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We consider the e�ects of homogeneous Dirichlet's boundary conditions on two in�nite parallel
plane surfaces separated by some small distance a. We �nd that although spontaneous symmetry
breaking does not occur for the theory of a massless, quartically self-interacting real scalar �eld,
the theory becomes a theory of a massive scalar �eld.

I Introduction

The origin of particle mass has been a puzzle for
theoretical physicists. In the context of the standard
model, the Higgs mechanism is well accepted as the
mass generation mechanism. The underlying idea is
that the universe is �lled with a �eld, the Higgs �eld.
The spin-zero Higgs �eld is a doublet in the SU(2) space
and carries non-zero hypercharge, and it is a singlet in
the SU(3) space of color.

Bosonic gauge and fermionic matter �elds acquire
mass from their interactions with the Higgs �eld. It
is of fundamental importance to this mechanism that
excited states (i. e., with one or more Higgs) are not
orthogonal to the ground state (i. e., vacuum). Since
states with one or more Higgs carry non-zero SU(2) and
U(1) quantum numbers then they are non-zero for the
vacuum as well. As a consequence of this the SU(2)
and U(1) symmetries are spontaneously broken. The
Lagrangian is symmetric under SU(2) and U(1) trans-
formations but the vacuum is not [1]. Technically this
is achieved introducing a Higgs potential of imaginary
mass and quartic interaction.

In the Coleman-Weinberg alternative approach the
spontaneous symmetry breaking is induced by 1-loop
radiative corrections and the mass being vanishing in
the tree approximation [2]. In the massless scalar elec-
trodynamics, although the vacuum expectation value of
the classical potential is unique (classically < � >= 0),
in its renormalized form the e�ective potential in 1-loop
becomes degenerate (< � > is arbitrary). The mass
renormalization condition �xes a determined vacuum
and breaks the symmetry of the theory. The sponta-
neous symmetry breaking leads both scalar and vector

particles to dynamically acquire mass whose value is
proportional to the vacuum expectation value. This is
only possible because there are two parameters in the
theory: the electromagnetic coupling constant, e, and
the coupling constant of the quartic self-interaction, �,
which must be of order e4.

In a theory of massless real scalar �eld the existence
of just one parameter does not allow a non-zero vacuum
expectation value and the theory remains massless.

Boundary conditions do not a�ect the classical po-
tential, but quantum corrections are a�ected and the
e�ective potential changes. This may cause e�ects on
the quantum vacuum expectation value < � >. More-
over boundary conditions introduce a new parameter,
the length of the �nite region. With these considera-
tions we investigate the e�ects of boundary conditions
on the vacuum expectation value h�i = 0 and the mass
generation. Besides the introduction of a new parame-
ter makes more attractive the real scalar �eld theory.

The study of boundary conditions e�ects in Quan-
tum Field Theory is not new. The Casimir e�ect [3],
which is the change of the vacuum energy density due to
constraints on the quantum �eld, induced by boundary
conditions in space-time was experimentally observed
in 1958 [4] and recently [5, 6], and a lot of applica-
tions have been accomplished [7 - 10], such as: gravity
models, black holes, bag models, nonlinear meson the-
ories describing baryons as solitons, the cosmological
constant problem, compacti�cation of the extra dimen-
sions in Kaluza-Klein theories, quantum liquids [11],
condensed matter [12].

In this work we study the e�ects of the boundary
conditions on a massless real scalar �eld with quartic
self-interaction which satis�es homogeneous Dirichlet
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conditions on two in�nite parallel plane surfaces sepa-
rated by some small distance a. The study of the ��4

theory is very important in face of its applications in the
Weinberg-Salam model of weak interactions, fermions
masses generation, in solid state physics [13], ination-
ary models [14], solitons [15] and Casimir e�ect [16].

The e�ects of the boundary conditions on a ��4

theory were �rstly considered, until where we are con-
cerned, by Ford [17], Ford and Yoshimura [18] and Tom
[19]. They found that a massless scalar �eld at the tree
level could develop a mass at the one-loop level as a
consequence of both the ��4 self-interaction and the
boundary conditions. In this work we show that if the
length of the �nite region is small enough the theory
will became one massive at the order ~0. That is be-
cause � and the length of the region �nite, a, are in-
dependent parameters and the second derivative of the
e�ective potential become of the order ~0, even though
it is a one-loop result, then it can not be subtracted out
by the mass counterterm of the order ~. So there is a
physical mass (measure) and we can not set the renor-
malized mass to zero. Hence boundary conditions are
a possible mass generation mechanism when the length
of �nite region is small enough. We understand a is
small enough when there is a typical length scale where
a2 is of the order �. Therefore that typical length scale
determines the mass scale of theory.

It is important to stress that we do not use the imag-
inary mass term of the Higgs potential in order to avoid
that it induces spontaneous symmetry breaking. There-

fore with the purpose to evaluate the actual e�ects of
boundary conditions we consider the real scalar �eld,
with a second parameter introduced by the boundary
conditions.

As will be seen subsequently the boundary condi-
tions do not induce a degenerate vacuum state, al-
though there is a typical length scale of the �nite region
where the massless scalar �eld acquires mass.

The outline of the paper is as follows: Section 2 is
a brief review of how to calculate the e�ective poten-
tial at 1-loop. In section 3 we calculate the e�ective
potential for massless real scalar �eld, and evaluate the
vacuum state and the renormalized mass. In contrast
to [19], we derive the e�ective potential at the one-loop
level as a sum of modi�ed Bessel functions, then we take
the length of the �nite region, a, very small to expand
each term of the sum in power of a and �nally throw
away higher-order terms. In section 4 we point out our
conclusions and some speculations.

II E�ective Potential

In the functional method approach of quantum
�eld theory, the e�ective potential is found as a loop
expansion (or equivalently in powers of ~), that is, its
classical amount plus quantum corrections [20 - 26].

Let �(x) be a single real scalar �eld in a Minkowski
space-time, subjected to the potential V (�). The e�ec-
tive potential to the �rst order in the loop expansion is
given by

c

Vef (�c) = Vcl (�c) +
1

2

~



ln det

�
Æ2S [�c]

Æ� (x) Æ� (y)

�
= Vcl (�c) + V

(1)
ef (�c) ; (1)

d

where the classical �eld �c is the vacuum expectation
value in the presence of an external source J (x), taken
as a constant value �c = �, therefore, in the limit
J ! 0, S [�] is the classical action and 
 is the four
dimensional space-time volume.

Performing the analytic continuation to the Eu-
clidean space-time [21 - 23], the classical action can
be written as

S[�] =

Z
d4x

�
1

2
@��@��+ Vcl(�)

�
; (2)

where the Euclidean summation convention is assumed
for repeated indexes. From Eq.(2) we get the matrix
m(x; y) of the quadratic variation of the action S[�]

c

m(x; y) �
Æ2S[�]

Æ�(x)Æ�(y)
= Æ4(x � y)[�Æ��@�@� + V 00

cl (�)]: (3)
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Due to the Euclidean analytic continuation the op-
erator m is a real, elliptical and self-adjoint. For oper-
ators with these properties we de�ne a generalized zeta
function [7, 8, 23 and 27]. If f�ig are the eigenvalues of
the operatorm(x; y), then the generalized zeta function
associated to M (x; y) (m! M = m

�2
) is de�ned by

�M (s) =
X
i

�
�i
�2

��s

; (4)

where we have introduced an unknown scale parame-
ter �, with dimensions of (length)�1 or mass in order
to keep the zeta function dimensionless for all s. The
introduction of the scale parameter �, can be best un-
derstood when we observe that a hidden splitting of
the divergent integral there is in the proceeding of zeta
function regularization, that is, a separation of the di-
vergent and �nite parts of the Vef (�c) ( on page 208
[23] and on page 88 [24]). It is well-known the relation
[21]

ln detM = �
d�M (0)

ds
: (5)

Now, the e�ective potential in the one-loop approx-
imation can be written as

Vef (�c) = Vcl(�c)�
1

2

~




d�M (0)

ds
: (6)

Due to the regularity of the generalized zeta func-
tion at s = 0 [27], the evaluation of the e�ective po-
tential (Eq.(6)) gives a �nite result with no need of
substraction of any pole, or addition of in�nite counter-
terms. Evidently, the �tting of the theory parameters
taking into account the observed results, leads to the
renormalization conditions

d2Vef
d�2c

����
�c=h�i

= m2
R; (7)

d4Vef
d�4c

����
�c=h�i

= �R; (8)

where mR is the renormalized mass, �R is the renor-
malized coupling constant and < � > is the minimum

of the e�ective potential (subtraction or renormaliza-
tion point) [25]. Since �c takes on value < � > in the
ground state, then < � > is called the vacuum expec-
tation value of �, < � >=< 0j�j0 >.

In the case of theories of null mass, the subtraction
point for the renormalization condition (8) cannot be
taken at h�i = 0 due to the logarithmic singularity.
Even so in that case there is no intrinsic mass scale;
therefore all the renormalization points are equivalent
and the condition (8) is replaced by

d4Vef
d�4c

����
�c=M

= �R; (9)

where M is a arbitrary oating renormalization point
[23].

III Mass Generation

Now, let us consider the theory of a massless, quar-
tically self-interacting real scalar �eld �(x) satisfying
homogeneous Dirichlet's boundary conditions on two
in�nite parallel plane surfaces separated by some small
distance a.

The Lagrangian density for this theory is

L =
1

2
@��@

���
�

4!
�4: (10)

The Lagrangian above is even in �, so it is invariant un-
der discreet symmetry (G-parity) de�ned by the trans-
formation �! ��.

In this case the zeta function, de�ned by Eq.(4), is
given by [7, 8, 24, 28 - 33]

�m (s) =

1X
N=1

Z +1

�1




(2�)
3
a
d3k

�
k2 +

�2N2

a2
+
�

2
�2c

��s
:

(11)
Using the integral [28]

Z +1

�1

�
k2 +A2

��s
dmk =

�
m

2 �
�
s� m

2

�
� (s)

�
A2

�m
2
�s
;

(12)
and using the formula [34]

c

1X
N=1

�
N2 +B2

��p
= �

1

2
B�2p +

�
1

2

2B2p�1� (p)

"
�

�
p�

1

2

�
+ 4

1X
N=1

Kp� 1

2

(2�NB)

(N�B)
1

2
�p

#
; (13)

where K�(x) are modi�ed Bessel functions, we get

�m (s) = �



16�
3

2 a

�
�
s� 3

2

�
� (s)

(��c)
3�2s

+
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+



16�2
1

(s� 1) (s� 2)
(��c)

4�2s
+

+



4�2
(��c)

4�2s

� (s)

1X
N=1

Ks�2 (2N�a�c)

(N�a�c)
2�s ; (14)

where we de�ne �2 = �
2 for the sake of simplicity.

In order to calculate the one-loop e�ective potential, we compute �m (0) and � 0m (0) from Eq.(14) and use them
in Eq.(6)1

Vef (�c) =
2�2

4!
�4c +

~

24�a
�3�3c +

~

64�2
�4�4c

�
ln

�
�2�2c
�2

�
�

3

2

�
+

�
~

8�2
�4�4c

1X
N=1

K2 (2N�a�c)

(N�a�c)
2 ; (15)

recalling that K�(x) = K��(x). We notice that, as we have to take absolute value of �c in the formula (13), the
second term on the right-hand side of Eq.(15) does not yield symmetry breaking.

Let m � 0 be an integer number, such that, 2m�a�c < 1 and 2(m+1)�a�c � 1. Then, the sum in Eq.(15) can
be write as

~

8�2
�4�4c

1X
N=1

K2 (2N�a�c)

(N�a�c)
2 =

=
~

8�2
�4�4c

mX
N=1

K2 (2N�a�c)

(N�a�c)
2 +

~

8�2
�4�4c

1X
N=m+1

K2 (2N�a�c)

(N�a�c)
2 : (16)

Since 2N�a�c < 1, for any N � m, we expand the �rst term on the right-hand side of Eq.(16) using the relation
[35 - 39] �x

2

��
K� (x) =

1

2

��1X
a=0

(�1)
a
�x
2

�2a � (� � a)

� (a+ 1)
+

+

1X
a=0

(�1)
� �x

2

�2�+2a
� (a+ 1)� (� + a+ 1)

h
 (a+ 1) +  (� + a+ 1)� 2 ln

�x
2

�i
; (17)

for � > 0, to get

~

8�2
�4�4c

1X
N=1

K2 (2N�a�c)

(N�a�c)
2 =

~

16�2a4

mX
N=1

�
1

N

�4

�
~

16�2a2
�2�2c

mX
N=1

�
1

N

�2

+

�
~

16�2
�4�4c

mX
N=1

[ln (N�a�c) +  � 3=4] +
~

8�2
�4�4c

mX
N=1

O (N�a�c)
2
+

+
~

8�2
�4�4c

1X
N=m+1

K2 (2N�a�c)

(N�a�c)
2 ; (18)

where  is the Euler number.
The �rst sum on the right-hand side of Eq.(16) exists, provided �a (�a = a�) be of order �n (n � 0), since ��c

(��c =
�c
�
) must be of order �0. Hence, up to higher-order terms, the e�ective potential becomes

Vef (�c) =
2�2

4!
�4c +

~

24�a
�3�3c �

~

16�2a4

mX
N=1

�
1

N

�4

+
~

16�2a2
�2�2c

mX
N=1

�
1

N

�2

: (19)

For large m, we may approximate the two sums in Eq.(19) to Riemann zeta functions and to obtain

Vef (�c) =
2�2

4!
�4c +

~

24�a
�3�3c �

~�2

1440a4
+

~�2�2c
96a2

: (20)

1We keep h to mark the quantum corrections, but we set h = c = 1 everywhere else.
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The minimum occurs at �c = h�i, where

dVef
d�c

����
�c=h�i

= 0: (21)

Di�erentiating Eq.(20), we have

h�i

�
�2

3
h�i

2
+

~�3

8�a
h�i+

~�2

48a2

�
= 0: (22)

There will be non-trivial solution of Eq.(22) if the sum
of the terms between brackets vanishes. However there
is not �a (with respect to the orders of �) which satis�es
Eq.(22). Therefore the minimum of Vef is satis�ed for

h�i = 0: (23)

Eq.(23) shows that the vacuum is non-degenerate,
and therefore spontaneous symmetry breaking cannot
occur. Actually, the boundary conditions allow just one
constant vacuum solution, h�i = 0. If the result had
been h�i = constant 6= 0, the e�ective potential would
not have been used and a solution h�i = �0(x) would
have been expected because the boundary conditions
break the translational invariance.

Although Eq.(20) is �nite, that is not a �nal result
because the coupling constant in it is an arbitrary pa-
rameter. Therefore we must �t it to the renormalized
coupling constant using the renormalization condition
Eq.(8) to get � = �R.

The renormalized mass of the scalar �eld is given
by

d2Vef
d�2cl

����
�c=h�i=0

=
~�R
96a2

= m2
R; (24)

that unlike what we expected it can be non-zero.
Eq.(24) shows if �a2 is of order � then the mass will

be of order �0. This result is in agreement with our ini-
tial assumption. If �a2 is of lower order than � then the
mass will lie far outside the expected range of validity
of our approximation. It follows that there is a typi-
cal length scale given by the parameter a of the theory.
Within this length scale, the massless scalar �eld theory
with self-interaction becomes massive due to boundary
conditions e�ects.

Although topological mass has already been ob-
tained [17 - 19] to order � for a theory which is mass-
less at the tree-graph level, we stress the fact that if a
is small enough the theory will become one massive in
order (~0). This is because � and a are independent
parameters, so the mass term found can be of order
zero-loop, even though it is a one-loop result (it is from
radiative corrections). Our result of Eq.(24) is in agree-
ment with that obtained by David J. Toms [19].

IV Conclusion

We have studied the theory of a massless, quarti-
cally self-interacting real scalar �eld satisfying homo-
geneous Dirichlet's boundary conditions on two in�nite

parallel plane surfaces separated by some small dis-
tance a. As a result, we infer:
i) For small a (�a / �n, n > 0) there is not any order
of �a with regard to order of � which leaves the ground
state (vacuum) degenerate, i. e., spontaneous symme-
try breaking does not occur. So, the e�ective potential
can be used to evaluate the renormalized mass and the
Casimir energy.
ii) There is a typical length scale of the �nite region
where massless scalar �eld acquires mass, i. e., if
�a / �n, with n � 1, the theory becomes a theory of a
massive real scalar �eld. Therefore, when a becomes
small enough the theory undergoes a transition from
one massless to one massive. That typical length of
�nite region determines the mass scale of the theory.
iii) Since spontaneous symmetry breaking does not oc-
cur, the mass generation is only due to the boundary
condition.

Finally, we speculate that boundary conditions may
be a mechanism of mass generation, i. e., that mass-
less theories de�ned in �nite regions of space-time be-
come massive theories when the length of �nite region
is small enough. Therefore we conjecture that con�ne-
ment may be a candidate for an alternative mechanism
for the mass generation of quarks.

It is clear we do not claim that these are actual
boundary conditions which produce the masses of the
particles. We only consider boundary condition may be
an alternative mechanism for particle mass generation.
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