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We study the gauge invariance of the massive modes in the compacti�cation of gauge theories
from D = 5 to D = 4. We deal with Abelian gauge theories of rank one and two, and with non-
Abelian ones of rank one. We show that St�uckelberg �elds naturally appear in the compacti�cation
mechanism, contrarily to what usually occurs in literature where they are introduced by hand, as
a trick, to render gauge invariance for massive theories. We also show that in the non-Abelian
case they appear in a very di�erent way when compared with their usual implementation in the
non-Abelian Proca model.

I Introduction

Nowadays, there is broad consensus that fundamen-

tal theories might come from spacetime dimension D

higher than four, probably D = 10 or D = 11. This

is mainly related to the advent of string theories, that

are consistent in the quantum word just at D = 10.

Further, the duality among known string theories sug-

gests that they might emerge from a more fundamental

theory at D = 11. However, one of the great drawback

of this idea is that there is no rule about some speci�c

mechanisms to reach our word at D = 4.

One manner of gaining some insight on this problem

is to study the compacti�cation close to D = 4 and try

to understand the features that a possible fundamental

theory should have from the theoretical consistency of

the results. It is important to mention that the semi-

nal idea related to this point of view dates back a long

time ago, in the works of Kaluza and Klein [1, 2], where

they have started from the gravitational Einstein the-

ory at D = 5 and, after spontaneous compacti�cation,

reached the Maxwell and Einstein theories at D = 4.

The vector gauge �eld A� was originated from a compo-

nent of the metric tensor. It is opportune to emphasize

that many of the recent attempts to implement com-

pacti�cation mechanism have the Kaluza-Klein idea as

a strong support.

We would like to address the present paper to this

line. We consider the compacti�cation of gauge theories

of ranks one and two from D = 5 to D = 4 and study

the question of gauge invariance in D = 4, that shall

be retained in the compacti�cation procedure, even for

the massive modes. We shall see that St�uckelberg �elds

[3], that are usually introduced as a trick in order to at-

tain the gauge invariance of massive vector �elds, nat-

urally emerge in this procedure. Even though we are

going to deal just with gauge �elds of rank one and

two (that are the only ones whose number of physi-

cal degrees of freedom are consistent at D = 4), the

method can be directly extended for gauge �elds of any

rank at higher spacetime dimensions. Concerning to

the non-Abelian case, we mention that the non-Abelian

formulation of theories of rank higher than one cannot

be directly done. The gauge invariance, even for the

massless case, is only achieved by means of auxiliary

�elds [4]. We shall deal with the non-Abelian case just

for rank one. We mention that the role played by the

St�uckelberg �elds in this case is very di�erent from their

usual implementation in the non-Abelian Proca model.

Our work is organized as follows: In Section II we

treat the spontaneous compacti�cation of Maxwell the-

ory originally de�ned in D = 5, and show that in

the Fourier expansion procedure, the zero modes cor-

respond to the usual Maxwell and real massless scalar

�elds in D = 4. The nonzero modes correspond to

complex Proca �elds coupled to the appropriate com-

plex St�uckelberg �elds to keep the gauge invariance.

In Section III we apply this procedure in the two-form

Abelian gauge theory originally described in D = 5.

After compacti�cation, we get Maxwell and massless
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two-form gauge theories for the zero modes. The vector

�elds play the role of St�uckelberg �elds for the massive

modes of the two-form �elds. In section IV, we con-

sider Yang-Mills theory. Although it has the Abelian

limit found in Section II, an interesting gauge structure

is obtained in the full theory, where modes and gauge

multiplets are mixed in a non-trivial way in order to

keep the gauge invariance of the action. We reserve

Section V for some concluding remarks.

II Maxwell theory

Let us consider the following action for the Maxwell

theory at D = 5

S =
1

R

Z
d4x

Z R

0

dx4
�
�

1

4
FMNFMN

�
(2.1)

where the coordinate x4 describes a circle of radius R.

We use capital Roman indices to express the spacetime

dimension D = 5, i.e. M;N = 0; � � � ; 4, and adopt the

metric convention �MN = diag (+1;�1;�1;�1;�1).

The Maxwell stress tensor FMN is de�ned in terms of

the potential vector AM by the usual relation

FMN = @MAN � @NAM (2.2)

The action (2.1) is invariant under the gauge transfor-

mation

ÆAM = @M� (2.3)

Let us split the vector potential AM as AM = A�

for M = 0; � � � ; 3 and AM = � for M = 4. We thus

have for the action (2.1)

S =
1

R

Z
d4x

Z R

0

dx4
�
�

1

4
F��F�� �

1

2
@�� @��

�

1

2
@4A�@4A� + @�� @4A�

�

(2.4)

The �rst term above cannot be identi�ed with the

Maxwell Lagrangian at D = 4 because A� depends

on both x� and x4. Following the usual procedure in

the (spontaneous) compacti�cation procedure [2], we

take the expansions of A� and � in Fourier harmonics,

namely

A�(x; x4) =

+1X
n=�1

A�(n)(x) exp
�
2in�

x4

R

�

�(x; x4) =

+1X
n=�1

�(n)(x) exp
�
2in�

x4

R

�
(2.5)

The replacement of these expansions into the action

(2.4) leads to

S =

Z
d4x

+1X
n=�1

�
�

1

4
F��(n)F(�n)�� �

1

2
@��(n)@��(�n)

�

2�2n2

R2
A�(n)A(�n)� +

2in�

R
A�(n)@��(�n)

�

(2.6)

Since AM is a real quantity, we have from expan-

sions (2.5) that A�(�n) = A��(n) and �(�n) = ��(n). Using

this into the action (2.6) we rewrite it in a more conve-

nient way

S =

Z
d4x

n
�

1

4
F��(0)F(0)�� �

1

2
@��(0)@��(0)

+

1X
n=1

h
�

1

2
F��(n)F

�

(n)�� �
4n2�2

R2

�
A�(n) +

iR

2n�
@��(n)

��
A�(n)� �

iR

2n�
@��

�

(n)

�io
(2.7)

We observe that the two zero mode terms at D = 4
correspond to Maxwell and real scalar �eld theories.
The other modes are related to complex Proca �elds
with masses given by 2n�=R. It is interesting to note
the role played by the corresponding modes of the scalar
�elds. They are St�uckelberg �elds. Usually, these are
put by hand as a trick to make the Proca theory gauge
invariant or to implement the Hamiltonian embedding
procedure, during the conversion of second to �rst-class
constraints [5]. Here, these �elds naturally emerge in

order to keep the gauge symmetry of the initial theory.

III Abelian two-form

The natural extension of what was done in the previous
section is to consider gauge �elds of rank two. Let us
consider this in the present section by starting from the
action [6]
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S =
1

12R

Z
d4x

Z R

0

dx4HMNPHMNP (3.1)

The completely antisymmetric stress tensor HMNP is
de�ned in terms of the antisymmetric two-form gauge
�eld BMN by

HMNP = @MBNP + @PBMN + @NBPM (3.2)

This theory is invariant for the (reducible) [6, 7] gauge
transformation

ÆBMN = @M�N � @N�M (3.3)

In order to perform the compacti�cation to D = 4,
we conveniently split the potential BMN as

BMN = (B�� ; B4�)

= (B�� ; A�) (3.4)

where we have identi�ed B4� with A�. Again, this is
not the vector potential of the Maxwell theory because
it depends on both x� and x4 and its gauge transfor-
mation, according to (3.3), reads

ÆA� = @��4
� @4�� (3.5)

which is not the characteristic transformation of the
Maxwell connection.

Introducing (3.4) into (3.1), we obtain

S =
1

R

Z
d4x

Z R

0

dx4
� 1

12
H���H��� �

1

4
F��F��

+
1

4
@4B��@4B�� +

1

2
F��@4B��

�

(3.6)

where, for the same previous argument, F�� = @�A� �
@�A� is not the Maxwell stress tensor. Expanding the

�elds B�� , A�, as well as the gauge parameters �� and
�4 in Fourier harmonics, we have

B��(x; x4) =
+1X
n=�1

B��(n)(x) exp
�
2in�

x4

R

�

A�(x; x4) =
+1X
n=�1

A�(n)(x) exp
�
2in�

x4

R

�

��(x; x4) =
+1X
n=�1

��(n)(x) exp
�
2in�

x4

R

�

�4(x; x4) =
+1X
n=�1

�(n)(x) exp
�
2in�

x4

R

�
(3.7)

Introducing these quantities into (3.6) and considering
that B��(�n) = B���(n) , A

�

(�n) = A��(n), etc., we obtain

S =

Z
d4x

h 1
12

H���

(0) H
�

(0)��� �
1

4
F��(0)F

�

(0)��

+

1X
n=1

�1
6
H���

(n) H
�

(n)��� �
1

2
F��(n)F

�

(n)��

+
2n2�2

R2
B��(n)B

�

(n)�� �
2in�

R
F��(n)B

�

(n)��

�i

(3.8)

Due to the gauge transformations of the zero mode
�elds,

ÆA�(0) = @��(0)

ÆB��(0) = @���(0) � @���(0) (3.9)

we have that the two zero mode terms of (3.8) are the
tensor and vector (Maxwell) theories at D = 4 [8]. The
remaining modes correspond to massive complex tensor
gauge �elds B��(n) and massless vector ones A�(n). Let us

rewrite the n-mode terms of expression (3.8) in a more
appropriate form

S(n) =

Z
d4x

h1
6
H���

(n) H
�

(n)��� �
2n2�2

R2

�
iB��(n) �

R

2n�
F��(n)

��
� iB�(n)�� �

R

2n�
F �(n)��

�i
(3.10)

We notice that in the rank 2 theory, the mass-
less vector gauge �eld A�(n) naturally appears as a

St�uckelberg �eld for the massive antisymmetric gauge
�eld iB��(n). Their gauge transformations are given by

ÆA�(n) = @��(n) �
2i�n

R
��(n)

ÆB��(n) = @���(n) � @���(n) (3.11)

We mention that a similar result, where vector �elds

play the role of St�uckelberg �elds for the massive rank
two theory, was also found in the case of Hamiltonian
embedding mechanism [9].

We could generalize this analysis for gauge �elds of
any rank. However, for D = 4 it does not make sense to
consider gauge �elds of rank higher than two, because
the gauge and redutibility conditions would lead to a
negative number of physical degrees of freedom.
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IV Non-Abelian case

As already said, the non-Abelian formulation of gauge
theories with rank two or higher cannot be directly im-
plemented. Its gauge invariance can only be achieved
with the help of auxiliary �elds [4]. Consequently, since
these models do not have a clear gauge invariance, their
discussion here will be avoided. We shall only consider
in this section the vector case. The non-Abelian ver-
sion of the procedure described in section II should start
from the action

S =
1

R

Z
d4x

Z R

0

dx4 tr
�
�

1

4
FMNFMN

�
(4.1)

where now

FMN = @MAN � @NAM � i[AM ; AN ] (4.2)

and the gauge potentials take values in a SU(N) alge-
bra, whose hermitian generators are assumed to satisfy

a normalized trace condition. The action (4.1) is in-
variant under the gauge transformation

ÆAM = DM� (4.3)

once one de�nes the covariant derivative as

DM� = @M�� i[�; AM ] (4.4)

Again writing A4 = �, we note that F 4� = @4A��D��
permits to rewrite action (4.1) as

S =
1

R

Z
d4x

Z R

0

dx4 tr
�
�

1

4
F ��F��

�

1

2
D��D���

1

2
@4A�@4A� +D�� @4A�

�

(4.5)

Expanding the �elds above in Fourier harmonics in
a similar way to Sec. II, we get

S =

Z
d4x tr

1X
n=�1

h
�

1

4
F��(n)F(�n)�� �

1

2

�2n�
R

A�(n) + iD��(n)

��2n�
R

A(�n)� � iD��(�n)

�i
(4.6)

where

(D��)(n) = @��(n) + i

+1X
m=�1

[�(m); A
�

(n�m)]

F��(n) = @�A�(n) � @�A�(n) � i

+1X
m=�1

[A�(m); A
�
(n�m)] (4.7)

It is interesting to observe that the non-Abelian character of the action (4.6) induces a gauge structure where
the modes mixed among themselves. In other words, the gauge multiplet and the modes form a nontrivial structure
that has to be considered as a whole to preserve the symmetry of the action. Actually, the transformations (4.3)
have their mode expanded version given by

ÆA�(n) = (D��)(n)

Æ�(n) =
i2n�

R
�(n) � i

+1X
m=�1

h
�(m); A

�

(n�m)

i
(4.8)

where the covariant derivative is de�ned in (4.7). As a consequence of the above equations,

ÆF��(n) = �i
+1X

m=�1

h
�(m); F

��

(n�m)

i

Æ
�2n�
R

A�(n) + i(D��)(n)

�
= �i

+1X
m=�1

h
�(m);

2(n�m)�

R
A�(n�m) + i(D��)(n�m)] (4.9)
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which is a symmetry of action (4.6), as can be veri�ed.
It is interesting to observe that the role played by the
St�uckelberg �elds here is di�erent from the usual one
presented by the non- Abelian Proca model [10]. There,
the St�uckelberg �eld is introduced by hand in order to
just give Æ[mA� + i(D��)] = 0.

V Conclusion

In this paper we have considered the spontaneous com-
pacti�cations of Maxwell, Abelian two-form, and non-
Abelian one-form gauge theories from a D = 5 space-
time with a compact dimension to the usual D = 4
Minkowski spacetime. We have focused our attention
to the gauge invariance of the theories formulated at
D = 5, which should be kept along the compacti�ca-
tion procedure. As usual, there arise massive modes in
the process of compacti�cation. In principle, the gauge
invariance of these modes could be lost. We observe,
however, that generalized St�uckelberg �elds naturally
emerge in order to keep the content of the original
gauge invariance. Although in the Abelian cases the
St�uckelberg �elds correspond to those already found in
the literature, the compacti�cation of the Yang-Mills
theory reveals a new structure of compensating �elds.
Because of the nonlinearity of the action, the gauge
structure displayed by the mode expansion of covari-
ant derivatives, curvature tensors and gauge transfor-
mations play a remarkable feature in mixing Fourier
modes and gauge multiplet components in a nontrivial
way.
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