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The anisotropic e�ects on the dynamical phases of a vortex lattice driven by a uniform Lorentz force
are investigated by numerical simulations. A square array of columnar defects is represented by a
periodic pinning potential. We assume that ow is elastic, so that the vortex-vortex interactions can
be represented by elastic forces. V-I characteristics and mean-square displacements and velocities
for di�erent orientations of the driving force are calculated. It is found that, for a wide range of
driving force magnitude and orientation, the vortex lattice is transversely pinned in high symmetry
directions of the pinning potential. In addition, the transverse pinned vortex lattice is thermally
depinned at high enough temperatures.

I Introduction

The transport properties in a type-II superconductor
are dominated by the quantized ux lines, vortices,
which are present in the sample in a wide range of cur-
rent and magnetic �eld. In these samples, electrical
resistivity is zero as long as there is no colective mo-
tion of vortices. As a transport current is applied, this
is only possible if the pinning force produced by mate-
rial defects or arti�cial pinning centers is strong enough
to counter-balance the Lorentz force produced by the
current. In addition to, thermal uctuations should be
suÆciently small to prevent thermally ativated ux mo-
tion through the pinning barriers. If these conditions
are not satis�ed, the vortex lattice (VL) starts moving
and competition between the VL internal forces and in-
teraction with the e�ective pinning potential can lead,
depending on the current strength, to di�erent dynam-
ics which determine the voltage-current (V-I) charac-
teristics.

Lattice structures driven by an external force over
a periodic or disordered substrate have attracted grow-
ing interest. These systems usually exhibit a variety
of complex phenomena and dynamical phases that can
dominate transport properties. Physical systems in
which dynamical phases play an important role include
boundary lubrication [1], charge density waves, Wigner
cristals, Josephson junction arrays (JJA) [2] and vortex
lattices [3-5]. The development of several techniques
to arti�cially fabricate periodic structures in supercon-
ducting samples [6] and the recent advances in real time

vortex imaging make driven vortex assemblies interact-
ing with periodic pinning a specially usefull system to
probe theories on dynamical phases and phase transi-
tions.

In this work, we use a simple elastic model to study
the dynamics of vortex lattices driven by an exter-
nal force in a superconducting �lm with periodic ar-
ray of columnar defects. Individual vortex motion is
described by overdamped Langevin equations which ac-
count for �rst-neighbors elastic interactions, square pin-
ning potential and uniform driving force Fd. The trans-
port properties are determined by calculating the time-
averaged VL center of mass (CM) velocity as a function
of Fd. We �nd that the V-I curves are anisotropic and
transverse pinning of the moving VL in high symme-
try directions of the square pinning array is observed.
We also study the stability of this phase with respect
to thermal uctuations. We �nd that the transversely
pinned VL can be thermally depinned above certain
temperatures. These results are in agreement to those
obtained by more realistic computer simmulations [3,4]
and to recent experiments in [5].

II Numerical details

We simulated the dynamics of a vortex lattice in thin
superconducting �lms with a square lattice of colum-
nar de�ects. We consider a two dimensional square
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lattice of vortices interacting with their �rst neighbors
by elastic forces, i. e., Fvv = ��d, where d is the dis-
tance between two nearby vortices and � is the elastic
coeÆcient. For this preliminar study, we used a small
system, namely 8x8 vortices, with a concentration of
one vortex per de�ect, and periodic boundary condi-
tions were considered. The defect lattice is modeled
by a periodic pinning potential. To simplify our study
we expand the pinning potential in a Fourier series,
Uv�p(r) =

P
Q UQe

iQ�r, where Q are reciprocal lattice
vectors of the square pinning lattice, considering only
the high symmetry directions of the square lattice, [1,0],
[0,1] and [1,1], that is, the Fourier components of the
pinning potential are given by:

UQ =

8><
>:

U1 Q = �
2�
ap
x̂; � 2�

ap
ŷ;

U2 Q = �
2�
ap
(x̂� ŷ);

0 otherwise:

(1)

Here we assume U1 = 0:1 and U2 = U1=2. This gives
a square potential as shown in Fig. 1.
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Figure 1. Surface plot of the square pinning potential given
by Eq. (1) and using U2 = U1=2.

Thermal uctuations are added by applying an ap-
propriated Brownian force �i in each vortex. This force
is a gaussian, stochastic variable with zero average and
represents the thermal noise, being related to the tem-
perature by the uctuation-disspation theorem.

The driving force Fd is the Lorentz force due to an
externally applied current J, i.e., Fd = �0�̂ � J, where
� is the unit vector parallel to the vortex symmetry
axis. Approximating vortices to massless particles, vor-
tex dynamics can be described by overdamped equa-
tions of motion,

�vi = Fvv �rUp +Fd + �i; (2)

where � is the frictional coeÆcient. From now on, �, �
and the potential periodicity ap are taken to be units.

III Results and discussion

For small enough driving forces, the vortex lattice inter-
actions with the pinning centers do not allow the lattice
to ow. By increasing the driving force slightly, depin-
ning occurs and the vortex lattice starts owing. In
this initial ow the vortex motion is disordered or plas-
tic (Fig. 2-a) and reorder into a lattice (Fig. 2-b) as
Fd increases. This reordering e�ect is expected, since,
for high enough driving forces, the pinning potential
as felt by the moving vortex assembly is avareged out
in the direction of motion. For vortex motion in some
high symmetry axis, the moving VL interacts with a
static \washboard" potential periodic in the direction
perpendicular to CM motion and the ordered vortex
lattice can be either commensurate or incommensurate
with this washbord potential, depending on the pinning
strength. For motion in other directions the average
pinning potential desapears completely. This leads to
strongly anisotropic transport properties.
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Figure 2. Snapshots of the vortex assembly for (a) Fd=�ap =
4:0 (disordered ow) and (b) Fd=�ap = 10:0 (ordered lattice
ow).

To study this anisotropic properties, we used in our

simulations Fd directions �, with respect to the x axis,
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ranging from 0 to 45Æ in multiples of 5Æ. In Figs. 3-a

and 3-b Fd is applied at zero temperature and the hor-

izontal (vx) and vertical (vy) components of VL center

of mass velocities are calculated. As can be seen in
Fig. 3-a the onset of vortex motion in x and y direc-

tions occurs for di�erent Fd intensities. For Fd orienta-

tions between 0 and 25Æ, after the depinning threshold,

the motion remains trapped (or transverselly pinned)
in [1,0] direction until Fy reaches a critical value. As

seen in Fig. 3-b, for higher angles (0Æ < � < 45Æ), the

VL is pinned in the [1,1] direction (vx = vy). In Figs.

3-c and 3-d we made the same simulation using non-

zero temperatures. This �gure shows that the critical
transverse depinning force decreases as temperature in-

creases, which means that the pinning potential e�ects

are softened by thermal uctuations.

To study in further details the transverse depin-

ning, Fd was initially �xed in the horizontal direction
(Fx = 4:0=�ap) and Fy raised from Fy = 0 up to 5.5

�ap for four di�erent temperatures: from kbT = 0 up

to kbT = 0:06�a2p, as shown in Fig. 4. The range of

forces where the VL motion remains in the transversely
pinned phase { directions [1,0] and [1,1] { decreases

as temperature increases. In this way, it is possible

to transversely depin the VL by raising the tempera-

ture. This is illustrated by Fig. 5, where the tem-

perature dependence of transverse depinning is shown
for �xed Fx = 4:0�ap and for three di�erent Fy in-

tensities, namely: Fy = 1:05�ap, Fy = 1:15�ap and

Fy = 1:25�ap. A T � Fy dynamical phase diagram, for

Fx �xed at 4:0=�ap, is shown in Fig. 6. Three phases
can be distinguished: two transversely pinned phases,

one in the [1,0] direction and another in the [1,1] di-

rection, and a oating solid phase, where no trapping

occur.
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Figure 3. Vortex lattice velocity as a function of the driving
force for � ranging, in multiples of 5Æ, from 0 to 25Æ, (a) and
(c), and from 30Æ to 45Æ, (b) and (d). The arrows indicate
increasing �. (a), (b) are at zero temperature and (c), (d)
at kbT = 0:01�a2p.
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Figure 4. vx and vy as functions of Fy for Fx �xed at 4:0�ap
and di�erent temperatures.
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Figure 5. Temperature dependence of the transverse depin-
ning with Fx �xed at 4:0�ap and three di�erent intensities
of Fy.

IV Conclusion

In conclusion we have numerically simmulated a vortex
lattice in a superconducting �lm with a square array
of pinning centers driven by a uniform driving force.
As a simpli�cation, the vortices were considered to in-
teract only with their �rst neighbors via elastic forces.
The results agree qualitatively with recent experiments
[5] and numerical simulation of long-range interacting
vortices [3] and JJA [4]. The V-I characteristics, repre-
sented by the CM velocity vs. driving force curves, have

shown to be highly anisotropic, and it was observed
transverse pinning in the directions [1,0] and [1,1] of
the square pinning lattice. We have also studied the
temperature dependence of the transverse CM velocity
which illustrate thermal transverse depinning. Our re-
sults on transverse pinning are summarized in the dy-
namical phase diagram of Fig. 6, where the onset of
transverse voltage are plotted.
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Figure 6. Dynamical phase diagram; showing three phases:
trasnversaly pinned in directions [1,0] (TP0) and [1,1]
(TP45) and a depinned or oating solid phase (FS).
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