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An algebraic model is developed to calculate theT = 0 andT = 1 ground-state binding energies ofN = Z
nuclei in the 28-50 shell which is currently the object of many experimental studies.

I Introduction

Nuclei at the proton (neutron) driplines constitute nowadays
the most active research area of nuclear structure physics.
With the advent of new radioactive beam facilities it is now
possible to produce exotic nuclei that may have occurred
naturally in the interior of exploding supernovas [1].

There are several theoretical approaches that reproduce
the systematics of masses of nuclei and it is worthwhile to
mention here two of them. The Extended Thomas-Fermi
plus Strutinsky Integral [3] (ETFSI) is a high-speed approx-
imation to the Hartree-Fock (HF) method with pairing cor-
relations taken into account through BCS theory. In ear-
lier versions a Wigner term was not included and this has
been claimed to be the reason for the systematic calculated
underbinding by about 2 MeV for even-evenN = Z nu-
clei [4]. This effect persists forN = Z odd-odd systems
and forN = Z ± 1 odd-mass nuclei but with less promi-
nence. The mass formula based on the Finite Range Droplet
Model (FRDM) [5] starts from a sophisticated liquid drop
mass formula to which microscopic corrections due to shell
effects are added. Both approaches have comparable num-
bers of parameters (about 15) and make reliable predictions
with impressive success. In the FRDM and also in a recent
ETFSI calculation [6] a Wigner (correction) term is included
that specifically deals with the peculiar behavior of binding
energies ofN ≈ Z nuclei and has a cusp-like behavior for

N = Z. This treatment is effective for known masses but, as
the correction isad hoc, it has the drawback that an extrap-
olation to unknown nuclei can be dangerous. It is therefore
of interest to develop models based on simple physical prin-
ciples that can account for the behavior of nuclear masses at
theN ≈ Z line.

Many models have been used over the past years to
investigate the structure of heavierN ≈ Z. We men-
tion in particular recent applications of the Hartee-Fock-
Bogolyubov (HFB) method that includes proton-neutron
pairing correlations [7]. This approach is tailor-made for
the treatment ofN ≈ Z nuclei but has the drawback of
the lack of particle-number projection. Shell-model calcu-
lations [8] are generally extremely successful in reproduc-
ing spectroscopic nuclear data but require large configura-
tion space diagonalizations. This makes the shell model less
appropriate when a calculation of many masses is required.
An algebraic approach [9], which has affinities with the one
presented here, utilizes the concept of dynamical supersym-
metry for the calculation of the binding energies in thesd
shell but does not go beyond it.

In this paper the Interacting Boson Model (IBM) [10] in
its isospin invariant version is applied to proton-richN ≈ Z
nuclei. Reliable estimates are obtained of binding ener-
gies ofT = 0 andT = 1 ground states in self-conjugate
(N = Z) nuclei based on the concept of dynamical symme-
try. The Hamiltonian proposed is relatively simple and con-
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tains terms with an intuitively understandable significance.
A particular ingredient is its treatment of the competition
between isoscalar and isovector pairing.

II An IBM-4 “mass formula”

The Interacting Boson Model in its original version (IBM-
1) [11] successfully describes collective aspects of nuclei
through the use ofs andd bosons which are thought to ap-
proximate pairs of valence nucleons coupled to angular mo-
mentum 0 and 2. No distinction is made between neutron
and proton bosons. Whenever the difference between the
neutron and proton fluids plays a role, one is forced to use
more elaborate versions of the IBM. The neutron-proton in-
teracting boson model, or IBM-2, was introduced mainly
to provide a microscopic foundation to the model [12]. It
uses as building blockss and d bosons constructed from
neutron-neutron (nn) and proton-proton (pp) pairs solely. In
the third and fourth versions of IBM, IBM-3 and IBM-4, the
isospin quantum number is introduced in a natural way. In
IBM-3 the entire isospin tripletT = 1 is included, lead-
ing to nn, np, and pp pairs withTz = +1, 0,−1 [13]. The
IBM-4 considers bothT = 0 andT = 1 pairs; theT = 1
bosons are assigned an intrinsic spinS = 0 while T = 0
bosons carry an intrinsic spinS = 1 [14]. A justification
of this choice is that the two-particle isospin-spin combina-
tions (TS) = (10) and(TS) = (01) are lowest in energy
and that they give rise to an SU(4) algebra which is the bo-
son equivalent of Wigner’s supermultiplet algebra [15].

Recently, the IBM-4 was applied to the spectroscopy of
exotic N ≈ Z nuclei in thepf5/2g9/2 shell [16]. In this
approach the IBM-4 Hamiltonian is derived from a realistic
shell-model Hamiltonian through a mapping carried out for
A = 58 and 60 nuclei. The boson energies and the boson-
boson interactions are thus derived microscopically and no
parameter enters the calculation (since the shell-model in-
teraction is considered as an input). This microscopically
derived Hamiltonian gives good results in62Ga (when com-
pared to the shell model) and predicts the energy spectra of
heavierN = Z nuclei (such66As and70Br). The approach
is reasonably successful in obtaining a spectroscopy of low-
spin states inN ≈ Z nuclei. It makes use, however, of
a complicated Hamiltonian and, moreover, calculations be-
yond70Br seem difficult.

Prompted by these considerations, in particular the need
for reliable binding energy predictions at theN = Z
line and the existence of a microscopically derived IBM-4
Hamiltonian, we propose here a simple calculation of these
binding energies in the context of IBM-4. The calculation
requires the diagonalization of matrices of very low dimen-
sion (of the order of half the number of bosons). Although
it is not a mass formula as such (it is not a closed formula),
the calculation can be readily carried out for any nucleus.

In previous work [17] one of us introduced an algebraic
Hamiltonian (which can be regarded as thes-boson channel
of the general IBM-4 Hamiltonian of Ref. [16]) with the spe-

cific aim to study the competition between the isovector and
isoscalar pairing modes in self-conjugate nuclei. The model
is formulated in terms of bosons which do not have an or-
bital structure but carry spin-isospin(ts) = (01) or (10) and
which will be denoted ass†ts. They give rise to the sym-
metric representation of the spin-isopin algebra U(6). As
an approximation to the full IBM-4 which includess and
d bosons, this can be justified for even-even and odd-odd
N = Z nuclei (the only ones considered here) where the
favored U(6) representation is indeed symmetric [14]. It is
also justifiable inN 6= Z nuclei when they are even-even
but not when they are odd-odd since in that case the favored
U(6) representation of the full IBM-4 is non-symmetric [14].

The previous studies [16, 17] suggest that the relevant
terms in a simple IBM-4 Hamiltonian must be taken from
two different symmetry classifications:

U(6) ⊃
{

SU(4)
UT (3)⊗US(3)

}
⊃ SOT (3)⊗ SOS(3). (1)

A detailed analysis of the chains (1) is given in Ref. [18]
where the definition of all Casimir operators can be found.
The ones of interest for the calculation of binding energies
of N = Z nuclei are the following. First, the linear and
quadratic Casimir operators of U(6) are included. The sym-
metric representations of U(6) is labeled by the total number
of bosons,N ; as a result, the U(6) Casimir operators take
account of the bulk properties of the nucleus and lead to a
smooth variation of the mass with particle number. The next
two terms to be included are the quadratic Casimir operator
of SU(4) and the linear Casimir operator ofUS(3). They are
defined in Ref. [18]

Ĉ2[SU(4)] = 3(Ŷ × Ŷ )(00) + Ŝ2 + T̂ 2,

Ĉ1[US(3)] = n̂01, (2)

with

Ŷµν = (s†01 × s̃10 + s†10 × s̃01)(11)µν ,

T̂µ =
√

2(s†10 × s̃10)
(10)
µ0 ,

Ŝµ =
√

2(s†01 × s̃01)
(01)
0µ ,

n̂10 = (s†10 × s̃10)
(00)
00 ,

n̂01 = (s†01 × s̃01)
(00)
00 , (3)

where the coupling is in spin and isospin,Ŷµν is a Gamow-
Teller-like operator which is a vector in spin and isospin,
T̂µ andŜµ are the total isospin and spin operators, andn̂01

and n̂10 are the number operators that count the isoscalar
and isovector(st) = (10) and (01) bosons. The operator
Ĉ2[SU(4)] implies equalT = 0 and T = 1 interaction
strengths whileĈ1[US(3)] splits states with different spin
S. In Ref. [17] thequadraticCasimir operator ofSUS(3) is
considered while here thelinear Casimir operator ofUS(3)
is preferred. This choice is guided by a mapping argu-
ment: In Ref. [19] it is shown that the one-body spin-orbit
termvso l̄ · s̄ of the nuclear mean-field potential is converted
via a Dyson boson mapping into a combination ofn̂01 and
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n̂10 = N̂ − n̂01 with coefficients that depend onv2
so. Also,

an eventual asymmetry between theT = 0 andT = 1 pair-
ing interaction can be represented in this way [19]. These
important structural effects, i.e., the spin-orbit term and the
difference between the isoscalar and isovector pairing in-
teractions, can thus be represented algebraically. The fi-
nal term to be included is the quadratic Casimir operator
Ĉ2[SOT (3)] = T̂ 2 which is known to represent the nuclear
symmetry and Wigner energies.

In summary, the following Hamiltonian is taken:

Ĥ = BE0 + αĈ1[U(6)] + βĈ2[U(6)] + γĈ2[SU(4)]
+ξĈ1[US(3)] + ηĈ2[SOT (3)], (4)

whereBE0 is the binding energy of the doubly magic core,
specific for a given mass region. Note the absence from (4)
of operators associated withUT (3) andSOS(3); these are
not needed because, in the context of the simple model dis-
cussed here, their effect is equivalent to the corresponding
operators ofUS(3) andSOT (3).

All operators in (4) mutually commute, except for
Ĉ2[SU(4)] andĈ1[US(3)] and hence the solution of̂H in-
volves a numerical diagonalization which is most conve-
niently done in the second basis in (1), labeled as|[N ]λT T×
λSS〉. These states are simultaneous eigenstates ofn̂10 and
n̂01 with eigenvaluesλT andλS , respectively, which are the
numbers of isovector and isoscalar bosons. The allowed val-
ues ofλT andλS follow from theU(6) ⊃ UT (3) × US(3)
branching rule. For a symmetric U(6) representation[N ]
the allowed values are all those that satisfyλT + λS = N .
Finally, the allowed values ofT and S follow from the
SU(3) ⊃ SO(3) branching rule [20]:T = λT , λT−2, . . . , 1
or 0 andS = λS , λS − 2, . . . , 1 or 0.

The matrix elements of̂C2[SU(4)] in this basis can be
calculated analytically [17] and closed expressions for the
eigenvalues of the Hamiltonian (4) can be found in Ref.
[22].

Summarizing our procedure for finding the binding en-
ergyof the lowestT = 0 andT = 1 states in anN = Z
nucleus:

1. Determine the number of bosonsN outside the closed
shell.

2. Construct the Hamiltonian matrix in the basis
|[N ]λT T×λSS〉with λT = T, T +2, . . . , (N−S−1)
or (N −S) andλS = N −λT . for different values of
S. The dimension of this matrix isb(N−S−T )/2c+
1 wherebxc is the largest integer smaller than or equal
to x.

3. Diagonalize the Hamiltonian matrix. The largest
eigenvalue gives the binding energy.

We have found that forT = 0, 1 states inN = Z nuclei the
largest binding energy is obtained forS = T in even-even
and forS = T − 1 in odd-odd nuclei.

III Results

A first application concerned toN = Z nuclei in thesd
shell, from16O to 40Ca, where the experimental masses are
well known [21], and can be found in Ref. [22]. Since re-
liable results were obtained we present here the calculations
to the28 − 50 shell which is currently under experimental
focus since there are few experimental data available up to
now. Before carry on the calculations in the28−−50 shell
we sould remark that the fitting procedure is essentially the
same as in thesd shell. Two fits for each half of the shell are
need in order to avoid mid-shell effects and a Coulomb cor-
rection calculation is performed according to the prescrip-
tion of Ref. [5].

We begin with a discussion of the first half of the 28–
50 shell, for nuclei ranging from58Cu to 78Y. The ground
state of all these self-conjugate nuclei hasJπ = 0+, with
either T = 0 in even-even orT = 1 in odd-odd nuclei,
with the exception of58Cu which has a(Jπ, T ) = (1+, 0)
ground state. Up to64Ge the masses are well known and can
be taken from the compilation of Audi and Wapstra [21].
Of the heavierN = Z nuclei, also the masses of72Kr
and 74Rb are listed by Audi and Wapstra. The masses of
66As and68Se are available from a recent measurement [24]
and that of76Sr from Ref. [25]. The latter experiment also
gives a mass for68Se but since it is far off the systemat-
ics of Audi and Wapstra, the result from [24] is used. The
mass of70Br is not known experimentally but as it is in the
middle of a region of nuclei with measured masses close to
the extrapolations of Audi and Wapstra, we have adopted
their extrapolated value for70Br. The mass of78Y is not
known and not included in the fit. The binding energies of
the lowestT = 1 states in even-evenN = Z nuclei are de-
rived from those of the isobaric analogues (also taken from
Ref. [21]) after an appropriate Coulomb correction. The
evolution of the splitting between(Jπ, T ) = (0+, 1) and
(Jπ, T ) = (1+, 0) states in odd-odd nuclei is of particular
interest as regards the question ofT = 0 andT = 1 pairing
and is currently the object of several experimental studies.
The(0+, 1) state in58Cu lies 0.202 MeV above the(1+, 0)
ground state [26]. This order is reversed in62Ga where
the (1+, 0) state is 0.571 MeV above the(0+, 1) ground
state [27]. TheBE(0+, 1)−BE(1+, 0) splitting then con-
tinues to rise to 0.837 MeV in66As [28]. A very recent
experiment on70Br [29] has not observed a(1+, 0) level;
the lowest observedT = 0 level (withJπ = 3+) is at an ex-
citation energy of 1.337 MeV. Similarly, the lowestT = 0
state in74Rb measured by Rudolphet al. [30] at an excita-
tion energy of 1.006 MeV hasJ = 3 and the energy of the
Jπ = 1+ state is unknown. With these data as input, the pa-
rameters in (4) can be adjusted through a fit procedure that
minimizes the rms deviation in the binding energies of two
states per nucleus (if known). The resulting parameters are
shown in the line labeled ‘56Ni to 78Y’ of Table and lead to
an rms deviation of 0.396 MeV. In Fig. 1 the differences in
energy between theT = 1 andT = 0 states are compared
to the observed ones. One notes the good agreement that is
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obtained which gives confidence in the energy splittings of
0.847, 1.037, and 1.214 MeV predicted in70Br, 74Rb, and
78Y, respectively. As already mentioned, the energy differ-
enceBE(0+, 1)−BE(1+, 0) is not known experimentally

in these isotopes. In the former two,70Br and 74Rb, the
energy difference with the lowest (known)T = 0 state is
shown in Fig. 1.

Table 1. Core binding energies and parameters (in MeV) for the 28–50 shell.
Shell BE0 α β γ ξ η

56Ni to 78Y 607.2890 22.8140 0.1175 −0.0672 −1.9584 −0.9020
78Y to 100Sn 1172.9697 −28.4637 0.1183 −0.1877 −1.0450 −1.0248
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Figure 1. Calculated binding energy differencesBE(T = 0) −
BE(T = 1) in N = Z nuclei between58Cu to78Y for the param-
eters given in Table , compared with the experimental differences
and those of Macchiavelliet al. [23].

To emphasize the point that these energy splittings result
from a calculation of total binding energies, the odd-odd re-
sults are represented in a different way in Fig. 2. Note that
this plot implies a comparison ofabsolutebinding energies:
for representation purposes the measured binding energy of
the ground state of a particular nucleus is drawn at zero and
other levels of that nucleus are given relative to that ground-
state energy.

For the second half of the 28–50 shell the situation is
more complicated since there are no data available. The core
is 100Sn with a ground-state mass measured in Ref. [31].
Since so little is known experimentally, we use the extrapo-
lations from Audi and Wapstra [21] for the masses of even-
even and odd-odd nuclei, complemented with the results for
78Y from the fit to the first half of the 28–50 shell. The
resulting parameters are shown in the line labeled ‘78Y to
100Sn’ of Table . The predictions for the splitting between
T = 1 and T = 0 states for the entire 28–50 shell are
shown in Fig. 3. One notes a satisfactory agreement with
the data, when available. The use of extrapolated data, how-
ever, should weaken the confidence in the predictions for the
BE(0+, 1)−BE(1+, 0) splitting in odd-odd nuclei.
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Figure 2. Experimental and calculated energies of(1+, T = 0)
and(0+, T = 1) levels in odd-oddN = Z from 58Cu to 78Y. In
70Br, 74Rb, and78Y the (1+, T = 0) levels are not known exper-
imentally and in the former two nuclei the angular momentum of
the lowest (known)T = 0 state is indicated.
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Figure 3. Binding energy differencesBE(T = 0)− BE(T = 1)
for the entire 28–50 shell with parameters fitted separately for each
half (see text for details). In the first half (up to78Y) ‘Expt’ refers
to measured masses while in the second half it refers to the extrap-
olations of [21]. Also the results of Ref. [23] are shown.
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IV Conclusions

A simple approach based on IBM-4 has been proposed to
calculate the binding energies of the lowestT = 0 and
T = 1 states of self-conjugate nuclei. It has linear and
quadratic terms in the boson number that account for the
smooth variation of the mass with particle number, supple-
mented with three contributions that have a clear physical
meaning: an SU(4), a spin-orbit and âT 2 term. It can be
considered as a local “mass formula” that gives predictions
of a specific interest to current experiments at theN = Z
line. As an application we considered nuclei from56Ni to
78Y where predictions could be made for some of the heav-
ier isotopes currently under study. Also the second half
of the 28–50 shell was considered although there predic-
tions are more questionable due to the lack of reliable data.
The advantage with respect to previous IBM-4 work [16] is
that the Hamiltonian used is much simpler and that only the
L = 0 channel is considered. The numerical diagonalization
then becomes trivial and the calculations can be performed,
without much effort, for arbitrary numbers of bosons. This
is much harder to achieve with the full version of IBM-4.
On the down side it should be noted that, for odd-odd nuclei,
this approach is restricted toN = Z since odd-odd nuclei
with N 6= Z have a dominant non-symmetric U(6) repre-
sentation which cannot be constructed froms bosons only.
Also, deformation effects which are present withs and d
bosons and which must be included through orbital opera-
tors are outside the scope of the simple approach presented
here.
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