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An algebraic model is developed to calculate The= 0 andT' = 1 ground-state binding energies df = Z
nuclei in the 28-50 shell which is currently the object of many experimental studies.

| Introduction N = Z. This treatment is effective for known masses but, as
the correction isad hog it has the drawback that an extrap-
Nuclei at the proton (neutron) driplines constitute nowadays olation to unknown nuclei can be dangerous. It is therefore
the most active research area of nuclear structure physicsof interest to develop models based on simple physical prin-
With the advent of new radioactive beam facilities it is now ciples that can account for the behavior of nuclear masses a
possible to produce exotic nuclei that may have occurredthe N ~ Z line.
naturally in the interior of exploding supernovas [1]. Many models have been used over the past years to
There are several theoretical approaches that reproducévestigate the structure of heavief ~ 7. We men-
the systematics of masses of nuclei and it is worthwhile to tion in particular recent applications of the Hartee-Fock-
mention here two of them. The Extended Thomas-Fermi Bogolyubov (HFB) method that includes proton-neutron
plus Strutinsky Integral [3] (ETFSI) is a high-speed approx- pairing correlations [7]. This approach is tailor-made for
imation to the Hartree-Fock (HF) method with pairing cor- the treatment ofV ~ Z nuclei but has the drawback of
relations taken into account through BCS theory. In ear- the lack of particle-number projection. Shell-model calcu-
lier versions a Wigner term was not included and this has lations [8] are generally extremely successful in reproduc-
been claimed to be the reason for the systematic calculatedng spectroscopic nuclear data but require large configura-
underbinding by about 2 MeV for even-evéh = Z nu- tion space diagonalizations. This makes the shell model less
clei [4]. This effect persists foNN = Z odd-odd systems appropriate when a calculation of many masses is required.
and forN = Z + 1 odd-mass nuclei but with less promi- An algebraic approach [9], which has affinities with the one
nence. The mass formula based on the Finite Range Droplepresented here, utilizes the concept of dynamical supersym-
Model (FRDM) [5] starts from a sophisticated liquid drop metry for the calculation of the binding energies in the
mass formula to which microscopic corrections due to shell shell but does not go beyond it.
effects are added. Both approaches have comparable num- In this paper the Interacting Boson Model (IBM) [10] in
bers of parameters (about 15) and make reliable predictiondts isospin invariant version is applied to proton-rish~ 2
with impressive success. In the FRDM and also in a recentnuclei. Reliable estimates are obtained of binding ener-
ETFSI calculation [6] a Wigner (correction) termis included gies of 7 = 0 and7 = 1 ground states in self-conjugate
that specifically deals with the peculiar behavior of binding (N = Z) nuclei based on the concept of dynamical symme-
energies ofNV ~ Z nuclei and has a cusp-like behavior for try. The Hamiltonian proposed is relatively simple and con-
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tains terms with an intuitively understandable significance. cific aim to study the competition between the isovector and
A particular ingredient is its treatment of the competition isoscalar pairing modes in self-conjugate nuclei. The model
between isoscalar and isovector pairing. is formulated in terms of bosons which do not have an or-
bital structure but carry spin-isospifns) = (01) or (10) and
which will be denoted as],. They give rise to the sym-
I An IBM-4 “mass formula” metric representation of the spin-isopin algebra U(6). As
an approximation to the full IBM-4 which includesand
The Interacting Boson Model in its original version (IBM- d bosons, this can be justified for even-even and odd-odd
1) [11] successfully describes collective aspects of nucleiN = Z nuclei (the only ones considered here) where the
through the use of andd bosons which are thought to ap- favored U(6) representation is indeed symmetric [14]. It is
proximate pairs of valence nucleons coupled to angular mo-also justifiable inNV # Z nuclei when they are even-even
mentum 0 and 2. No distinction is made between neutron but not when they are odd-odd since in that case the favored
and proton bosons. Whenever the difference between theJ(6) representation of the full IBM-4 is non-symmetric [14].
neutron and proton fluids plays a role, one is forced to use ~ The previous studies [16, 17] suggest that the relevant
more elaborate versions of the IBM. The neutron-proton in- terms in a simple IBM-4 Hamiltonian must be taken from
teracting boson model, or IBM-2, was introduced mainly two different symmetry classifications:
to provide a microscopic foundation to the model [12]. It SU(4)
uses as building blocks and d bosons constructed from  U(6) > { Un(3) @ Ue(3
neutron-neutron (nn) and proton-proton (pp) pairs solely. In 7(3) ® Us(3)
the third and fourth versions of IBM, IBM-3 and IBM-4, the A detailed analysis of the chains (1) is given in Ref. [18]
isospin quantum number is introduced in a natural way. In where the definition of all Casimir operators can be found.
IBM-3 the entire isospin triplef” = 1 is included, lead-  The ones of interest for the calculation of binding energies
ing to nn, np, and pp pairs with, = +1,0,—1[13]. The  of N = Z nuclei are the following. First, the linear and
IBM-4 considers boti" = 0 andT" = 1 pairs; thel' = 1 quadratic Casimir operators of U(6) are included. The sym-
bosons are assigned an intrinsic spin= 0 while 7' = 0 metric representations of U(6) is labeled by the total number
bosons carry an intrinsic spisi = 1 [14]. A justification  of bosons,V; as a result, the U(6) Casimir operators take
of this choice is that the two-particle isospin-spin combina- account of the bulk properties of the nucleus and lead to a
tions (T'S) = (10) and(7'S) = (01) are lowest in energy  smooth variation of the mass with particle number. The next
and that they give rise to an SU(4) algebra which is the bo- two terms to be included are the quadratic Casimir operator
son equivalent of Wigner’s supermultiplet algebra [15]. of SU(4) and the linear Casimir operator(g§ (3). They are
Recently, the IBM-4 was applied to the spectroscopy of defined in Ref. [18]
exotic N ~ Z nuclei in thepfs/2g9/2 shell [16]. In this R o (00) L &2 4 2
approach the IBM-4 Hamiltonian is derived from a realistic C2[SU(4)] 3Y x Y)W 4+ ST+ 17,
shell-model Hamiltonian through a mapping carried out for Ci[Us(3)] = o, 2
A = 58 and 60 nuclei. The boson energies and the boson-
boson interactions are thus derived microscopically and noWith

} 5 S07(3) ® SOs(3). (1)

parameter enterg the calculatlpn (since t'he shell-modgl in- Yw _ (851 X 510 + S];O % 501)&1”1)7
teraction is considered as an input). This microscopically A ) (10)
derived Hamiltonian gives good results®#Ga (when com- n = \/5(510 X 810) 0 >
pared to the shell model) and predicts the energy spectra of S \/5(31 % 3 )(01)
heavierN = Z nuclei (suchAs andBr). The approach a o1 0010 O 7
is reasonably successful in obtaining a spectroscopy of low- N = (810 X 510)(()0 ),
spin states iV ~ Z nuclei. It makes use, however, of . _ t o =~ (00) 3
. . . . nor = (501 X 501)00 s ( )
a complicated Hamiltonian and, moreover, calculations be-
yond°Br seem difficult. where the coupling is in spin and isosphj,, is a Gamow-
Prompted by these considerations, in particular the needTeller-like operator which is a vector in spin and isospin,
for reliable binding energy predictions at thé = Z T, andS, are the total isospin and spin operators, apd

line and the existence of a microscopically derived IBM-4 and 1, are the number operators that count the isoscalar

Hamiltonian, we propose here a simple calculation of theseand isovector(st) = (10) and (01) bosons. The operator

binding energies in the context of IBM-4. The calculation (,[SU(4)] implies equall’ = 0 andT = 1 interaction

requires the diagonalization of matrices of very low dimen- strengths whileC; [Ug(3)] splits states with different spin

sion (of the order of half the number of bosons). Although S. In Ref. [17] thequadraticCasimir operator o§U(3) is

it is not a mass formula as such (it is not a closed formula), considered while here tHmear Casimir operator otl5(3)

the calculation can be readily carried out for any nucleus. is preferred. This choice is guided by a mapping argu-
In previous work [17] one of us introduced an algebraic ment: In Ref. [19] it is shown that the one-body spin-orbit

Hamiltonian (which can be regarded as tAeoson channel  termu,,l - 5 of the nuclear mean-field potential is converted

of the general IBM-4 Hamiltonian of Ref. [16]) with the spe- via a Dyson boson mapping into a combinationgf and
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fio = N — ngy with coefficients that depend arf,. Also,
an eventual asymmetry between the= 0 and7 = 1 pair-
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ing interaction can be represented in this way [19]. These 4 first application concerned t& = Z nuclei in thesd
important structural effects, i.e., the spin-orbit term and the ghel|, from'60 to “°Ca, where the experimental masses are
difference between the isoscalar and isovector pairing in-\ye|l known [21], and can be found in Ref. [22]. Since re-
teractions, can thus be represented algebraically. The fijjaple results were obtained we present here the calculations
nal term to be included is the quadratic Casimir operator tg the28 — 50 shell which is currently under experimental

(,[SO7(3)] = T which is known to represent the nuclear
symmetry and Wigner energies.
In summary, the following Hamiltonian is taken:

H = BEy+aCi[U(6)] + BC2[U(6)] + 7Co[SU(4)]
+£C1[Us (3)] + nCa[SOr (3)], @

whereBE) is the binding energy of the doubly magic core,

focus since there are few experimental data available up to
now. Before carry on the calculations in th& — —50 shell

we sould remark that the fitting procedure is essentially the
same as in thed shell. Two fits for each half of the shell are
need in order to avoid mid-shell effects and a Coulomb cor-
rection calculation is performed according to the prescrip-
tion of Ref. [5].

We begin with a discussion of the first half of the 28—

specific for a given mass region. Note the absence from (4)50 shell, for nuclei ranging from*Cu to ”®Y. The ground

of operators associated withir(3) andSOg(3); these are

state of all these self-conjugate nuclei h&s = 0T, with

not needed because, in the context of the simple model diseitherT = 0 in even-even off' = 1 in odd-odd nuclei,
cussed here, their effect is equivalent to the correspondingwith the exception oP*Cu which has 4J™,7) = (1F,0)

operators olU5(3) andSOr(3).
Al operators in (4) mutually commute, except for
C3[SU(4)] andC1[Us(3)] and hence the solution df in-

volves a numerical diagonalization which is most conve-

niently done in the second basis in (1), labelet A3\ T x
AsS). These states are simultaneous eigenstatés,cénd
no1 With eigenvalues\; and\g, respectively, which are the

ground state. Up té*Ge the masses are well known and can
be taken from the compilation of Audi and Wapstra [21].
Of the heavierN = Z nuclei, also the masses 6tKr
and 7*Rb are listed by Audi and Wapstra. The masses of
66 As and®8Se are available from a recent measurement [24]
and that of"®Sr from Ref. [25]. The latter experiment also
gives a mass fof8Se but since it is far off the systemat-

numbers of isovector and isoscalar bosons. The allowed val-ics of Audi and Wapstra, the result from [24] is used. The

ues of \y and\g follow from the U(6) D Ur(3) x Ug(3)
branching rule. For a symmetric U(6) representation
the allowed values are all those that satisfy+ As = .
Finally, the allowed values of’ and S follow from the
SU(3) D SO(3) branching rule [20]T = Ar, A\r—2,...,1
or0andS = Ag, g —2,...,10r0.

The matrix elements of',[SU(4)] in this basis can be

mass of °Br is not known experimentally but as it is in the
middle of a region of nuclei with measured masses close to
the extrapolations of Audi and Wapstra, we have adopted
their extrapolated value foi’°Br. The mass of®Y is not
known and not included in the fit. The binding energies of
the lowestl” = 1 states in even-eveN = Z nuclei are de-
rived from those of the isobaric analogues (also taken from

calculated analytically [17] and closed expressions for the Ref. [21]) after an appropriate Coulomb correction. The

eigenvalues of the Hamiltonian (4) can be found in Ref.

[22].

Summarizing our procedure for finding the binding en-
ergyof the lowesfl’ = 0 andT = 1 states in anV = 7
nucleus:

1. Determine the number of bosoNsoutside the closed
shell.

2. Construct the Hamiltonian matrix in the basis
[[NJATT x AgS)with A\p =T, T+2,...,(N-S-1)
or (N —S)and\s = N — Ap. for different values of
S. The dimension of this matrix ig N —S—T)/2|+
1 where|z | is the largest integer smaller than or equal
tox.

3. Diagonalize the Hamiltonian matrix.
eigenvalue gives the binding energy.

The largest

We have found that fof' = 0, 1 states inV = Z nuclei the
largest binding energy is obtained f8r= T in even-even
and forS = T — 1 in odd-odd nuclei.

evolution of the splitting betweety™,T) = (0*,1) and
(J™,T) = (17,0) states in odd-odd nuclei is of particular
interest as regards the questiorifof= 0 andT’ = 1 pairing

and is currently the object of several experimental studies.
The (01, 1) state in°®Cu lies 0.202 MeV above the *, 0)
ground state [26]. This order is reversed®tGa where

the (17,0) state is 0.571 MeV above th@™, 1) ground
state [27]. TheBE(01,1) — BE(1%,0) splitting then con-
tinues to rise to 0.837 MeV ifiAs [28]. A very recent
experiment onfBr [29] has not observed @, 0) level;

the lowest observed = 0 level (with J™ = 3T) is at an ex-
citation energy of 1.337 MeV. Similarly, the lowest= 0
state inRb measured by Rudolpét al. [30] at an excita-
tion energy of 1.006 MeV hag = 3 and the energy of the

J™ = 17 state is unknown. With these data as input, the pa-
rameters in (4) can be adjusted through a fit procedure that
minimizes the rms deviation in the binding energies of two
states per nucleus (if known). The resulting parameters are
shown in the line labeled®Ni to "®Y’ of Table and lead to

an rms deviation of 0.396 MeV. In Fig. 1 the differences in
energy between th& = 1 andT = 0 states are compared
to the observed ones. One notes the good agreement that i
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obtained which gives confidence in the energy splittings of in these isotopes. In the former tw8#,Br and "“Rb, the
0.847, 1.037, and 1.214 MeV predicted’tBr, "“Rb, and  energy difference with the lowest (knowif) = 0 state is
8Y, respectively. As already mentioned, the energy differ- shown in Fig. 1.

enceBE(0%,1) — BE(1",0) is not known experimentally

Table 1. Core binding energies and parameters (in MeV) for the 28-50 shell.

Shell BE, « 16} ¥ 13 n
56Ni to Y 607.2890 22.8140 0.1175 —0.0672 —1.9584 —0.9020
Y t0190Sn  1172.9697 —28.4637 0.1183 —0.1877 —1.0450 —1.0248
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Figure 2. Experimental and calculated energiegldf, T = 0)

; P ; _ d(0",T = 1) levels in odd-oddV = Z from **Cu to Y. In
Figure 1. Calculated binding energy differende& (7" = 0) — and(© ., 78 i
BE(T =1)in N = Z nuclei betweer®Cu to™®Y for the param- Br, "'Rb, and*Y the (1", T' = 0) levels are not known exper-

eters given in Table , compared with the experimental differences Mentally and in the former two nuclei the angular momentum of
and those of Macchiavelét al. [23]. the lowest (known)" = 0 state is indicated.

9 r O Expt b
To emphasize the point that these energy splittings result g:\i’i;ﬁlgﬁf otal
from a calculation of total binding energies, the odd-odd re- 7 ' 8
sults are represented in a different way in Fig. 2. Note that
this plot implies a comparison absolutebinding energies:

for representation purposes the measured binding energy of

1) (MeV)

,DDD 80 |
[ g88°%%0a8 g

i

the ground state of a particular nucleus is drawn at zeroand % | ]

other levels of that nucleus are given relative to that ground- Tgl\

state energy. = o |
For the second half of the 28-50 shell the situation is 9 o o ¢ ©

more complicated since there are no data available. Thecore -1 L g 8 g b v o ooy

is 1°°Sn with a ground-state mass measured in Ref. [31].

Since so little is known experimentally, we use the extrapo- -3 T -

27 29 31 33 35 37 39 41 43 45 47 49 51

lations from Audi and Wapstra [21] for the masses of even- Nz

even and odd-odd nuclei, complemented with the results for
"8y from the fit to the first half of the 28-50 shell. The Figyre 3. Binding energy differencd3E(T = 0) — BE(T = 1)
resulting parameters are shown in the line labelé¥ ‘to for the entire 28-50 shell with parameters fitted separately for each

1005’ of Table . The predictions for the splitting between half (see text for details). In the first half (up toY) ‘Expt’ refers
T = 1 andT = 0 states for the entire 28=50 shell are t0 measured masses while in the second half it refers to the extrap-

shown in Fig. 3. One notes a satisfactory agreement withOlations of [21]. Also the resuits of Ref. [23] are shown.

the data, when available. The use of extrapolated data, how-
ever, should weaken the confidence in the predictions for the
BE(0*,1) — BE(17,0) splitting in odd-odd nuclei.
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