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Finite amplitude localized electrostatic solitons in a multi-component unmagnetized dusty plasma are presented.
Assuming that the constituents of dusty plasmas are warm electrons, warm positive ions, and an admixture of
cold dust grains with negative and positive charges, it is shown that stationary solutions of the fluid equations
combined with Poisson’s equation can be expressed in terms of the energy integral of a classical particle with
a modified Sagdeev potential. The latter is analyzed both analytically and numerically to demonstrate the
coexistence of rarefactive and compressive electric potential pulses which travel faster than the effective dust-
acoustic velocity. Compressive dust-acoustic solitons exist only when there is a significant fraction of positively
charged dust grains. Furthermore, the four-fluid dusty plasma system, with both negative and positively charged
dust grains, also provides the possibility of double layers. Conditions under which solitons and double layers
arise are given, and their profiles are displayed graphically. The results of investigation should be helpful in
identifying the salient features of nonlinear structures in low-temperature space and laboratory dusty plasmas
in which positive and negatively charged dust grains coexist. In particular, we have applied the theory in the
laboratory plasma and we can predict that a double layer might be possible to be launched if a trace ions
component is added.

I Introduction

Since the discovery of the dust acoustic waves (DAW) by
Rao, Shukla, and Yu, [1], there has been a great interest in
investigating numerous collective processes in dusty plas-
mas. In their paper, Rao et al. also introduced a theory for
dust-acoustic solitons in a three-component dusty plasma
with negatively charged dust grains. They pointed out the
possibility of a finite-amplitude rarefactive dust-acoustic po-
tential, in contrast to a compressional potential that is associ-
ated with the usual ion-acoustic soliton in a plasma without
the dust component. Recently, it has been suggested that
positively and negatively charged dust grains can co-exist in
space [2]-[4] and laboratory [5] plasmas. Therefore, it is de-
sirable to investigate the linear and nonlinear properties of
dust-acoustic waves in a four component plasma that con-
sists of electrons, ions and positively and negatively charged
dust grains.

Here we sumarize the governing equations for DAW
when both the negative and positive dust components are
simultaneously present as given by Sakanaka and Shukla in
[6]. We discuss the properties of DAW in the presence of
positive and negative dust components, and define parame-
ters that are relevant for the analysis of the nonlinear DAW.
Using the reductive perturbation technique, the evolution
equations for small, but finite, amplitude nonlinear DAW are
derived. Explicit expressions for DAW solitons and dust-

acoustic double-layers (DADLs) are presented. Stationary
solutions of the governing nonlinear equations for arbitrary
large amplitudes are discussed. Here, we derive the energy
integral with a modified Sagdeev potential. The latter is an-
alyzed both analytically and numerically to obtain the pa-
rameter regimes where dust acoustic (DA) solitons and DA
double-layers are possible. It turns out that the presence of a
positive dust component in a multi-component dusty plasma
gives rise to such interesting features of the nonlinear struc-
tures as the compressional DA potential distribution and the
monotonic double-layers, which otherwise are absent. Fi-
nally, possible applications of our investigation in space and
laboratory plasmas are given.

Our paper is organized in the following way. In sec-
tion II we present the governing equations for DAW with
the presence of positive and negative dust components. In
section III we define parameters that help the analysis of the
nonlinear DAWs and we discuss the properties of the DAW
with the simultaneous presence of positive and negative dust
particles. Using the reductive perturbation technique, the
evolution equations for small, but finite, amplitude nonlin-
ear DAW are derived. Second order amplitude expansion
for dust acoustic solitons and third order expansions for dust
acoustic double-layers are presented. Stationary solutions of
the governing nonlinear equations for arbitrary large ampli-
tudes are discussed in Section IV. Also, we derive the en-
ergy integral with a modified Sagdeev potential. It is ana-
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lyzed analytically and numarically to obtain the parameter
regimes for existance of DA solitons and DA double-layers.
The last section contains summary and possible applications
in laboratory plasmas.

II Governing equations

We consider an unmagnetized dusty plasma consisting of the
electrons, the ions, negatively and positively charged mas-
sive dust particles, with similar masses.

The quasi-neutrality at equilibrium is written

Ne0 + ZnNn0 = Ni0 + ZpNp0; (1)

where, Ne0 and Ni0 are the electrons and ions number den-
sity, Zn and Zp are the negative and positive dust particle
charge, Nn0 and Np0 are the dust particles number density,
respectively.

The dust particules are assumed to be point charges and
their sizes are much smaller than the effective Debye length.
For low phase velocity (compared to the electron and ion
thermal velocities) dust-acoustic waves, both the electrons
and ions can be considered inertialess fluid and their num-
ber densities can be given by the Boltzmann distribution,
respectively,

Ne = Ne0e
e�=Te ; (2)

and
Ni = Ni0e

�e�=Ti ; (3)

where, � is the electrostatic potential and e is the magnitude
of the electron charge.

The dynamics of charged dust grains are governed by the
equations of the continuity and the momentum, which are,
respectively,
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for positively charged dust grain, and
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for negatively charged dust grain. Here Vp; Vn; Mp; Mn are
the fluid velocities and mass of the positively and negatively
charged dust grains, respectively. We are assuming a cold
dust particules.

The system of equations is closed with the Poisson’s
equation

@2�

@x2
= 4�e(Ne �Ni + ZnNn � ZpNp): (8)

III Finite amplitude linear and non-
linear dust acoustic waves

We are looking for a plane wave solution for the set of equa-
tions (1) to (8) for small amplitude disturbances with angu-
lar frequency ! and wave number k. We linearize (2) to (8)
and Fourier transform them by assuming that the first order
quantities of Ne; Ni; Nn; Np; Vn; Vp, and � are propor-
tional to exp[i(kx�!t)]. Processing the resulting equations
gives

!

k
=

Cdap
1 + �2Ddk

2
; (9)

where

C2

da =
T0
M0

(10)

and

�Dd =
Cda

!pd
: (11)

We have introduced the symbols !pd, N0, T0 and M0 as

!2pd =
4�e2N0

M0

; N0 = Ne0 +Ni0;

N0

T0
=

Ne0

Te
+

Ni0

Ti
; and

N0

M0

=
Z2
nNn0

Mn
+

Z2
pNp0

Mp
: (12)

Here, Cda is the dust-acoustic velocity, �Dd the effective
Debye length, !pd the dust plasma frequency, N0, M0, and
T0 are the effective number density, the mass and the tem-
perature, respectively.

From the definition of M0, we can see that the dust
plasma frequency !pd is increased when both negative and
positive charges are present and/or increased, because T0

and M0 are not dependent on the presence of dust, likewise
the dust phase velocity, Cda, increases as dust increases.

III.1 Normalization
With the purpose of understanding the parametric space

which limits the existence of DA solitons and double-layers
we are normalizing all the parameters. The natural quanti-
ties for the normalization are T0, N0 and M0, the effective
temperature (in unit of energy), the plasma particle number
density and the mass, respectively. From these we get the
normalizing quantities for the time, t ! t!pd, the space,
x ! x=�Da, and the mass, Mj ! Mj=M0. For velocities,
the normalizing quantity is Cda, and the normalized veloci-
ties are expressed as the Mach number, M (the latter should
not be confused with the plasma particle mass), which is the
pulse velocity, V0, normalized to Cda.

We define, then

� =
e�

T0
; and u(�) =

U(�)

4�N0T0
; (13)

where U(�) is the potential energy density, which will ap-
pear in the later context,

ne0 =
Ne0

N0

; ni0 =
Ni0

N0

; ae =
T0
Te

; ai =
T0
Ti

(14)
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for the electron and ion number densities and the tempera-
tures,

nn =
Nn0Zn
N0

; and np =
Np0Zp
N0

(15)

for the dust particle number density,

an =
ZnT0
MnV 2

0

; ap =
ZpT0
MpV 2

0

; and M =
V0
Cda

; (16)

for the nonlinear dust acoustic wave parameters and the
Mach number.

From equation (1), (12) and (13)-(16) we have

ne0 + nn = ni0 + np (17)

ne0 + ni0 = 1 (18)

ne0ae + ni0ai = 1 (19)

nnan + npap =
1

M2
: (20)

III.2 Second order amplitude expansion and
dust acoustic solitons

Now we use the reductive perturbation technique to de-
rive the dynamical equations for nonlinear dust acoustic
waves which have small, but finite amplitudes. Accordingly,
we introduce in equations (2) to (8) the following expansion:

Nn = Nn0 + �Nn1 + �2Nn2 + �3Nn3 + : : : ; (21)

Np = Np0 + �Np1 + �2Np2 + �3Np3 + : : : ; (22)

Vn = �Vn1 + �2Vn2 + �3Vn3 + : : : ; (23)

Vp = �Vp1 + �2Vp2 + �3Vp3 + : : : ; (24)

� = ��1 + �2�2 + �3�3 + : : : ; (25)

where � indicates a small quantity. In the stationary wave
frame, x � V0t, where V0 is the velocity of propagation of
the localized solution. Making change of the independent
variables, t and x, to new ones, � and �, respectively,

� = �1=2(x � V0t) and (26)

� = �3=2t; (27)

we can rewrite (2) to(8) in terms of the expanded variables
(21) - (25), and analyze them order by order.

The �1=2 -order equation is exactly the quasi neutrality
condition (1) or (17).

The �3=2 -order equation turns out to be

Æ � Ne0

Te
+

Ni0

Ti
� Z2

nNn0

V 2
0
Mn

� Z2
pNp0

V 2
0
Mp

= 0 (28)

yelding

V 2

0 =
T0
M0

; (29)

which means that the moving stationary frame has exactly
the velocity of the dust-acoustic phase velocity.

In �5=2 -order, we obtain the Korteweg-de Vries (K-dV)
equation
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2
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�
;

(31)
and where ap1 and an1 are values of ap and an for V0 = Cda

(that is, M = 1), respectively.
The solution of (30) is of a shifted hyperbolic secant

square function

�1 = �11Sech
2[(� � ~M�)=w]; (32)

where ~M = M � 1; with w =
q
2= ~M and �11 = 3 ~M=�.

In (32), � and � are in normalized units. The relative ve-
locity ~M to be a positive quantity is the necessary condition
for the existence of a soliton. Its value is the relative veloc-
ity above the dust ion-acoustic phase velocity, and the Mach
number of the soliton is 1+ ~M , w represents the width of the
soliton and �11 is its amplitude. This potential can be either
positive (compressive soliton) or negative (rarefactive soli-
ton), depending on the sign of �. At this point, we cannot
assure the sufficient condition for the existence of a soliton
solution.

III.3 Third order expansion and dust acoustic
double-layer

We can derive the so-called modified K-dV equation
from (2) to (8), just as expansion used in the previous sec-
tion using up to "3 terms. However here we make changes
to the following new variables

� = �(x� V0t) and (33)

� = �3t: (34)

Substituting (21) to (25) into (2) to (8), we can analyze
the resulting equations, order by order.

The �0-order equation is just the quasi neutrality equa-
tion (1) or (17).

The �1–order equation reproduces (28):

Æ � Ne0

Te
+

Ni0

Ti
� Z2

nNn0

V 2
0
Mn

� Z2
pNp0

V 2
0
Mp

= O(�1)

The next higher order equation, �2-order, is

Æ�2 � ��2

1 = 0 (35)

where� and Æ are given by (31) and (28), respectively. Since
Æ is O(�1), we say that ��2

1
is of O(�3). So, we can incor-

porate the term ��2
1 to the �3 -order equations.

Thus, we obtain for the �3 -order equation, the modified
Kortweg-de Vries (mK-dV) equation
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where
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(37)
In the stationary frame � = �� ~M� , (36) takes the form

1

2

�
@�1
@�

�2

+ u(�1; ~M) = 0 (38)

where u(�1; ~M) = � ~M�1 + (�=6)�3
1
+ (�=4)�4

1
:

The conditions

u(�11; ~M) = 0 (39)

@u

@�1

����
�1=�11

= 0 (40)

produce the double-layer solution [8]

�1(�) =
�11
2

[1� tanh(w�)] (41)

where �11 = �=(3�); ~M = �(�=4)�11 and w =p
�(�=8)�2

11
: The double-layer solution exists only if � <

0.

IV Arbitrarily large amplitude non-
linear dust acoustic waves

IV.1 Compressive and rarefactive DA solitons

In this section we will be looking for arbitrary large am-
plitude solutions of the nonlinear equations (2) to (8) in the
stationary frame � = x�V0t (unnormalized). From (4) and
(5), with the condition that at � ! �1; Np ! Np0 and
Vp ! 0, we obtain

Np =
Np0p

1� 2Zpe�=(MpV 2
0
)

(42)

for the positive dust particle number density. Similarly, from
(6) and (7) for the negative dust particle number density

Nn =
Nn0p

1 + 2Zne�=(MnV 2
0
)

(43)

Inserting expression Np and Nn and Boltzmann distri-
butions Ne and Ni into (8), we obtain, in the stationary
frame

c

@2�

@�2
= 4�e

"
Ne0 exp

�
e�
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�
�Ni0 exp

�
�e�
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�
+

Nn0Znp
1 + 2Zne�=(MnV 2

0
)

(44)

� Np0Zpp
1� 2Zpe�=(MpV 2

0
)

#

Multiplying both sides of (44) by @�=@� and integrating once from -1 to �, with the conditions that �! 0 and @�=@� ! 0
at � ! �1, we obtain the Euler type energy integral

1

2

�
@�

@�

�2

+ u(�) = 0 (45)

where

u(�) = �
�
ne0
ae

(eae� � 1) +
ni0
ai

(e�ai� � 1) +
nn
an

(
p
1 + 2an�� 1) +

np
ap

(
p
1� 2ap�� 1)

�
: (46)

is the modified Sagdeev potential [9]. In (45) and (46) all the quantities have been normalized. The derivative of u(�) with
respect to � is given by

du(�)

d�
= �

"
ne0e

ae� � ni0e
�ai� +

nnp
1 + 2an�

� npp
1� 2ap�

#
; (47)

d

whose right hand side is the normalized right hand side of
(44). Equation (45) can have physically meaningfull solu-
tion only in the region of � where u(�) is negative, because
�0(�) =

p�2u(�), from (45). Let us, then, assume that

at � = �0, u(�0) = u0(�0) = 0 and that at � = �1,
u(�1) = 0, and analyze the solution, �, near these values.

At �0 the leading ordet of Taylor expansion of u(�) is
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u(�) � a1(� � �0)
2. Plugging it to equation (45) we get

d(� � �0)

�� �0
= �p�2a1d�;

whose solution is

� = �0 +A exp(�
p
�2a1(� � �0)):

Since we are seeking a pulsed solution we choose ”+ ”
for � ! �1, and ”�” for � ! +1. From this we get the
condition that a1 is necessarily negative, that is u00(�) < 0,
or that u(�) is a maximum at �0.

At �1, the leading order for the Taylor expansion of u(�)
is

u(�) � b1(�� �1)

Plugging it to equation (45) we get

d(� � �1)p
�� �1

= �
p
�2b1d(� � �1)

whose solution is

� = �1 � b1
2
(� � �1)

2

This shows that at �1 we have a maximum (soliton) of �(�)
if �1 > 0, and a minimum (caviton) if �1 < 0.

We can sumarize this analysis as in (48), for the exis-
tence of soliton (caviton).

(i) u(�) = u0(�) = 0 at � = 0
(ii) u(�) = 0 at � = �1 6= 0 and

u0(�) < (>)0 for �1 < (>)0;
(iii) u(�) < 0 for 0 < j�j < j�1j

(48)

The condition (i) is automatically satisfied from the def-
inition of u(�). When u00(0) < 0 then, we may have soliton
and/or caviton.

IV.2 Positive and negative double-layers

Double-layers can be understood as a sudden change of
the electric potential due to the space charge. Finite ampli-
tude double-layers exist provided that

(i) u(�) = u0(�) = 0 at � = 0
(ii) u(�) = u0(�) = 0 at � = �1 6= 0
(iii) u(�) < 0 for 0 < j�j < j�1j

(49)

This comes from the same analysis as in previous sec-
tion. Now the conditions in the item (ii) provide two equa-
tions:

ne0ae + ni0ai � nnan � npap = 0

and
ne0a

2

e � ni0a
2

i + 3nna
2

n � 3npa
2

p = 0: (50)

which are conditions under which double-layers exist.
From conditions (48) for solitons and (49) for double-

layers we have conducted a through parametric analysis to

determine the regions where solitons and double-layers ex-
ist.

IV.3 Numerical Results

Here we will show the parametric boundaries for the ex-
istence of solitons and double layers.

A Sagdeev potential profile, u(�), which results in co-
existence of compressive and rarefactive (caviton) solitons
is shown in Fig. 1, where the profile depicts the expression
(46) with values of parameters: M = 1:1; ne = 0:571;
ni = 0:429; np = 0:761; nn = 0:619; ae = 0:4;
ai = 1:7986; an = 0:826 and ap = 0:4141, whose values
are satisfy the relations (17) - (20). The Sagdeev potencial
is a negative value in the interval of electric potential � from
0 to �1 with one side ending on a maximum and the other
side just crossing the zero value of u(�). This will produce
a soliton (compressive soliton) . On the other region, for �
from �2 to 0, a caviton is produced.
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Figure 1. Sagdeev potential u(�) versus electric potential �, for
soliton with parameters M = 1:1; ne = 0:571; ni = 0:429;
np = 0:761; nn = 0:619; ae = 0:4; ai = 1:7986; an = 0:826
and ap = 0:4141.

Figure 2 shows a 3D plot of u(�m) as function of two
parametrs ne0 and np for a fixed Mach number M = 1:5,
where �m = 1

2ap
, �m is the maximum value of the � such

that u(�) is a real number. Since u(�) is a maximum at
� = 0 , so it is a negative value near this point, if u(�) is
a positive number at �m, it means that u(�) has crossed a
u(�) = 0 point somewhere before �m. This guarantees a
soliton. In the figure the light gray color shows the region
of positive u(�m) and the dark gray color shows the region
of negative u(�m). Therefore the light gray color shows the
region of soliton. The loci where u(�) = 0 is the boundary
of the region of existence of solitons.
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Figure 2. A 3D plot of u(�) in function of two parametrs ne0 and
np for a fixed Mach number M = 1:5 for the maximum value of
�, just before u(�) turns into a complex value.

In Fig. 3 we show several of these boundary curves
where u(�m) = 0 for various values of M with the same
paramerers as in the previous figure. The curve 3 - 0 is for
M = 1:5, 1 - 0 is for M = 1:01, 2 - 0 for M = 1:1, and 4 -
0 for M = 2:0.
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n
p

Soliton Region

No Soliton
1

Soliton Region

No Soliton

2

Soliton Region

No Soliton

3

Soliton Region

No Soliton

4 0

Figure 3. Contour plot of soliton solution for different M : 1 -
M = 1:01; 2 - M = 1:1; 3 - M = 1:5; 4 - M = 2:0.

With the same way, we calculated the regions of exis-
tence of cavitons (Fig. 4) for different Mach number M : 1
- 0 for M = 1:01; 2 - 0 for M = 1:1; 3 - 0 for M = 1:5 and
for the minimum value of �.
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0

0.2
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1

n
p

12

Cavitons
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Cavitons
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3
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Figure 4. Contour plot of caviton solution for different M : 1 -
M = 1:01; 2 - M = 1:1; 3 - M = 1:5.
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Figure 5. Potential energy versus electric potential, for posi-
tive double layer, with parameters ne = 0:525; ni = 0:475;
np = 1:665; nn = 1:615; ae = 0:1; ai = 1:995;an = 0:2;
ap = 0:02.

Figure 5 is a profile of u(�) for the parameters ne =
0:525; ni = 0:475; np = 1:665; nn = 1:615; ae = 0:1;
ai = 1:995; an = 0:2; ap = 0:02. The region between
�0 and �1 , u(�) is negative and are limited by two maxima.
These conditions guarantee the existence of a double layer.

The case of negative double layer is presented on Fig.
6 with the value of the parameters ne = 0:9895; ni =
0:01052; np = 1:691; nn = 1:7116; ae = 0:9; ai = 10:4;
an = 1:0; ap = 0:1:
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Figure 6. Potential energy versus electric potential, for negative
double layer, with parameters ne = 0:9895; ni = 0:01052;
np = 1:691; nn = 1:7116; ae = 0:9; ai = 10:4; an = 1:0;
ap = 0:1.
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Figure 7. Loci of u(�) = 0 and u0(�) = 0 in the space (ne0; �)
for M = 1:5 and np = 4.

Double layers exist if both ends of the interval for neg-
ative u(�) are maxima as shown in figuras 5 and 6. Now,
at � = 0, u(�) is either a maximum (M > 1) or a mini-
mum (M < 1) so if M > 1 we guarantee one maximum
at � = 0. Now, the other end to be a maximum, we have
to have both u(�) = 0 and also u0(�) = 0, at the same
point. Figure 7 gives the loci of u(�) = 0 in solid line and
u0(�) = 0 in dashed line in the space (ne0; �). It shows
one point at ne0 = 0:6 the both conditions are met. This
determinies the point where we have a double layer. After
determining the point where both functions are zero, one has
to check whether the function u(�) is negative for all values
of � from zero to the crossing point. The calculation is for
case Mach number M = 1:5 and parameter np = 4.
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Figure 8. Ploting of u(�) and u0(�) as function of � with ne0 =
0:602.

The necessary conditions for the double layer solution
are met as you can see in the graph (Fig. 8) by ploting of
u(�) (solid line) and u0(�) (dashed line) as function of �
with parameter ne0 = 0:602.

By changing parameters we can cover the regions where
these conditions are satisfied. This is an extensive calcula-
tion and data collecting which will be done in another con-
text.

We proceed to obtain the parametric regions where con-
ditions (49) are satisfied. Starting with 9 parameters defined
in (14)-(16) with the inclusion of 4 equations (17)-(20), we
have a 5-parameter region. We introduce parameters � and
� in substitution of ai and an, � = ae=ai = Ti=Te and
� = ap=an = ZpMn=ZnMp. So, we have to deal which a
function f(ne0; np;M; �; �) which satisfies relations given
in (49).

Furthermore we reduce the 5 parameters to a even
smaller number by taking a reasonable physical values for
�, � andM , resulting in a two parametric space: g(ne0; np).
In Fig. 9a, we show the curves where the double layer solu-
tions are found. We have chosen � = 0:09 and � = 0:10.
For each given value of M , from 1:01 to 3:0, a curve is
drawn on ne0 � np space where double layer exists.

The same treatment was applied for the particular case
of laboratory plasma reported by Oohara et al [10], where a
fullerene-ion plasma of the same mass (C60) was produced
in the process of a hollow electron-beam impact ionization.
Authors observed two low-frequency electrostatic waves.
For calculations we used main characteristics of the dusty
plasma, i.e. ne=np � 10�6, ne = 1:0, np = nn � 106 and
Mp = Mn. Moreover, we introduce, on their experimental
conditions, a small quantity of ions to fulfill conditions of
the four component dusty plasma. Thus we have parame-
ter � = 0:09 and � = 1:0 that is different from the case
discussed above.

In the Figure 9b the result of the double layer conditions
for different M values is shown. As we can see, the authors
[10] have possibility to obtain a double layer in laboratory
plasma. It is interesting to observe the different comport-
ment of the curves for small values of the np. In contrast to
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Figure 9. Relations between the parameters np and ne for different values of Mach number M and parameter � = 0:09: a) � = 0:1; b)
� = 1:0.

the case of low �, for the double layer exist it is necessary
increasing both ne and np for some constant M . Further-

more, the limit of the double layer existence decrease with
increasing �.

V Summary

The linear and nonlinear properties of dust-acoustic waves
(DAW) were studied. We used the model of multi-
component dusty plasma with inertialess electrons and ions
as well as positively and negatively charged inertial dust
grains. We found that in four component dusty plasma there
are remarkable changes in the nonlinear properties of the
DAW. We show that rarefactive and compressive DA poten-
tials can simultaneously appear, which amplitudes are the
function of the Mach number and the ratio between the pos-
itive and negative dust components. Moreover, the presence
of positively charged dust grains produces double layers in
those parameter regimes in which localized DA solitons are
absent. The theory was applied to the laboratory plasma
reported by Oohara et al. We predict that a double-layer
might be possible to be launched in their experiment if a
trace ions component is added. The results of the inves-
tigation can be useful for designing laboratory experiments
dealing with the demonstration of DAW in multi-component
dusty plasma with the positive and negative dust grains. Our
parametric studies of solitons and double layers should be
useful in identifying coherent nonlinear structures in the
Earth’s mesosphere. Furthermore, non-stationary double
layers could be potential accelerators for dust particulates
in space plasmas.
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