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Polarization Effects in Relativistic Nuclear Pairing
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In the present work we discuss the effects of the medium polarization on the nuclear pairing, in the context of
the relativistic Hartree-Fock-Bogoliubov (HFB) approximation. The medium polarization effects on the scalar
and vector masses, as well on the pairing, as a function of Fermi momentum, are shown for several values of the
coupling constants scaled by a parameter x. We find have obtained that the nuclear pairing is strongly affected
by the medium polarization.

For nearly three decades the nuclear pairing model has
played an important role in the description of nuclear spec-
tra. The mean field BCS method has been the most used
approximation to solve this problem. However, the BCS
theory is a very simple approximation which neglects any
contribution to the nucleon-nucleon interaction beyond the
bare potential. In order to account for many nuclear proper-
ties it is necessary to go beyond the pure BCS approach and
add other effects to the nucleon-nucleon interaction, such as
the medium polarization and other corrections to the self-
energy.

In models of pairing, one of the most important quan-
tities to be evaluated is the gap equation. In the BCS ap-
proach it is possible to obtain an analytical solution for the
gap equation as opposed to potential models where this is
possible only with a numerical treatment. However, go-
ing consistently beyond the BCS approximation including
the medium polarization is a difficult task. Analytical re-
sults can be obtained only at low density where it has been
noted that the medium effect modifies the effective nucleon-
nucleon interaction by adding a repulsive term, thus causing
a reduction in the1S0 gap.

Understanding the role played by the nuclear medium
in modifying hadronic properties is one of the most inter-
esting problems facing nuclear physics today. One of the
most interesting effects of the nuclear medium is the mixing
of vector and scalar mesons. In lowest order this mixing is
generated by the coupling of the mesons to particle-hole ex-
citations. In the isoscalar channel, the coupling of theσ and
ω fields through particle-hole excitations is extremely large
and is therefore expected to strongly affect the propagation
of mesons in nuclear matter [1].

In this work, we intend to use the effective nucleon-
nucleon interaction in the1S0 pairing channel to study the
effect of the medium-modified meson masses. We use a rela-
tivistic Hartree-Fock-Bogoliubov formulation, developed in
Ref. [2], in which, the QHD formulation is used to describe
the nucleon-nucleon interaction in terms of the self-energy,
Σ, and the pairing field,∆. This model is an improvement
over the non-relativistic formulation because it allows a si-

multaneous description of many nuclear matter properties
such as the saturation point, the effective mass of the nu-
cleon and the pairing energy.

Using a Dirac-HFB approximation to pairing in symmet-
ric nuclear matter, the self-consistency equation for the self-
energy and pairing field are written respectively as [2]

Σ(k) = −iΓa(0)Dab(0)
∫

d4q

(2π)4
Tr[Γb(0)G(q)]

+ i

∫
d4q

(2π)4
Γa(q)Dab(k − q)G(q)Γb(q) (1)

and

∆(k) =
∫

d4q

(2π)4
Γa(q)Dab(k − q)F (q)BΓT

b (−q)B†

(2)

where,Γjα represents the meson-baryon vertex ( we will
consider only the scalar and vector vertices),Dαβ

j (k − q) is
the meson propagator, the matrix B relates transposed quan-
tities to the complex conjugates of the time-reversed ones. It
is given byB = τ2⊗γ5C, where C is the charge conjugation
andτ2 is a Pauli matrix that acts in the isospin space. F(q)
is the anomalous propagator that is one of the components
of the baryon propagatorSF (q), which, in the Dirac-HFB
formalism, takes the form shown in Fig. 1.
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Figure 1. A diagrammatic representation of the components of the
HFB propagator.
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in which G is the usual baryon propagator andF̃ andG̃ are
the corresponding time-reversed propagators. The Dyson
equation for the usual baryon propagator is given by,

G(k) = G0(k) + G0(k)Σ(k)G(k). (3)

The diagramatic representation for the baryon propaga-
tor in a Hartee-Fock approximation is shown in Fig. 2 where
the double line denotes the full propagator and the single line
denotes the free propagator.
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Figure 2. Baryon propagator in HF approximation.

To compute the meson propagator, we sum over ring dia-
grams, which consist of repeated insertions of the lowest-
order one-loop proper polarization part. The sum, which is
shown in Fig. 3, yields the relativistic random-phase ap-
proximation(RRPA),

Figure 3. Random-phase approximation for the effective
interaction.

The Dyson’s equation for the full propagator,D, is given
in a matrix form as,

Dad = D0
ad +D0

abΠbcDcd (4)

whereD0 is the lowest order meson propagator andΠ is the
polarization tensor. Since we want to includeσ−ω mixing,
it is convenient to use a meson propagator in the form of a 5
X 5 matrix. The lowest order meson propagator is given by
a block-diagonal matrix as,

D0a
b =

(
D0µ

ν 0
0 ∆0

)
. (5)

The noninteracting propagators for theσ andω mesons are
given respectively by,

∆0(q) =
1

q2
µ −m2

s + iε
, (6)

D0
µν(q) =

−gµν

q2
µ −m2

v + iε
. (7)

The polarization tensor is obtained from the ring dia-
gram, shown in Fig. 4
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Figure 4. The lowest-order polarization diagram.

where theΓ’s are the vertex function. The polarization in-
sertion is given by,

Πab(q) =
(

Πµ
ν Πm

ν

Πµ
m Πs

)
. (8)

The polarizationsΠµ
ν andΠµ satisfy current conservation

conditions,

qµΠµ
ν = Πµ

νqν = 0
qµΠµ

m = 0. (9)

The lowest order scalar, vector and scalar-vector-mixed
polarization are given respectively as

Πs(q) = −ig2
s

∫
d4k

(2π)4
Tr[G(k)G(k + q)],

Πµ
ν(q) = −ig2

s

∫
d4k

(2π)4
Tr[γµG(k)γνG(k + q)],

ΠM
µ (q) = −igsgv

∫
d4k

(2π)4
Tr[γµG(k)G(k + q)].(10)

The nucleon propagator, G(q), is written as a sum of
Feynman and density-dependent contributions,
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G(k) = GF (k) + GD(k),

GF (k) = (γµk?
µ + M?)

1
k?2

µ −M?2 + iε
,

GD(k) = (γµk?
µ + M?)

iπ

E?
k

δ(k?
0 − E?

k)θ(kF − |~k|),(11)

wherek?
µ = (k0 − gvV 0,~k) andE?

k =
√

~k2 + M?2.

With this form of the baryon propagator, each polariza-
tion insertion can be divided into two pieces: the Feynman
part or vacuum polarization that does not involve the delta-
function and the delta-function density-dependent part. In
this work we are not interested in the vacuum contribution
and thus will disconsider the term containing only vacuum
contributions. We will consider only the density-dependent
part of the polarization insertion that also contains a vacuum
contribution.

For symmetry of the integrals given by Eq.[10] and cur-
rent conservation, the only nonnull conponents, at low en-
ergy and neglecting recoil, are

ΠS(kf ,M?) =
g2

s

2π2

[
kf Ef + 3M?2 ln

M?

Ef + kf

]
,

ΠL(kf ,M?) = − g2
v

π2
kf Ef ,

ΠM (kf , M?) =
gsgv

π2
kf M?,

ΠT (kf ,M?) = − g2
v

π2

[
kf Ef + M?2 ln

M?

Ef + kf

]
,

where,ΠS , ΠL, ΠM , ΠT are the scalar, longitudinal, mixed
and transversal polarizations respectivily, with

ΠL = − (
Π3

3 + Π4
4

)
e ΠM =

√
−q2

q3
Π4.

The sum over ring diagrams to all orders produces a ex-
tremely strong polarizability and an instability of nuclear
matter. To reduce this effect we are introduce a free pa-
rameter x, which scales the coupling constants in the inte-
grals. In Fig. [5] we plot the polarizations as a function of
the Fermi momentum forx = 0.1, in which, we show the
density-dependence of the polarization. We note the strong
sensitivity of polarizations with the density.
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Figure 5. Polarization as a function of the fermi momentum.

The effective mass of the mesons in nuclear matter is
obtained by diagonalizing the meson propagator,

(D−1)a
b = (q2 −m2)δa

b −Πa
b. (12)

After obtaining the eigenvectors, the meson propagators can
be written in the form,

Dab =
∑

i

ua
i Di ub

i =
∑

i

ua
i

1
q2 −m2

i

ub
i , (13)

whereua
i are the eigenvectors of meson propagator.

In the Figs. 6, 7, 8 we show the modified meson masses
as a function of the Fermi momentum for several values of
the free parameter x. We note that the polarization contri-
bution increases rapidly with the free parameter x. The po-
larization contributions decrease the scalar meson mass and
increase the vector meson mass. Their combined effect is to
make the effective nucleon-nucleon interation more atrac-
tive.
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Figure 6. Scalar meson mass.
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Figure 7. Longitudinal vector meson mass.
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Figure 8. Transversal vector meson mass.

The Hermiticity and transposition invariance conditions, as
well as the requirements of invariance under Lorentz and
parity transformation reduce the possible form of the self-
energy, in symmetric nuclear matter, to

Σ(k) = ΣS(k)− γ0Σ0(k) + ~γ.~kΣT (k); (14)

while, the pairing field can be taken to be,

∆(k) = [∆S(k)− γ0∆0(k)− iγ0~γ.~k∆T (k)]~τ .~n. (15)
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Figure 9. Pairing gap.

In Fig. 9 we plot the pairing gap as a function of Fermi
momentum for several values of free parameter. The in-
creasingly attractive effective nucleon-nucleon interaction
causes a strong increase on the pairing gap.

We conclude that, the polarization effect is very strong
changing drastically the effective nucleon-nucleon interac-
tion. The pairing field is extremely sensitive to the medium
effect.
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