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Contributions of trapped and untrapped particles to the transverse and longitudinal dielectric per-
mittivity elements are present for radio-frequency waves in a tokamak with circular cross-sections of
the magnetic surfaces and arbitrary aspect ratio. Imaginary parts of the longitudinal permittivity
elements are important to estimate the wave power absorbed by electron Landau damping (e.g.,
during the plasma heating and current drive generation) in the frequency range of Alfv�en, fast
magnetosonic, and lower hybrid waves. Whereas, imaginary parts of the transverse permittivity
elements are necessary to estimate the cyclotron-resonant wave dissipation at the fundamental cy-
clotron frequency of ions and/or electrons. The dissipated wave power is expressed by summation
of terms including the separate contributions of trapped and untrapped particles to the imaginary
parts of both the diagonal and non-diagonal elements of the dielectric permittivity. The concrete
computations are carried out for a tokamak plasma with the main TCABR parameters.

I Introduction

Tokamaks (both the large and small sizes) represent a

promising alternative route to magnetic thermonuclear

fusion. To achieve the fusion conditions in these de-

vices an additional plasma heating must be employed.

One of the e�ective heating schemes can be realized

via the radio-frequency waves. To predict and analyze

the power absorbed we should know the kinetic wave

conductivity (or dielectric) tensor. For large aspect

ratio tokamaks, solution of the Vlasov equation and

dielectric tensor evaluation are developed quite com-

pletely (see, e.g., Refs. [1-4]) by using the smallness of

the inverse aspect ratio: a=R << 1, where a and R are

the minor and major radii of the plasma torus. In this

paper, the transverse and longitudinal dielectric tensor

elements are present for waves in a two-dimensional

axisymmetric tokamak with circular magnetic surfaces

in the case of arbitrary a=R < 1. This model is espe-

cially suited the TCABR tokamak (having the circular

plasma cross-sections) at the University of S~ao Paulo,

as well as other tokamaks with small elongation and

triangularity.

II Plasma Model

To describe an axisymmetric tokamak with circular

magnetic surfaces we use the quasi-toroidal coordinates

(r; �; �), see Fig. 1, connected with the cartesian coor-

dinates as

x = (R+ r cos �) cos�;

y = (R+ r cos �) sin�;

z = �r sin �; (1)

where r and R are the minor and major radii of the

magnetic surface, � and � are the poloidal and toroidal

angles, respectively. The poloidal, H0�, and toroidal,

H0�, projections of an equilibrium magnetic �eld H, in

this plasma model, are, respectively,

H0�(r; �) =
H�0(r)

1 + � cos �
;

H0�(r; �) =
H�0(r)

1 + � cos �

� =
r

R
; (2)

satisfying the conditions: divH = 0 and (rotH)r =

n �H = 0. In the (r; �; �) coordinates, the modulus of

an equilibrium magnetic �eld H is given as

H(r; �) =

q
H2
�0 +H2

�0

1 + � cos �
; (3)

where H�0(r) and H�0(r) correspond to the toroidal

and poloidal magnetic �eld components at the points

� = ��=2 for a given (by r) magnetic surface.
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Figure 1. The quasi-toroidal coordinates (r; �; �) for an axisymmetric tokamak plasma with circular magnetic surfaces. n is
the unit vector normal to the toroidal magnetic surfaces r = const.

Detailed evaluation of the transverse and longitudi-
nal permittivity elements has been reported recently in
Refs. [5, 6]. In contrast to Ref. [7] related to it, the
Vlasov equation was solved separately for trapped and
untrapped particles using i) the set of coordinates with
the "straight" magnetic �eld lines, by introducing the
new variable �0 instead of � as

�(�0) = 2 arctg

"r
1 + �

1� �
tg

�
�0

2

�#
; (4)

and ii) new time-like variables �u(�
0) and �t(�

0) [the
third kind elliptic integrals, Eqs. (15, 16)] for the un-
trapped and trapped particles, respectively, to describe
the bounce periodic motion of each particle group along
the magnetic �eld line. As a result of this procedure,
the expressions of the dielectric tensor elements become
simpler than those derived in Refs. [7, 8].

III Dielectric Tensor Elements

To evaluate the dielectric characteristics we use the
Fourier expansions of the perturbed current density and

electric �eld in �0:

j(r; �0)

1� � cos �0
=

�1X
m

j
m(r) exp(im�0);

E(r; �0)

1� � cos �0
=

�1X
m0

Em0
(r) exp(im0�0): (5)

Note, the normal and binormal (to H) current den-
sity components, jn and jb in our notation, are equal
to jn = j1 + j�1 and jb = i(j1 � j�1). The ex-
pressions for jljl=�1 are convenient to analyze the cy-
clotron resonance e�ects at the fundamental cyclotron
frequency of both the ions (if l = �1) and electrons
(if l = 1) in the explicit form. Accordingly, to esti-
mate the jl-components we use the left(right)-hand po-
larizated El-projections connected with En and Eb as
El = En � ilEb. As a result, the whole spectrum of
E-�eld (by

P
m0) is present in a given (by m) harmonic

of the current density:

c

4�i

!
jml (r) =

4�i

!

�
jml;u(r) + jml;t(r)

�
=

�1X
m0

h
�m;m0

l;u (r) + �m;m0

l;t (r)
i
Em0

l (r); (6)

4�i

!
jmk (r) =

4�i

!

h
jmk;u(r) + jmk;t(r)

i
=

�1X
m0

h
�m;m0

k;u (r) + �m;m0

k;t (r)
i
Em0

k (r): (7)

Here �m;m0

l;u ; �m;m0

l;t and �m;m0

k;u ; �m;m0

k;t are the contributions of untrapped (u) and trapped (t) particles to the transverse

and longitudinal dielectric permittivity elements, respectively:

�m;m0

l;u =
0:5 !2

L r
p
1 + �

�2:5!h�vT
p
1� �

�1X
p

Z 1

0

� d�

(�o + �)2

Z +1

�1

u4 exp
��u2�Am

p;lA
m0

p;ldu

(p+ nqt � lÆ � lq)u� Ul(�)
; (8)
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�m;m0

l;t =
0:5 !2

L r
p
1 + �

�2:5!h�vT
p
1� �

�1X
p

Z 1

0

d�

(1 + �o�)2

Z +1

�1

u4 exp
��u2�

pu� Vl(�)
Bm
p;lB̂

m0

p;l du; (9)

�m;m0

k;u =
2!2

Lr
2p�o(1 + �)

�3 h2� v
2
T (1� �)

�1X
p

Z 1

0

�(�o;
�
2 ; �) C

m
p Cm0

p

(p+ nqt)2(�o + �)1:5
�
1 + 2u2p + 2i

p
�u3pW (up)

�
d� (10)

�m;m0

k;t =
4!2

Lr
2p�o(1 + �)

�3 h2� v
2
T (1� �)

1X
p=1

Z 1

0

�(�o�;
�
2 ; �)D

m
p D

m0
p

p2 (1 + �o�)1:5
�
1 + 2v2p + 2i

p
�v3pW (vp)

�
d�: (11)

Here we have used the following de�nitions

Am
p;l(u; �) =

Z �

0

cos

�
(m+ nqt � lÆ)� � lg�(�)� � (p+ nqt � lÆ � lg)

�u(�; �)

�u(�; �)
�

� l

cr

p
2(�o + �)

h�uvT
p
�(1 + �)

�
F
��
2
; �
�
�K(�)

�u(�; �)

�u(�; �)

�)s
1 + �o sin

2 �
2

1� � sin2 �
2

d�; (12)

B̂m
p;l(u; �) =

Z �t

0

cos

(
(m+ nqt � lÆ)� � lg�(�)� p

��t(�; �)

2�t(�; �t)
� l


cr
p
2(1 + �o�)

h�uvT
p
�(1 + �)

�

�
"
F

 
arcsin

 r
1

�
sin

�

2

!
; �

!
�K(�)

�t(�; �)

�t(�; �t)

#)s
1 + �o sin

2 �
2

�� sin2 �
2

d�; (13)

Bm
p;l(u; �) = B̂m

p;l(u; �) + (�1)pB̂m
�p;l(�u; �); W (z) = e�z

2

�
1 +

2ip
�

Z z

0

et
2

dt

�
; (14)

�u(�; �) =

Z �

2

0

d�

(1 + �o sin
2 �)

p
1� � sin2 �

= �
�
�o;

�

2
; �
�
; �o =

2�

1� �
; (15)

�t(�; �) = �

�
�o�; arcsin

�
1p
�
sin

�

2

�
; �

�
; �t(�) = 2 arcsin

p
�; (16)

Cm
p (�) =

Z �

0

cos

�
(m+ nqt) � � � (p+ nqt)

�u(�; �)

�u(�; �)

�
d�; 
c =

e
q
H2
�0 +H2

�0

M c
; (17)

Dm
p (�) =

Z �t

0

cos

�
(m+ nqt) � � p

��t(�; �)

2�t(�; �t)

�
d� +

+(�1)p�1

Z �t

0

cos

�
(m+ nqt) � + p

��t(�; �)

2�t(�; �t)

�
d�; (18)

Ul(�) =
r
p
2(�o + �)

�h�vT
p
�(1 + �)

[!(1 + �)�u(�; �) + l
cK(�)] ; h� =
H�0q

H2
�0 +H2

�0

; (19)

Vl(�) =
2r
p
2(1 + �o�)

�h�vT
p
�(1 + �)

[!(1 + �)�t(�; �t) + l
cK(�)] ; h� =
H�0q

H2
�0 +H2

�0

; (20)

up(�) =
!r
p
2(1 + �)(�o + �)

jp+ nqtj �h� vT
p
�
�u(�; �); F (�; �) =

Z �

0

d�p
1� � sin2 �

; (21)

vp(�) =
2!r

p
2(1 + �)(1 + �o�)

p � h� vT
p
�

�t(�; �t); K(�) = F
��
2
; �
�
; vT =

r
2T

M
; (22)

!2
L =

4�Ne2

M
; qt =

�h�h
�1
�p

1� �2
; Æ =

1:5 h�p
1� �2

; g =
h�
2

�
1

1� �2
� r

qt

dqt
dr

�
: (23)

d
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Note, �m;m0

l;u ; �m;m0

l;t ; �m;m0

k;u ; �m;m0

k;t describe the contri-

bution of any kind of untrapped and trapped particles
to the dielectric tensor elements. The corresponding
expressions for plasma electrons and ions can be ob-
tained by replacing T (temperature), N (density), M
(mass) , e (charge) by the electron Te; Ne;me; ee and
ion Ti; Ni;Mi; ei parameters, respectively. To obtain
the total expressions of the permittivity elements, as
usual, it is necessary to carry out the summation over
all species of plasma particles.

Since the phase coeÆcients Cm
p (�) and Dm

p (�), for
the longitudinal permittivity elements, are independent
of the wave frequency, !, and the particle energy, v, it
is possible the analytical Landau integration of the per-
turbed distribution functions of both the trapped and
untrapped particles in velocity space. As a result of this
procedure, in contrast to Ref. [7] where the correspond-

ing phase coeÆcients depend on v, �m;m0

k;u and �m;m0

k;t are

written by the summation of bounce-resonant terms
including the well known plasma dispersion function
W (z), i.e, by the probability integral of the complex
argument, Eq. (14). After this, the numerical estima-
tions of both the real and imaginary parts of the longi-
tudinal permittivity elements become simpler, and their
dependence on the wave frequency ! is de�ned only by
the arguments up(�; !; :::) and vp(�̂; !; :::) of the plasma
dispersion functions, W (up) and W (vp). Introduction
of the W (z) function, in the standard integral form Eq.
(14), became possible since the �nal equations for fs0;u
and fs0;t (see Ref. [6]) have been reduced to the �rst or-
der di�erential equations with respect to one variable �u
or �t, respectively, with the constant coeÆcients in the
left-hand side. Another form of the coeÆcients Cm

p (�)
and Dm

p (�) has been done in Appendix by the Jacobi
elliptic functions, which also can be convenient in the
computer calculations.

The bounce resonance conditions of the e�ective
wave-particle interactions in a tokamak plamsa, as fol-
lows from Eqs. (4) and (5), are the same those derived
in Ref. [8], and can be rewritten as

(p+ nqt � lÆ � lg)u� Ul(�) = 0;

l; p = 0;�1;�2; :::

for untrapped particles, where u = v=vT , and

pu� Vl(�̂) = 0; l; p = 0;�1;�2; :::

for the trapped particles.
Since the whole spectrum of the E-�eld (by

P�1
m0 )

is present in a given (by m) current density harmonic,
see Eqs. (6) and (7), it is necessary to take into account
that the poloidal eigenmode numbers excited in a toka-
mak plasma may di�er from the basic mode number(s)
generated by the antenna system. Moreover, the ex-

citation/dissipation of E
(m0)
k -harmonics with m0 6= m

can lead to the additional heating of both the trapped
and untrapped particles and destabilize a wide class
of the low-frequency drift-Alfv�en eigenmodes near the
so-called rational magnetic surfaces, where the longi-
tudinal wave vector component changes its sign, i.e.,
where m + nqt(r) = 0. This means that one-mode ap-
proximation (over �) is not valid to solve the Maxwell's
equations in the tokamaks, in the general case. Never-
theless, there is some interest to compare the dielectric
characteristics of a toroidal plasma (obtained by a
two-dimensional consideration of the problem) and the
corresponding characteristics of a cylindrical plasma
model (one-dimensional consideration), which is well
developed and often used for the study of the radio-
frequency plasma heating and current drive problems
in tokamaks in the frequency range of Alfv�en, lower
hybrid and ion-cyclotron waves.

IV Wave Dissipation

One of the main mechanisms of the radio-frequency
plasma heating is the electron Landau damping of
waves due to the Cherenkov resonance interaction of Ek
with untrapped and trapped electrons. The Cherenkov
resonance conditions are di�erent for trapped and un-
trapped particles in tokamak geometry and have noth-
ing general with the wave-particle resonance condition,
! = (h�=r)(m + nqt)vk, in the cylindrical magnetized
plasmas. As a result, after averaging in t and �0 and
accounting for Eq. (7), the wave power dissipated by
the electron Landau damping, Pk = Re(Ekj

�
k), can be

estimated as

c

Pk = Pk;u + Pk;t =
!

8�

�1X
m

�1X
m0

�
Im�m;m0

k;u + Im�m;m0

k;t

�h
ReEm

k ReEm0

k + ImEm
k ImEm0

k

i
(24)

where, as follows from Eqs. (10) and (11),

Im�m;m0

k;u =
4!2

Lr
2p�o(1 + �)

�2:5h2� v
2
T (1� �)

�1X
p

1

(p+ nqt)2

Z 1

0

�(�o;
�
2 ; �)

(�o + �)1:5
u3p exp(�u2p)Cm

p Cm0

p d�; (25)
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Im�m;m0

k;t =
8!2

Lr
2p�o(1 + �)

�2:5h2� v
2
T (1� �)

1X
p=1

1

p2

Z 1

0

�(�o�;
�
2 ; �)

(1 + �o�)1:5
v3p exp(�v2p)Dm

p (�)D
m0

p (�)d�; (26)

d

are the contribution of untrapped, Im�m;m0

k;u , and

trapped, Im�m;m0

k;t , particles to the imaginary part of

the longitudinal permittivity elements: Im�m;m0

k =

Im�m;m0

k;u + Im�m;m0

k;t . Thus, for the given !, m, n, r

and E-�eld amplitudes, the parts Pk;u and Pk;t di�er
by the di�erent contributions of untrapped and trapped

electrons to Im�m;m0

k elements.

There is another important plasma heating mecha-
nism due to the cyclotron wave damping in the range
of ion/electron cyclotron frequencies, when the plasma
particles interact e�ectively with the transverse electric
�eld components, El. Under the cyclotron resonance
heating (on the fundamental harmonics) the power ab-
sorbed, Pl = Re(Elj

�
l ), can be expressed as

c

Pl = Pl;u + Pl;t =
!

8�

�1X
m

�1X
m0

�
Im�m;m0

l;u + Im�m;m0

l;t

� h
ReEm

l ReEm0

k + ImEm
l ImEm0

l

i
: (27)

d

As was noted above, l = �1 corresponds to the
wave power absorbed under the ion-cyclotron reso-
nance heating when ! � 
c;i; whereas l = 1 should
be used under the electron-cyclotron plasma heating
when ! � j
c;ej. The contributions of untrapped and
trapped particles to the imaginary parts of the trans-
verse permittivity can be readily derived from Eqs. (8)
and (9) by using the well known residue (or Landau
rule) method.

V Numerical Results

Now, we calculate numerically the contribution of

trapped and untrapped electrons to Im�m;m0

k . To have

some analogy with the one-mode (cylindrical) approx-
imation of the wave dissipation by electron Landau
damping, let us estimate the diagonal (m = m0) ele-
ments Im�m;m

k;u and Im�m;m
k;t . The corresponding local

cylindrical approximation, Im�m;m
k;c , has the next form

c

Im�m;m
k;c =

2
p
�r3!2

po!

h3�jm+ nqtj3v3T
exp

�
� !2 r2

h2�(m+ nqt)2v2T

�
: (28)

d

The estimations of Im�m;m
k;u , Im�m;m

k;t and Im�m;m
k;c are

carried out for waves with mode numbers n = 4 and
m = 1 in a plasma with the main TCABR-parameters:
R = 0:61 m, a = 0:18 m, H�0 = 1 T, qt(r) =
1:1=(1�0:7r2=a2), N(r) = 3�1019(1�0:95r2=a2) m�3,
T (r) = 1000(1 � 0:99r2=a2) eV. As shown in Fig. 2,
the contributions of untrapped and trapped electrons
to Im�m;m

k depend substantially on � and !. By com-

paring Im�m;m
k;u and Im�m;m

k;t , we see that the Landau

damping of waves with a high phase velocity, vph =
!r=[h�(m + nqt)] > vT (e.g., lower hybrid waves), is
due to the bounce resonant interaction with untrapped
electrons. It means that, under the Lower-Hybrid Res-
onance Heating, the favorable conditions can be created
to transform the wave momentum into the momentum
of untrapped electrons leading the noninductive current
drive.
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Figure 2. The contribution of untrapped (solid lines), Im�m;m

k;u
, and trapped (long-dashed lines), Im�m;m

k;t
, electrons to the

imaginary part of the longitudinal permittivity in a tokamak plasma as a function of wave frequency, !, for di�erent magnetic
surfaces: a) r=a = 0:5; b) r=a = 0:8.

Note, for both the toroidal and cylindrical plasma
models, Im�m;m

k;u and Im�m;m
k;c are exponentially small for

the fast waves with vph >> vT . However, the wave dis-
sipation by untrapped electrons can be larger than the
corresponding cylindrical approximations at the exter-
nal magnetic surfaces, where vph=vT � 2� 3.

Another feature of wave-particle interaction in a
toroidal plasma is the role of trapped particles becomes
substantial for the slow waves with vph << vT under

the condition when ! is comparable with the bounce
frequency of the thermal electrons. Moreover, the waves
(usually, low-frequency waves) interact e�ectively with
the trapped electrons at the external magnetic sur-
faces, where the fraction of trapped particles increases
as
p
2�=(1 + �). The e�ective heating of trapped elec-

trons (Fig. 3) is possible in tokamaks using the Alfv�en
waves, when the local Alfv�en resonance condition is re-
alized near the plasma boundary (or in the region of
moderate radii).

Figure 3. The radial structure of Im�m;m

k;u
(solid lines), Im�m;m

k;t
(long-dashed lines), and Im�m;m

k;c
(short-dashed lines) in the

TCABR tokamak plasma for di�erent levels of wave (generator) frequency: a) !=2� = 4 MHz; b) !=2� = 5:5 MHz.

VI Conclusion

The kinetic transverse (8, 9) and longitudinal (10,
11) permittivity elements have been derived for radio-
frequency waves by solving Vlasov equation for trapped
and untrapped particles in an axisymmetric toroidal
plasma with circular magnetic surfaces and arbitrary
aspect ratio. These dielectric tensor components are ex-
pressed by summation of bounce-resonant terms, which
include the double integration in velocity space, the
resonant denominators, the phase coeÆcients, the stan-
dard elementary and elliptic functions. It is shown that
the analytical Landau integration (by introducing the

plasma dispersion function, or the probability integral
of the complex argument) is possible only for the lon-
gitudinal permittivity.

Imaginary parts of the longitudinal permittivity ele-
ments are important to estimate the power absorbed by
electron Landau damping (e.g., during the plasma heat-
ing and current drive generation) in the frequency range
of Alfv�en, fast magnetosonic, and lower hybrid waves.
Whereas, imaginary parts of the transverse permittivity
elements are necessary to estimate the cyclotron reso-
nant wave dissipation at the fundamental cyclotron fre-
quency of ions and/or electrons. The dissipated wave
power is expressed, Eqs. (24) and (27), by summation
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of terms including the separate contributions of trapped
and untrapped particles to the imaginary parts of both
the diagonal and non-diagonal elements of the dielectric
permittivity.

The dielectric tensor components, Eqs. (8-11), can
be used for both the Large (� << 1) and Low (� < 1)
Aspect Ratio Tokamaks to analyze the �nite-� e�ects
in the frequency range of Alfv�en, Fast Magnetosonic,
Lower Hybrid, and Ion/Electron Cyclotron Waves.

Appendix:

Phase CoeÆcients by the Jacobi Elliptic Func-

tions

The phase coeÆcients in Eqs. (8-11) can be calcu-
lated by introducing the Jacobi elliptic functions, which
are as the standard functions for advanced versions of
such mathematical programs as Mathcad, Mathemat-
ica, Maple. In particular, for the longitudinal (paral-
lel) dielectric permittivity the coeÆcients Cm

p (�) and
Dm
p (�) can be represented as

c

Cm
p (�) =

Z K(�)

�K(�)

cos

"
2(m+ nqt)am(�;w)� (p+ nqt)

� �̂(�o; w)

�̂(ko;K(�))

#
dn(�;w)dw (29)

Dm
p (�) =

p
�

Z 2K(�)

�2K(�)

cos
�
2(m+ nqt) arcsin

�p
�sn(�;w)

��
� p

0:5��̂(�o�;w)

�̂(�o�;K(�))

#
cn(�;w)dw (30)

Here the corresponding Jacobi elliptic functions are

sn(�;w) =
2 �p
�K(�)

1X
l=0

q̂l+1=2(�)

1� q̂2l+1(�)
sin

(2l+ 1)�w

2K(�)
;

cn(�;w) =
2 �p
�K(�)

1X
l=0

q̂l+1=2(�)

1 + q̂2l+1(�)
cos

(2l+ 1)�w

2K(�)
;

dn(�;w) =
�

2K(�)
+

2 �

K(�)

1X
l=1

q̂l(�)

1 + q̂2l(�)
cos

l�w

K(�)
;

am(�;w) =
� u

2K(�)
+

1X
l=1

2q̂l(�)

l(1 + q̂2l(�))
sin

l�w

K(�)
;

d

where the parameter q̂ is equal to

q̂(�) = exp

�
��K(1� �)

K(�)

�
;

and the elliptic integral of the third kind in the (�;w)
variables has been done as

�̂(�o; w) =

Z w

0

d u

1 + �osn2(�; u)
:

The phase coeÆcients Am
p;l(u; �) and Bm

p;l(u; �), for
the transverse permittivity elements, may be rewritten
by analogy with Eqs. (29) and (30), introducing the

new w variable, instead of the angle variable �0:

w(�0) =

Z �0=2

0

d �p
1� � sin2 �

for untrapped particles, and

w(�0) =

Z arcsin
�

1p
�
sin �0

2

�
0

d �p
1� � sin2 �

for the trapped particles.
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