonormalized.

The amplitudel#1#2#3 corresponds to a bound state of
three constituent quarks, such that each constituent quar
satisfies a Dirac equation of the form

{ba: b} = bags, {ba,bg} =0, (®)

andq|0) = b|0) = 0. In addition, in the new representation,
ne has{q,,bs} = {gu.b},} = 0. The unitary operatot/
is constructed as a power series in the bound state ampli-

=0 . tude¥. The meaning of this expansion can be understood
—id@ -V + mg +1/2(1 + B)V(r)} b(r) = Eqgi(r), as follwos. The term\, 5 plays no role and can be taken to

(2) be zero in situations that quarks remain confined in the inte-

wherem; = m, — g2 00, Ej = " — gf, wo. rior of the nucleons, such as in systems at low densities. In

In the situation that quarks remain confined to the in- this case there is no significant overlap of the internal struc-
terior of nucleons, the internal structure of the nucleon is tures of different nucleons arid = 1. As the density of the
manifest in the effective mass of the nucleon in medium [1]. system increases, quarks in different nucleons start to over-
In the mean field approximation, the energy density of sym- |ap andA, 5 cannot be neglected. The constructiorio&s

metrical nuclear matter can be written as an expansion in powers df's takes into account the effects
of the overlap of the internal quark structures of different
B ke ddp 1 1 nucleons. _ _ _ .
7 :4/0 n e Ex(p) + §m308—|— gmgwg, (3) When the unitary operatot/ is applied to the mi-

croscopic quark Hamiltonian, one obtains [5] an effective
whereps = B/V is the baryon density and, andm Hamiltonian that describes all possible processes involving

are the masses of, andw, andE%, = /02 + M2 M2, The free quarks and composite nucleons. The quark Hamiltonian

explicit form of M* is given in Ref [3]. The values of mean of Eq. (2) can be written as

fields are determined as usual [4}; follows from its equa- . 1 .

tion of motion andoy is determined minimizingZ with re- Hy =Ty + Voq =T (1) qq + 5 Vag (nv;0p) 4,a}4p o,

spect tay. )
Now, the situation with deconfined quarks and compos- whereV,, is the confining potential. Application df to

ite hadrons simulataneously present in the system is VeryH, leads toH.;; = U~1H,U. The first nontrivial effects

complicated, because the standard many-body techniquesf the internal structure of the nucleons comes in Witlat

cannot be directly applied to the composite-hadron creationfirst-order in,

and annihilation operato8/, andB,,. This is because their

anticommutation relations are noncanonical, namely Hé})f =T, + Hy+ Vg +Vog +-+ -, (10)
{Ba,Bg} = 6ap — Aag, {Ba;Bg} =0, (4) where - - - indicate terms not relevant for our discussion
here [5].
where In Eq. (10), H, = Ty + Vi, WhereTy is a single-

» N RS SRR nucleon energy antly;, is an effective nucleon-nucleon in-
Agp = 3WfHeleg) 1 W —5¥s quﬂuz}%- (5)  teraction without quark exchangél, leads to the normal
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QMC model, in which the many-body system is described Il Vlasov-Uehling-Ullenbeck Equa-

by nonoverlapping nucleons - no quark-exchange. In partic- ; _
ular, it describes Fock terms in the QMC model [7]. tions for Quark Nuclear Matter

The termf/qq contains two-quark and three-quark inter- We start defining the nucleon and quark density matrices as
actions. Whenp is a bound-state eigenstate of the original _ t _ t
quark Hamiltonian, one obtains [5] po(B, ) = (@lbabsl®), palv: 1) = <<I>|qﬂq,,\<1>(>l.4)

The nucleon and quark creation and annihilation operators
satisfy canonical anticommutation relations, since they are
in the Fock-Tani representation. The time evolution of the
nucleon density matrix, (3, «) is given by

This interaction leads to a quark Hamiltonian that has a pos- ¢

1
Vas = 5 Vaa(t;00) 4,0}ap0s = Ba Bl Ba. (12)

itive semidefinite spectrum [5], i.e. the transformed Hamil- ¢ 7;76(8:a) = [po(F, @), Heyy]
tonian involving only quark operators describes only pro- — (DT H. b t
. : = 1 He + bl [Herr,bg])| D).
cesses in the continuum. (@1 ([ba Heyslbs Hers 5])|(1>5)
The termV, is our main focus in this paper. It is given o o ) ) )
by A similar equation is obtained for the quark density matrix
pq(”v /’[’)1
Vg = Vag(1papis, 8)af, 4l a5, bs + e, (12) d
v S igpa(Vi) = lpg(v: 1), Hegy]
with = <®|([qszeff]QVJFC]L[Heff»quD|(D>'
(16)
1 . .
Vi 13, - [H 11t o p)WIPHS In order to evaluate the commutators in the equations
balkirpiapia, 0) V6 olppzi op) W above, one needs to know the structurdff s in terms of
—H, (i op) WA : }7 the b and¢ operators. The effective Hamiltoniald, ;¢ in
aluriop) A (hapapias p/s) Eq. (10) contains two terms of the “usual” form, i.e. terms
(13)  with a single-body kinetic plus two-body potential energies,
1 4
— T - . T p .
where A(uvrioph) = 3, UATUPA It can be Hy = Bla)boba + 2V(a6’67)b“b5b7b°’ (@7
shown [5] that whenb is a stationary state dff;, Vi, = 0. ro_ n 1o . bt
The meaning of this is that the baryon bound state in stable Hy = T(n)guau+ QV(I‘I(W’ 7P)0,:9 047> (18)

against spontaneous decay in the absence of external Pertulnere s
bations, as in vacuum. The crucial observation [3] is that in
a many-body system, the confining quark-quark interaction quarks into nucleons [S}. ;s also contains a nondiagonal
in general can become modified due to a variety of effects.term of the form

Suppose we generate an effective quark-hadron interaction ~

as in Eq. (12) usingl’s that are eigenstates of the QMC Vo= > E(a, B)blbs, (19)
Hamiltonian, but instead of the original confining interac- a#p

tion V(r) we use &/ (r) that is deconfining. Then the term whereE(a, ) = (U] H,|¥s) - in order to make clear the

Vi 18 nonzero. This means thé, will give rise t0 pro-  ragtrictiona + 3 we have made use of the summation sym-
cesses that lead to the decomposition of the nucleons intq, | This term is obviously zero it is an eigenstate off

three quarks and vice-versa.

(@) = (W, |H,|¥,), V,, describes quark-quark in-
teractions in the continuum only and is unable to bind three

but in the present case that we use an unconfiiifvg it is

The interesting point now is to obtain the distribution nonzero. The most interesting termif ;¢ for us isV;, of
functions for nucleons and quarks in the medium as a func-Eq. (12). It leads to nucleon breakup and nucleon recombi-
tion of the total baryon density. The point is that at low den- nation.
sities, V4, = 0 and there will be only nucleons in the system. The two terms inH. ¢ of the “normal” form, Egs. (17)
As the density increases, at some critical density the poten-and (18), lead to the usual VUU equations [6] and therefore
tial V (r) starts to deconfine quarks and the systems becomesvill not be discussed at the moment. Since we are working
a mixture of nucleons and unconfined quarks. An important in lowest order in¥, it is natural to consider a first-order
guestion to be answered is the following. Giver at 0 an perturbated wave function for the many-body system in the
initial quark-nucleon configuration and a density-dependent following form
V (r), what are the relative fractions of nucleons and quarks
at(tir)net = T? For sufficiently low densities, this que(ltion @) = |o) + |Ps) + [ Do), (20)
can be answered in the context of a VUU equation [6] for where the unperturbated terf,) is the product of time-
N andn,,. dependent Hartree-Fock (TDHF) state vectors of nucleons
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and quarks and the perturbated terfibg) and |®,,) are since there is no mixing of the different component$df

given by in the expectation values of Egs. (15) and (16).
4 The component®,) of |®) leads to the usual TDHF
@) = Z 1 — et Ela, B)blbs Do), (21) contribution and will not be discussed at the moment. The

evaluation of the contribution gfb,) is relatively easy. It

o, .
1 _ giwt can be written as
|®og) = Z - [Vbq(umwa a)ql, al,q),ba d
wp anb(a)’@w —2r 3 |E(a, B)25(Eq — Eg)
* B#a
VUi B0 G | [20). (22)

% {ma(B) [1 = np(@)] = np(@) [1 — ()]} (24)

We make now the assumption of diagonal density matrices,

which amounts to assuming The term in curly brackets represents the effect of the Pauli
exclusion principle and can easily be interpreted: the distri-
pb(B, @) = dapnp(a), pq(v, 1) = 8umg(p), (23) bution functionn(«) will be changed positively (first term)

by filling unoccupied stateg, or it will be diminished by
wheren, () andn, (1) are the density distributions of nu-  removing occupied statgs(second term).
cleons and quarks, respectively. The contributions to the  The derivation of the contribution of the component
VUU equations from the different components |df) in |®p,) Of |®) is much more complicated. After a rather
Eq. (20) for the time evolution of;(«) andn,(u) can be lengthly calculation, the contribution for the equation for
written a sum of contributions of the separate components,n;(«) can be written as

]

d

%71‘5(04)‘@1“1> =27 Z 6] Vg ('t o, a)‘Z(S(Ea - Eq’S){[l = np()] ng (1 )ng (V' )nq(0”)

w'v'o!
—np(@)[1 = ng(1') + 3ng()ng(V') — ng(p')ng(v')ng(o")] }
whereE,, = E,, + E,» + E,,. And the contribution for the equation fay, () can be written as

d

%nq(ﬂ)‘ ) =2m Z 18|%q(M/V/U/aa/)|25(Eq’s — Eo)

X { [1 —ng(0”) + ng(V)ng(0”) + 2ng()ng (V') — nq(u)nq(l/)nq(a/)]nb(a/)
=y (g (1) (o) [1 = my(a)] }.

where nowEy s = £, + E,r + E,r.

[Prq

The numerical solution of the VUU equations is not sim- whereZ measures the fraction of nucleons in the medium.
ple, and explicit solutions will be presented elsewhere. The Of course, the problem is to estimate the valug of
techniques used in Ref. [8] might be particularly useful in
the present context. In order to have a feeling of what can  Here we follow Ref. [3], but instead of the linearly rising
be expected for an explicit solution, in the following section confining potential used there, we use an harmonic oscilla-
a static EOS for QNM is obtained. tor,

IV E ion of 1 22
guation of State Vi) = Lo, (26)

One expects that for a given baryon density = B/V,

whereB is total baryon number, the equilibrium solution of

the VUU equations discussed in the previous section give

rise to two Fermi seas, one for baryons and one for quarks Wherey is a function ofpz such that itis zero fopp < 3po,

The two Fermi seas satisfy the constraint wherep, is the saturation density of normal nuclear matter,
and forpp > 3pg itis given byu = pg/3po—1. The aim of
an(a> = 7B, an(u) =(1-2)B, (25) changingV (r) is to investigate the sensitivity of the results
P P to the confining potential. The energy density of the system
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can be written as V Conclusions
E Meodtp o, L g ol 5 5 . ' .
v o= 4/ W Ex(p) + 5Mo00 5 MW A mod_el was introduced to _study quark decor_lfl_ne_:merjt in
o hadronic matter. The model is based on a relativistic micro-
Lo12 /kF P’k (k) 27) scopic quark Hamiltonian with a density dependent quark-
o (2m)3 TV quark interaction. Nucleon and deconfined quark degrees of

freedom are treated on equal footing using a mapping pro-
cedure. Transport equations of the VUU-type were obtained
py = 2(K%)? /372, pq = 2(k)? /7, (28)  and the static EOS for pure nuclear matter and QNM were
with p, = Zpg andp, = (1 — Z)pp, and B (k) = calculated. Future work includes the numerical solution of
the VUU equations and the study of implications of our EOS
for the phenomenology of compact stars.

where the Fermi momentg, andk?. are given as

k2—+7n2?

Of course, the hard problem is to calculate the factor
Here we use a perturbative approach to evalugttollow-
ing Ref. [3]. We usem, = 313 MeV andk = 1 GeV.  Acknowledgments
The coupling constants in the present case are found to be i
g% = 6.34 and3¢% = 5.67, and the incompressibility is The work of GK was partially supported by FAPESP and
K = 253 MeV. The EOS’s for nuclear matter and QNM are CNPq.
shown in Fig. 1. As in Ref. [3], one sees that the present
EOS of QNM is softer then the one of pure nuclear matter,
and presents small differences with the latter for densitiesReferences
close to the deconfining density.
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