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A description is made of electron trajectories in a magnetic �eld consisting of helical wiggler and a
uniform axial guide �eld. The explicit motion of particles for which the quadratic approximation
to the Hamiltonian was carried out in some previous publications is now presented. The transverse
position as a function of time is essentially the superposition of three circular motions of di�erent
frequency; one corresponds to the �xed point, the second to the cyclotronic motion, while the third
is a very slow motion of the center of gyration. Electrons in this model swept out the x�y plane with
elliptical and circular orbits that characterize the group I, the normal and reversed-�eld group-II
con�gurations. Several illustrative examples are discussed in detail.

I Introduction

The calculation of the trajectories of electrons in a Free
Electron Laser (FEL) with a helical wiggler �eld and a
uniform axial guide �eld has been the subject of many
researches [1-11], in particular when the spatial depen-
dence of the wiggler �eld is included. It was estab-
lished in early works that a particular case of steady
motion exists, in which the electrons follow an axially
centred helical path with constant axial velocity in such
a way that the transverse velocity vector of the electron
is parallel or anti-parallel to the transverse magnetic
�eld at each point. Of course, now electron is likely to
follow this ideal trajectory, and the question of what
the non-ideal trajectories look like arises. Freund and
Ganguly [3] have studied the equations of motion in
the neighborhood of the ideal trajectory, and have ob-
tained two squared frequencies, which characterize the
oscillations of the electrons about it. Rhimi et al [1]
have extended this work by using guiding centers coor-
dinates showing that the transformed linear momentum
p̂0z is conserved along any trajectory as a consequence
of the screw-displacement symmetry of the magnetic
�eld. For a given electron, one determines its value from
the initial conditions, and provided certain conditions
are met, a �xed point of the Hamiltonian exists. The
Hamiltonian is then expanded about the �xed point,
and its quadratic term may be reduced by the use of the
properties of the \rotational" variable ĥ to two uncou-
pled harmonic oscillators of characteristic frequencies


̂� and constant amplitudes
���ĥ� �t̂ = 0

����2.
In this paper, we continue the work of Refs. [1] and

[11] with the study of the trajectories described by those
harmonic oscillators. In order to investigate the perfor-
mance of FELs, we have developed a theoretical study
of the trajectories then written a code based on the for-
mer works, that evaluates numerically the orbits of the
particle in both space and velocity con�gurations. The
code HOTA (Harmonic Oscillator Trajectory Approxi-
mation) [12] using the theoretical approach of Refs. [1]
and [11] is a MAPLE V (Release-4) program that given
the initial conditions of both the FEL and the beam
parameters, gives the electron trajectory as output.

This introduction is followed by a section devoted
to the calculation of the orbits. In Section III, a simple
Approximative description of the trajectories is given.
Before the conclusion comes Section IV, which brings
out the essence of the theoretical work with a numerical
application.

II Calculation of the orbits

The explicit calculation of the motion of an electron for
which the quadratic approximation to the Hamiltonien
is adequate proceeds as follows. It is necessary to com-
pute its axial position ẑ

�
t̂
�
. The axial velocity is found

to be [1] :

�z =
dẑ

dt̂
=

�
P̂z0 � P̂� + P̂ 

�.
Ĥ (1)

First, we insert into Eq. (1) the explicit time de-
pendence of the variables P̂� and P̂ . Second, a subse-
quent integration yields the axial position as a function
of time,
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In this expression, �z0 is the value of the axial velocity at the �xed point, and the quantities Æ�z (time-
independent correction) and Ek may be written as follows :

Æ�z =
1
Ĥ0

����ĥ+���2 ��2+ +�2+ � ��2+���2+�� ��z0 
̂+

�
+���ĥ����2 ��2� +�2� � ��2����2��� ��z0 
̂�

�� (3)

E1 =
�2

���ĥ+���
Ĥ0

�q
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q
P̂ 0 (�+ + �+ �)

�
(4)
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q
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Ĥ0

[������� + �� �� � ] (7)

E5 =
2
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d

where we follow the same notation of Ref. [11] for ho-
mogenity reasons.

The expression of ẑ
�
t̂
�
given by Eq. (2) shows that

if any of the three quantities 
̂�, 
̂+ � 
̂� are very
small, the deviation from the ideal position coordinate

may become appreciable even if the amplitudes
���ĥ����

are acceptably small. Consequently, the operating con-
ditions should be chosen so as to avoid this diÆculty.

Since 
̂� vanishes at the limits of stability, it is clear
that operation too close to the limits is likely to be un-
successful. The di�erence 
̂+ � 
̂� becomes small in
the region where the frequencies attempt to cross hence
this is also an unsuitable operating region.

Once the longitudinal coordinate ẑ
�
t̂
�
of Eq. (2)

has been computed, Eq. (15) of Ref. [1] provides us
with explicit expression for the transverse position:

c

x̂+ iŷ =
q

2
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(10)
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where by ĥ� we mean the time dependent values���ĥ���� e i ( �+
̂� t̂). We observe that the transverse mo-

tion consists of linear superposition of �ve circular mo-
tions, one that corresponds to the ideal axially centered
helical motion r̂0, and four that are linear in the oscil-
lator amplitudes. The phase of the principal circular
motion is ẑ

�
t̂
�
.Since Eq. (2) has oscillatory pieces in

addition to the term linear in time, the true time de-
pendence of x̂ + iŷ is quite complex, and the Fourier
spectrum involves several frequencies.

The transverse velocity of the electron may be eval-
uated. Computing the time derivative of the transverse
position coordinate (Eq.(10)), we obtain the following
expression:

c
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III Simple approximate descrip-

tion of the trajectories

The preceding treatment has considered in great de-
tail the most general motion, which our model can pre-
dict. In this section we present a simpli�ed approx-
imate description of the trajectories. We obtain this
by setting equal to zero a certain number of quantities,
which are numerically quite small over a certain do-
main of parameters. What emerges, at least in the fa-
vorable situations, is a quantitatively correct but quite
simple description of the trajectories in term of the
ideal helical motion accompanied by a very slow ro-
tation of the instantaneous center of gyration as well
as a parasitic cyclotronic motion. The axial velocity of
an electron oscillates about its ideal value at a single
frequency, giving rise to a fairly simple Fourier spec-
trum for the transverse motion. In Ref. [3], Freund
and Ganguly have presented a thorough description of
these orbits, and of the perturbed trajectories, which
remain in their vicinities. They establish the essential
relation between the longitudinal and transverse veloc-
ities. Writing j�j = �?=�z, they �nd:

 �zkw = 
0 � 
w
�
1 + ��2

�
I1 (�) (12)

where I1 denotes the modi�ed Bessel function of order
1. Positive � corresponds to trajectories of group II,
with Ĥ0 �z0 < 
̂0, whereas negative � corresponds to
trajectories of group I, with Ĥ0 �z0 > 
̂0.

Although the motion we predict in general may be
quite complex, inspection of our Figs. 1-4 of Ref. [11]
shows that for certain ranges of scaled radius j r̂0j, all
but two of the coeÆcients ���, etc., are quite small.

Next, we note that in general
q
P̂ <<

q
P̂�, and it

might be reasonable to neglect it. If we also take into
account the fact that one of the frequencies 
̂� is al-
most equal to the axial velocity at the �xed point, we
obtain a greatly simpli�ed description of motion. Two
cases can be presented:

First case: If Ĥ0 �z0 > 
̂0, we may use 
̂+ � �z0,
��� = 1p

2
, �+ = 1p

2
,

and all others zero. For the shift in mean longitudinal
velocity we �nd:

c
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1
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����ĥ+���2
�
1

2
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̂+

�
+
���ĥ����2

�
1

2
� �z0 
̂�

��
(13)

which implies that increasing the oscillator amplitude ĥ+ produces a small increase in speed, while increasing ĥ�
has the opposite e�ect.

All the quantities Ek are zero expect

E2 = �
2
���ĥ����qP̂�
p
2Ĥ0

(14)
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which implies that the ripple in longitudinal speed is caused by the ĥ� amplitude, and has the frequency 
̂�. The
axial position is given by:

ẑ (t) = ẑ (0) + (�z0 + Æ�z) t̂+
E2


̂�

h
sin

�

̂�t̂+  �

�
� sin �

i
(15)

d

The transverse position is then given by :

x̂+ i ŷ = r̂0 e
i ẑ +

s
1


̂0

�
�ĥ�+ + ĥ�

�
e i ẑ (16)

which corresponds to a superposition of three circular
motions, one of which is the projected ideal helical mo-
tion of scaled radius j r̂0j, while the other two have

scaled radii of
q

1

̂0

���ĥ+��� and q
1

̂0

���ĥ����, respectively.
If we neglect the ripple and shift of �z0, then the three
circles are swept out uniformly in time at the respec-
tive frequencies �z0, �z0�
̂+ and �z+
̂�. Taking into
account the near equality of �z0 and 
̂+, we see that
the amplitude ĥ+ corresponds to an extremely slow ro-
tation. This has been described in the literature as the
guide center motion [3], about which the more rapid cir-
cular motions occur. The radius of the circle described
by the guide center is determined by

���ĥ+���, which is es-

sentially the modulus of the initial value of our dynam-

ical variable
q
P̂ e

i  � i
q
P̂ 0. The desired FEL mo-

tion then occurs about this displaced guide center, and
is accompanied by the additional circular motion at the
frequency �z0+
̂�. The radius of this cyclotronic mo-
tion is thus determined by ĥ�, which is essentially given

by the modulus of the initial value of
q
P̂�e

i ��
q
P̂�0.

Thus our simple description leads to an interpretation
of the transverse motion as a superposition of three cir-
cular movements: �rst the ideal helical motion; second,
a very slow motion of the guide center; and third, a cy-
clotron motion, this being also the cause of the ripple
in the longitudinal velocity. This description applies
to both group I and that part of group II above the
transition region, the only di�erence being that 
̂� is
negative in the former and positive in the latter.

Second case: If Ĥ0 �z0 < 
̂0, which occurs typi-
cally for small positive values of r̂0, we have 
̂� � �z0,
�+� = 1p

2
, �� = � 1p

2
, and all others zero. Now the

shift in mean longitudinal velocity is given by
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d

which shows that the oscillator amplitude ĥ� always
contributes a positive shift, whereas the contribution
of the amplitude ĥ+ produces a negative shift when
�z0 > 0, but can have either sign when �z0 < 0.
The e�ect on the mean longitudinal speed of increasing���ĥ���� is thus an increase in normal group II operation.

Increasing
���ĥ+��� always reduces mean speed in normal

group-II operation. In the reversed-�eld con�guration

an increase in
���ĥ+��� reduces the mean speed if the quan-

tity �z0 
̂+ � �1/2 and increases it otherwise.

All Ek are zero except

E1 =
�2

���ĥ+���qP̂�
p
2Ĥ0

(18)

which mean that the ripple in �z0 is caused mainly by
the ĥ+ amplitude, and has the frequency 
̂+. The axial
position is given by

c

ẑ (t) = ẑ (0) + (�z0 + Æ�z) t̂+
E1
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�
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i
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The transverse position is then given by :

x̂+ i ŷ = r̂0 e
i ẑ +

s
1


̂0

�
ĥ�� + ĥ+

�
e i ẑ (20)

which again corresponds to a superposition of three cir-
cular motion just as in the previous case. If we again
neglect the ripple and shift of �z0, then the three cir-
cles are traced out at the respective frequencies �z0,
�z0 + 
̂+ and �z0 � 
̂�. Taking into account the near
equality of �z0 and 
̂�, we see that now the amplitude
ĥ� corresponds to the slow rotation of the guide cen-

ter. Here
���ĥ���� is essentially the modulus of the initial

value of our dynamical variable
q
P̂ e

i  �i
q
P̂ 0. The

radius of the cyclotronic motion is now determined by���ĥ+���, which is again given by the modulus of the ini-

tial value of
q
P̂�e

i ��
q
P̂�0. We thus �nd essentially

the same description as in the previous case, except
that here �z0 can be negative. The validity of this de-
scription, which applies to group-II motion below the
transition region, is somewhat greater than in the pre-
ceding case, since here the stability limits are not ap-
proached. However, the helical orbits have rather small
radii, which means that the transverse motion caused
by the parasitic cyclotron and guide center amplitudes
may be of the same order of magnitude as the desirable
FEL motion.

IV Particle orbits

This section is a numerical application of precedent the-
oretical treatment. Four examples were chosen to sweep
the di�erent group con�gurations. Figure 1 illustrates
the reversed �eld group-II mode with the following pa-
rameters (the electron beam kinetic energy is 1.05 ( in
units mc2 ) ,Bw/B0 = 0:05 and r̂0=0.05 ). In Fig. 1a
the behavior is exceedingly simple, in fact the nearly
circular projection of the trajectory on the transverse
plane corresponds to a superposition of three circular
motions giving then a nearly ideal trajectory. In partic-
ular, the rotation of the guiding center is due to the near
equality of the oscillator frequency (
̂�=-0.002809) and
the frequency of the �xed point ({0.002813). In this fa-
vorable situation we show in Figs. 1b and 1c that the
oscillations of longitudinal and transverse velocities are
regular. However, the helical orbits have rather small
radii, which means that the transverse motion caused
by the parasitic cyclotron and guiding center ampli-
tudes may be of the same order of magnitude as a de-
sirable FEL motion. Consequently, the trajectories in
the reversed-�eld mode are recognized to be quite well
behaved.

Figure 1a. The trajectory projected on the transverse
plane.

Figure 1b. The axial velocity vzas a function of time.

Figure 1c. The transverse velocity vx as a function of time.

The second example shows in Fig. 2 an electron
whose initial conditions are far from the ideal trajec-
tory illustrating the experimental results obtained by
Conde and Beke� [13], who have studied the reversed
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�eld con�guration. In this case, the beam kinetic en-
ergy is 1.75 (in unitsmc2), and the ratio Bw/B0=0.118.
It should be mentioned that the exceedingly small rip-
ple in the axial velocity Æ�z = 0:012 in Fig.2.a may be
attributed partly on the one hand to the small oscilla-

tor amplitude (
���ĥ+���=0.1, 
̂+=1.39 ) and on the other

hand to the smallness of the dimensionless radius of
the �xed-point helical orbit in the reversed-�eld con�g-
uration (0.0489). However, the transverse velocity vx
(Fig.2b) is not a simple oscillation, and the trajectory
in the transverse plane does not resemble a circle. The
transverse position as a function of time is essentially
the superposition of three circular motions of di�erent
frequency: One is the �xed-point motion, the second
is the ĥ+ oscillator which sweeps out a circle at e�ec-
tive frequency 
̂+ + �z0 while the third is the ĥ� os-
cillator which sweeps out a circle at e�ective frequency
�̂z0 � 
̂�. Since �z0 = �0:814, 
̂+=1.39 and 
̂�=-
0.817, we are in the second case (
̂� � �z0), the e�ec-
tive frequencies are {0.814, 0.576, 0.003, respectively.
The third frequency is so small that nothing is swept
out and the only e�ect is that the center of the �xed
point circle is displaced from the center of the wiggler.

Figure 2a. The axial velocity vz as a function of time.

Figure 2b. The transverse velocity vx as a function of time.

Figure 2c. The trajectory projected on the transverse
plane.

In the normal group II, beyond r̂0 = 1, for Bw=B0 =
0:2; near the limits of stability, where 
̂� vanishes, the
simple approach of Ref. [11] is not even approximately
valid. Certainly, all the coeÆcients of the normal
mode become signi�cant, �+� = 0:506; �+�� = 0:205;
�+ = 0:540 et �+ � = �0:078 (see Ref. [11]). Un-
der these circumstances, the full complexity of our gen-
eral treatment is needed to describe the trajectories.
The ripple in the axial speed becomes more complex
(Fig. 3a) while an additional circular motion compli-
cates the transverse motion. However, the longitudinal
velocity vz in Fig. 3a is not a simple oscillation, and
the transverse velocity vx is roughly regular (Fig. 3b),
the trajectory in the transverse plane of Fig. 3c does
not resemble a circle. Taking into account the rough
equality between the dimensionless frequency of �xed
point 0.4330 and the oscillator frequency 
̂+=0.4427 ,
then 
̂+ � �z0, the motion is but a rapid rotation of
the guiding center. This result con�rms the �rst case
(Ĥ0�z0 > 
̂0).

Figure 3a. The axial velocity vz as a function of time.
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Figure 3b. The transverse velocity vx as a function of time.

Figure 3c. The trajectory projected on the transverse
plane.

On the basis of Fig. 4, we infer that group-I mo-
tion presents no particular diÆculties since the trans-
verse plane describe/ a pseudo-circular motion (quasi-
constant gyroradius = -0.35) (see Fig. 4a). This ad-
vantageous situation requires either high energy 3 (in
units mc2) or high wiggler �eld Bw/B0= 0.5. In this
case, the �xed point frequency 0.8921 is roughly equal
the oscillator frequency 
̂+= 0.9520, the quasi-circular
guiding center transverse motion is preferable since the
trajectory is close to the steady-state orbits and the
axial (Fig. 4b) and transverse (Fig. 4c) velocities have
less ripple.

Figure 4a. The trajectory projected on the transverse
plane.

Figure 4b. The axial velocity vz as a function of time.

Figure 4c. The transverse velocity vx as a function of time.
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V Conclusion

The aim of this paper is to point out that, while a pow-
erful calculation of the trajectory is certainly needed
to investigate the details of the interaction between the
electrons and the non magnetic e�ects in an FEL, the
approximate but analytical approach of Refs. [1] and
[11] is capable of providing a good description of tra-
jectories, and its results can be easily interpreted.
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