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Computed Tomography (CT) refers to the cross-sectional imaging of an object from both transmission or re-
flection data collected by illuminating the object from many different directions. CT is an imaging technique
that has revolutionized the field of medical diagnostics. There are many others applications for CT images, such
as, nondestructive evaluation of industrial products and analysis of biological specimens. A mini computerized
tomograph was projected, constructed and tested. It operates with a gamma ray source of241Am (photons of
60 keV and 100 mCi of intensity) and a NaI(Tl) solid state detector. The system features translation and rota-
tion scanning modes, a 100 mm effective field of view, and 1 mm spatial resolution. The preliminary results
indicated a resolution between 5% to 7 % to detect mass attenuation coefficient variations. The total cost of
the Mini Computerized Tomograph of UNISO (MTCU) was about US$ 20.000,00.

I Introduction

The fundamental principle behind CT, or image reconstruc-
tion from projections, has been know since the studies made
by Radon [1] in 1917, in which the Radon inversion formula
was derived and proved. Some of the important publications
are the works of Cormack [2, 3] on the representations of a
function by its line integrals; Bracewell and Riddle [4] on
the reconstruction of brightness distribution of astronomical
bodies from fan-beam scans at various angles; De Rosier
and Klug [5, 6] on the reconstruction of three dimensional
images of virus. Ramachandran and Lakshminarayanan [7]
on the convolution backprojection technique. The algebraic
approach was described by Gordon et al. [8]. The early
works on the development of practical scanners for medical
applications were performed by Oldendorf [9], Hounsfield
[10], and Ambrose [11]. The mathematical problem of the
CT imaging is that of estimating an image from its projec-
tions measured at different angles and directions [12, 13].
Computerized tomography has found its most important ap-
plication in medicine, but has also been applied to nonde-
structive testing of materials and industrial objects. This ar-
ticle describes how the mini computerized tomograph con-
structed at UNISO operates, see Fig. 1 and presents some
discussion on the technique employed in the reconstruction
images, used in the first test of UNISO,s tomograph.

II Projection data and experimental
setup

The mathematical algorithms for tomographic reconstruc-
tion are based on projection data. These projections can

Figure 1. Elements of anγ-ray transmission computed tomography
system of UNISO.

represent, for example, the linear attenuation coefficient of
γ-rays along the path of the ray. The attenuation of anγ-
rays beam is dependent on the energy of the photon, as well
as the density of the object or its constituents along the ray
path. Let Ni denotes the number ofγ-ray photons incident
upon the body within a specified time interval for a particu-
lar ray path. Let N be the corresponding number of photons
exiting the body. Then, we can write for a mono-energetic
γ-ray beam

∫
µ(x, y)ds = ln

(
Ni

N

)
(1)

where Ni and N are Poisson variables,µ(x,y) represents the
linear attenuation coefficient at (x,y), ds represents the ele-
mental distance along the ray, and the integral is along the
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ray path from theγ-ray source to the detector. A measure-
ment of the incident and the exitingγ-ray thus gives only an
integral ofµ(x,y) over the ray path. The details of the body
along the ray path are summed on to a single measurement.
Extending the same argument to all ray paths, we can use the
principle of image reconstruction from projections, to com-
pute an image of a section of the body. The MTCU uses the
same principle as the first generation medical tomograph (i.
e. translate-rotate scanning geometry for parallel-ray pro-
jection), but with one difference, the source and the detector
are fixed and the body to be analyzed moves. The image
of a section of the object is obtained constructing an imagi-
nary image matrix of this section, composed of elements of
predetermined size. The matrix image must be sufficiently
large to encompass the body to be imaged. In the case of a
body with 50 mm of radio, typically 100 elements are used
to span these 50 mm. To obtain the transmission data from
which the image is formed, an alignedγ-ray source-detector
arrangement is used. This system is highly collimated to the
width of one image element. The initial transverse part of
the scanning is a linear motion in which each of the 100
or more separate data points are entered into the computer
during acquisition. After each single traverse, the object is
rotated a preset angular increment (10 for example) and the
linear, transverse scan motion starts again. If 180 angular
projections are used, the result is 180 times 100 or 18.000
separate projections having been entered into the computer.
Data in digital form are stored in the computer as the scan
is in progress. The information density of the final image
is statistical controllable, by modifying the radiation quan-
tity that must be acquired. Typically, the number ofγ-ray
photons used in MTCU during a projections acquisition is
between 2.000 to 10.000 counts. Once the projections are
obtained, we can use image reconstruction techniques to get
a cross-sectional image of the object.

III Algebraic reconstruction

The reconstruction problem can be solved using several
methods. To reconstruct the images of the tomograph, it was
used Algebraic Reconstruction Techniques(ART) [8, 14, 15,
16, 17, 18, 19, 20, 21, 22]. ART is related to the Kacz-
marz [23, 24] method of projections for solving simulta-
neous equation. The Kacsmarz method takes an approach
where the available projections (ray sums in the discrete
case) are seen as a set of simultaneous equations, with the
unknown quantities being discrete pixels of the image. The
large sizes of images encountered in practice precludes the
use of the usual methods for solving simultaneous equations.
The Kaczmarz method of projection is an iterative method,
which may easily be implemented [12]. Let the image to be
reconstructed be divided into N cells, with fj denoting the
value of density or attenuation mass coefficient in the jth cell
(in each cell the function fj is assumed to be constant). Let
pi be the ray-sum measured with the ith ray. The relation-
ship between the ray-sums and densities may be expressed

as

pi =
N∑

j=1

wijfj , i = 1, 2, ...,M (2)

where M is the total number of rays (in all the projections)
and wij is the weighting factor that represents the contribu-
tion of the jth cell to the ith ray sum. The factor wij is equal
to the fractional area of the jth image cell intercepted by the
ith ray. If M and N were small, we could use conventional
matrix theory methods to invert the system of equations in
(2). However, in practice N and M are large which precludes
any possibility of direct matrix inversion. A grid represen-
tation with N cells gives the image N degrees of freedom.
Thus an image represented by (f1, f2, f3,...., fN ) may be con-
sidered to be a single point in an N-dimensional hyperspace.
In this space each of the above equations represents a hyper-
plane. When a unique solution to these equations exists, the
intersection of all these hyperplanes is a single point giving
that solution. To arrive at the solution, the Kaczmarz method
takes the approach of successively and iteratively projecting
an initial guess and its successors from one hyperplane to
the next. We could write the solution at the pixel level as

f (j)
m = f (j−1)

m +

[
(pj − qj)∑N

k=1 w2
jk

]
wjm, (3)

whereqj =
∑N

k=1 f
(j−1)
k wjk. This equation says that when

we project the (j-1)th estimate on to the jth hyperplane, the
correction factor for the mth cell is

∆f (j)
m = f (j)

m − f (j−1)
m =

[
(pj − qj)∑N

k=1 w2
jk

]
wjm (4)

Here, pj is the given (true) ray sum for the jth ray, and
qj is the computed ray sum for the same ray for estimated
image on hand.The difference (pj-qj) is the error in the esti-
mate, which may be normalized and applied as a correction
to all the pixel with appropriate weighting.

IV Results and discussion

Fig. (2) shows the first tomographic image obtained by us-
ing the mini computerized tomograph of UNISO. This im-
age, represents a cross-section of a 3D aluminium object of
5 cm× 5 cm showed in Fig. (3). The reconstructed im-
age was obtained using ART (3 interactions and additive
method) implementation. This reconstruction was carried
out on a 50× 50 sampling lattice with 100 projections per
angle, from 00 to 1800 in steps of 100. In equation (2), this
corresponds to 2500 picture elements and an overall number
of rays equal 1800. Note that the system of equations is un-
derdetermined, but the reconstruction still of good quality.
When the number of ray sums is greater than the number of
pixels, i.e. M>N in eq. (2) and the projections corrupted
by noise, no unique solution exists. If M<N, the system is
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under-determined and an infinite number of solutions will
exist. The major advantage of ART is that any a priori in-
formation about the image may be introduced easily into the
iterative procedure. This may help in obtaining a useful so-
lution even if the system is under-determined. The image
showed in Fig. (2) was displayed using a new computer
program named Tomografia [25], especially developed to be
use in the UNISO,s tomograph.

Figure 2. Reconstruction of the aluminium cross-section, obtained
using 100 projections from 00 to 1800 in steps of 100 with the ART
algorithm.

Figure 3. The cross-section of 3D real object (aluminium of 5 cm
× 5 cm) used in tomographic.

V Conclusions

It was developed a system that can be used to obtain non de-
structive images of little objects. This system was denomi-
nated Mini Computerized Tomograph of UNISO (MTCU).
The MTCU was tested and the first results using ART tech-
nique to reconstruct the image were very promising. Other

reconstruction techniques, such as Discrete Filtered Back-
projection and Fourier Transform are being implemented.
New tests need to be made in order to find the best parame-
ters to operate the tomograph.
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