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We discuss the main theoretical approaches for the phonon-assisted tunneling in double barrier
resonant tunneling devices and introduce a quantum coherent treatment based on the mapping of
the many-body problem into a higher dimensional one-body system. Conditions for a maximized
phonon-emission are established.

Much progress in semiconducting and molecular

electronic devices [1, 2] is inspired by Landauer's view
[3, 4] of conductance as transmittance. However, the

electron-electron (e-e) and the electron-phonon (e-ph)

interactions add substantial complexity to the elec-

tronic problem, limiting its application. The �rst has
received much attention in di�erent contexts. In con-

trast, after the observation of optic phonon-assisted

tunneling, [5] interest on e-ph interaction remained fo-

cused in double barrier Resonant Tunneling Devices

(RTD). However, the recent observation of related
electro-mechanical e�ects in molecular electronics [6]

requires a reconsideration of the problem.

In a AlGaAs-GaAs RTD, besides the usual elastic

resonance peak, a satellite peak rises in the valley of

the current-voltage (I-V) curve. This occurs when the

ground state in the well is one longitudinal optic (LO)
phonon energy below the Fermi level of the emitter.

Thus, an electron with kinetic energy " � "F and po-

tential energy eV in the emitter decays into an electron

with energy " + eV�~!0 in the collector plus a LO-

phonon. At this point, a number of questions emerge:
Is it possible to extend the Landauer's picture to in-

clude inelastic scattering? What is the role of e-ph in-

teraction in the electronic dephasing? In this work we

discuss the main theoretical approaches used to treat
the e-ph interaction in RTDs and try to shed light over

these questions. Besides, the concept of resonance in

e-ph Fock space is introduced.

The �rst solution of transport in a RTD includ-

ing strongly inelastic e-ph scattering [7] considered a

single electron state in the well interacting with optic

phonons. The scattering problem was solved, in a one
electron approximation, by computing the many-body

Green's functions and resorting to some simpli�cations

such as energy independent couplings to the electrodes

[7] (broad band approximation). In this coherent pic-
ture, a tight-binding model [8] yields similar results.

A conceptually di�erent approach, see Refs. [9] and

[10], considered the e-ph interaction as a source of deco-

herence and thermalization for the electrons by adopt-

ing a complex self-energy correction to the electronic
states. Thus, in this description, the phonon system

acts in a way analogous to the \voltage probes" in

the B�uttiker's formulation of Landauer's picture. Only

electrons that do not interact with phonons maintain

coherence with its source. This line, which �nds full
formal support within the Keldysh formalism [11], has

been further developed [12] to include strongly inelastic

processes and originated computational codes [13] that

simulate mesoscopic devices.

Most frequently rate equations [14, 12] are used.
The calculation of the rate transition probabilities re-

lies on the application of the Fermi Golden Rule (FGR)

at two stages: a) To describe tunneling into the well.

Quantum coherent e�ects are ignored since it is as-

sumed that the phase of the electronic wave function
is randomized by some mechanism. Then, within this

sequential tunneling picture, the electron tunnels into

the well and, after losing memory of its phase, it tun-

nels out of the well. b) To produce phonon emission.
It requires a weak e-ph coupling with a dense phonon

spectrum justifying the FGR and the electronic deco-

herence.

An alternative approach was introduced in Refs.

[15] and [16]. There, the many-body problem of one

electron interacting with phonons was exactly mapped
into a one-body scattering system where each phonon

mode adds a new dimension to the electronic variable.
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To �x ideas, let us consider a simple Hamiltonian:

H =
X
j

fEjc
+
j cj � Vj;j+1(c

+
j cj+1 + c+j+1cj)g+

+~!0b
+b � Vg

X
j2 well

c+j cj(b
+ + b); (1)

The �rst term represents a nearest-neighbor tight bind-
ing Hamiltonian for the electrons, where c+j and cj are

electron operators at site j on a 1-d chain that includes

a number of sites in the barriers and the well. The

hopping parameters are Vj;j+1 = V . The site ener-

gies Ej model the potential pro�le. The second and
third terms represent the phonon and the e-ph con-

tributions. b+ and b are the phonon operators and

Vg is the e-ph coupling that is limited to the well re-

gion. Then, if we consider the Fock space expanded
by jj; ni = c+j (b+)

n
=
p
n! j0i ; the many-body problem

maps to the 2-dimensional one-body problem shown in

Fig. 1 a). The vertical dimension is the number n of

phonons [15, 16]. The model can be further simpli�ed

by a decimation procedure if one considers only the elec-
tronic ground state in the well. Then, one gets a model

for the RTD as a central site weakly coupled to the leads

that interact with the phonons (see Fig 1 (b)). Then,

E0 is the well's ground state which is shifted by the elec-
tric �eld and V0;1 = VR and V�1;0 = VL (VL(R) � V )

which �x the tunneling rates through the barriers.
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Figure 1. a) Each site is a state in the Fock space: The lower
row are electronic states in di�erent sites with no phonons
in the well, the sites in black are in the barriers. Higher rows
correspond to higher number of phonons. Straight lines are
hoppings and wavy lines are e-ph couplings. b) Pictorial
representation of the entangled processes of the �rst two
polaronic states. c) Calculated I-V curve showing satellite
peaks of one and two phonon processes.

Within this equivalent problem, the transmission
probability of electrons between incoming and outgo-
ing channels with di�erent number n of phonons can

be calculated exactly from the Schr�odinger equation.
One can prune the Fock space and include only states
within some range of n allowing a variational, non per-
turbative, calculation. Thus, we are not restricted to a
weak e-ph coupling. It must be emphasized that in this
approach, no phase randomization caused of the e-ph
interaction is assumed. Instead of calculating transition
rates, the complex quantum amplitudes for each state
in the Fock space are obtained. To calculate the trans-
mittances between di�erent channels several methods
can be adopted. One possibility is to solve for the wave
function iteratively [16]. An alternative is to obtain
Green's functions whose connection with the scatter-
ing matrix was established by Fisher and Lee and ex-
tended for multilead tight-binding systems by D'Amato
and Pastawski [10]. Here the power of the Green's
functions techniques can be analytically exploited and
transformed into computationally eÆcient algorithms.
In this case, the horizontal dangling chains can be elim-
inated through a decimation procedure [10, 17] intro-
ducing complex self-energies in the corresponding sites.

Once the transmittances are obtained, the question
of how to compute the currents naturally emerge. In
the Landauer's picture, the view is that of orthogonal
scattering states extended along the conductor from the
emitter to the collector. This orthogonality implies that
the Pauli exclusion principle does not enter in the calcu-
lation of the currents. In the presence of inelastic scat-
tering, electrons from di�erent incoming states can oc-
cupy the same outgoing state. Thus, if one uses a single
electron transmittances to represent the many-electrons
system, these must be complemented with some factors
accounting for the Pauli exclusion[18]. Otherwise, there
may be an overow of the �nal states. An attempt
to solve this problem is the implementation of a self-
consistent procedure for the non-equilibrium electron
distributions [19]. However, for the experimental case

of low temperatures and ~!o > "F , there is no-overow
in the right lead since electrons with energies up to "F
cannot compete for the same �nal state. Then, the
currents can be computed as in a multilead Landauer's
picture. The total current from left to right is a sum
of the currents through each of the leads on the right
corresponding to di�erent number of phonons:

Itot =
X
n

In; (2)

where, for high bias (eV > "F ),

In = ( 2e
h
)

Z "F

0

Tn;0(")d": (3)

Tn;0 is the transmission probability from the left chan-
nel with no phonons to the channel with n phonons in
the collector.

Using controlled approximations, this approach al-
lowed us to explore the resonances in the e-ph Fock
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space and to identify the control parameters in an RTD
(device geometry, voltage) that optimize the coherent
processes leading to the phonon emission. To illus-
trate this, we consider the states corresponding to 0
and 1 phonons. We found that the peak value of the
inelastic transmission probability at the satellite peak
is maximized when the in-scattering rate equals the
out-scattering rate at the state with 1 phonon. The
in-scattering rate ~�L is equal to the rate of income to
the state with no phonons, �L, reduced by a factor
(Vg= ~!o)

2 (see Fig. 1 b)). For (Vg= ~!o)
2 � 1 and

�L + �R < ~!o, the inelastic current is

I1 ' e
~

4e�L�R
(e�L + �R)

�
"
2
�
arctan

 
"F

2(e�L + �R)

!#
(4)

'
(

e
~
4e�L�R=(e�L + �R) for "F � (e�L + �R)

2e
h
T1;0 � "F for "F � (e�L + �R)

:

Then, when "F � (e�L + �R) the inelastic current
becomes geometry independent in the wide range of
"F � �R > e�L. In the opposite case I1; and hence the
power emitted as phonons ~!0I1=e; becomes determined
by the transmittance at resonance, which is maximized
by the generalized symmetry condition e�L = �R. An
I-V curve maximizing phonon emission is shown in Fig.
1 c). This optimization can be useful for the genera-
tion of the primary longitudinal optic (LO) phonons in
a SASER device [15, 20].

Finally, by noting that even if ~!o ! 0 the outgo-
ing currents in Eq. (2) can not interfere, we appreci-
ate how the e- ph interaction introduces \decoherence"
on the former single particle description. Within this
formulation, decoherence arises because the inclusion
of each phonon mode increases the \dimensionality "
of the Hilbert space preventing the interference of the
outgoing electron states.
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