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We present a review of the Optical Parametric Oscillator (OPO), describing its operation and the
quantum correlation between the light beams generated by this oscillator. We show the construction
of an OPO using a Potassium Titanyl Phosphate crystal (KTP), pumped by a frequency doubled
Nd:YAG laser, and discuss the stability of the system and related thermal e�ects . We have
measured the quantum correlation of signal and idler beams in a transient regime, obtaining a noise
correlation level 39 % below the shot noise level.

I Introduction

The advent of the laser as a high power coherent light

source marked the begin of a wide study of nonlinear

interactions between light and matter. Although many

nonlinear optical phenomena were already known be-

fore the laser, it was only after the availability of these

intense light beams that the e�ects of up and down

conversion of light could be studied. We can mention

Second Harmonic Generation (SHG) as the �rst study

in this subject, involving the up conversion of a pump

beam. In the �rst experiment performed by Franken

et. al. in 1961[1] a bulk quartz crystal, pumped by a

ruby laser at 694 nm, generated a second beam at half

the wavelength.

This e�ect can be described by a nonlinear suscep-

tibility �(E), depending on the electric �eld. This non-

linear susceptibility will originate a quadratic term of

the polarization on the electric �eld. This nonlinear

term is responsible for parametric conversion of light,

like the sum and di�erence of frequencies, SHG, spon-

taneous down conversion, which can be seen in many

textbooks[2].

Parametric Down Conversion can be seen as the in-

verse process of SHG. Pumped by a fundamental beam

of angular frequency !0, a nonlinear crystal can sponta-

neously emit photons. These photons, produced from

the annihilation of a photon in the pump beam, are

produced in pairs, having strong correlation of energy

and momentum. This e�ect is called parametric uo-

rescence, and this spontaneous emission can be under-

stood as the emission of light stimulated by the vacuum

uctuations of the �eld.

This light emission can be enhanced using a coher-

ent beam of frequency !1, which will act as a seed for

the light generation. We obtain a stimulated emission

of light[3] producing now an intense beam. Similar to

the e�ect of a pumped laser medium, this stimulated

emission will amplify the input beam, called signal. As

a consequence of the strong correlation between the sig-

nal and idler photons, an intense idler beam will also

appear. Energy conservation implies that the energy of

the photon emitted in the idler beam is the di�erence

of energy between the pump and the signal photons,

therefore we have for the idler frequency !2 = !0�!1.

Every stimulated photon emitted in the signal will have

a twin partner in the idler beam. This e�ect is called

parametric ampli�cation[4], and was well known in elec-

tronic circuits and microwave systems[5].

Like the laser ampli�cation, this nonlinear crystal

pumped by an intense beam is a gain medium. The

gain depends on the pump intensity. When it is put into

a cavity, for appropriate conditions of detuning, losses

and pump intensity, oscillation will occur, and an in-

tense output beam with laser characteristics can be ob-

tained. This device is called an Optical Parametric Os-

cillator (OPO). From early work[6], it was presented as

a laser source of wide tunability with promising appli-

cations in spectroscopy. Initial problems regarding the

mode stabilization limited their use[7], but now there
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are commercially available OPO's for down conversion

of pulsed laser beams, used as light source in the range

between 330 and 2000 nm. Many recent e�orts are

made to use them as CW tunable light sources[8], with

the search of new materials and the application of mi-

cromanufacturing in the production of high eÆciency

nonlinear media[9], di�erent cavity con�gurations, use

of diode lasers as pump sources, etc. These devices are

used as coherent light sources in regions of the spectra

where no e�ective laser medium is available, convert-

ing light of Nd:YAG lasers into the mid infrared region.

They are also studied in the metrology domain, as ele-

ments in locking chains for generation of highly stable

frequency/time bases. An overview of the �eld can be

seen in ref. [10].

On the other hand, quantum properties of light

emitted from these sources became soon an intensely

studied subject. Nonclassical states of the �eld can be

produced either by nonlinear processes[11] or stabiliza-

tion of light emission, as in diode lasers[12]. Owing

to the quantum nature of light, there is an intrinsic

noise in its detection that cannot be avoided even in

the case of the generation of the �eld by a "classical

current"[13]. This limit is often called shot noise, since

it can be understood as the noise created by the de-

tection of individual photons, generating a white noise

spectrum for the measured intensity of the beam like

the one produced by a random ux of particles hitting

a surface.

In the case of the OPO, the creation of pairs of pho-

tons instead of the emission of single photons by a laser

attracted the attention of many researchers, and soon

it became an important source of non-classical states

of light. Early work has shown that squeezed vacuum

uctuations are obtained from its output when work-

ing below the threshold[14]. Later on, the squeezing of

the twin beams generated was observed[15], and they

represent the up-to-date record of noise compression

in nonlinear optical e�ects (-8.6 dB)[16]. They work

also as "noise eaters". The compression in the noise

of the pump beam reected by a cavity was recently

observed[17].

It is our purpose to present in this paper a general

overview of the OPO operation, and some of the quan-

tum features observed in the twin beams. We begin

by a general presentation of triply resonant OPO's, for

type I and type II phase matching. Next, we make a

review of the quantum aspects of correlation between

signal and idler beams. We used a type II triply reso-

nant OPO, built with a KTP (KTiOPO4) crystal and

pumped at 532 nm, to demonstrate its operation, dis-

cussing also the thermal bistability that occurs in this

situation. We �nish by the measurement of quantum

correlation between the signal and idler beams, and

compare the measured compression of noise to the ex-

pected values obtained in the OPO characterization.

II OPO: Classical description

There is a great variety of OPO con�gurations[18].

The simplest one is the use of a single resonant cavity

(SROPO), where the cavity is resonant for the signal

beam, and there is a single pass of the pump beam

through the crystal. The generated idler beam will

exit the crystal without any feedback. The oscillation

threshold can be reduced by the use of a doubly reso-

nant cavity (DROPO), where both signal and idler are

kept resonant with the cavity. While the SROPO al-

lows a broad continuous variation of the signal and idler

wavelength in the phase matching range, the threshold

power is much higher when compared to the DROPO.

This one has the drawback of the wavelength limitation

to the �ne tuning of the modes of the cavity[19]. In-

deed, the double resonant condition of the cavity and

the energy conservation condition will limit the output

modes to a discrete set of values, as we will see in the

present description.

In both cases, the threshold power can be reduced if

instead of using a single pass of the pump beam we use a

cavity, which will increase the incident intensity on the

crystal. This is called the Pump-enhanced OPO (PE-

OPO), also known as triply resonant OPO (TROPO)

when used to reduce the threshold of a DROPO. This

con�guration allowed threshold power as low as 1 mW

for CW operation in KTP[17]. The use of new mate-

rials reduced this power to 300 �W (CW) with quasi

phase matched (QPM) crystals[20].

We present now an overview of the TROPO, fol-

lowing the treatment presented in ref.[19] for a type II

phase matching crystal, and extend the discussion to

the type I phase matching, giving a straightforward in-

terpretation of the detailed treatment given in ref.[7].

Consider a nonlinear crystal of length ` placed inside a

ring cavity, pumped by a laser beam with angular fre-

quency !0. The free cavity length is L, so Lcav = L+ `

is the total cavity length (Fig. 1).

We want to calculate the mean amplitude of the �eld

inside the cavity for a steady-state operation. Therefore

we will add up all the losses, phase shifts and ampli�-

cations in a round trip of the beams inside the cavity,

beginning with the coupling mirror. The losses of the

other two mirrors can be neglected, and added later to

overall losses in the cavity, like crystal surface reec-

tions, absorption in the crystal and scattering.
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Figure 1. Basic OPO con�guration.

If the transmission through the coupling mirror is
small, we can express the coeÆcients of reection and
transmission as

rj = e(�j) ' 1� j ;

tj = (2j)
1=2;

j = f0; 1; 2g ! pump, signal, idler: (1)

where we have used j � 1. Thus, the total transmit-
tance for a given mode is Tj = 2j .

Inside the nonlinear crystal, the three �elds involved
in the OPO operation (pump, signal and idler) will be
coupled by the second order nonlinear susceptibility.
From this coupling term, we obtain a parametric gain
for the signal and idler �elds, depending on the pump
�eld amplitude. Once we calculate all the contributions
in a round trip, we can see that when this gain compen-
sates all the round-trip losses, we obtain the oscilation
of the cavity for the signal and idler beams.

It is more convenient to express the �eld amplitude
as a normalized variable �j , where the ux of photons
per second integrated in the beam transverse area is
j�j j2. Using this normalization, we can express the
amplitude variation of the �elds at a point z inside
the nonlinear crystal, considering that we have collinear
propagation, and that the slowly varying envelope ap-
proximation is valid[2]

d�0=dz = �2��eff�2(z)�1(z)e�i�kz

d�1=dz = 2�eff�0(z)�
�
2(z)e

i�kz

d�2=dz = 2�eff�0(z)�
�
1(z)e

i�kz (2)

where �k = k0 � k1 � k2 is the phase mismatch, and
the amplitude of the wave vector is jkj j = !jnj=c. The
coupling term ��eff depends on the nonlinear suscep-
tibility of the crystal, and on the shape of the three
beams involved. Since we are working in cavities, it

is reasonable to expect that the oscillation modes are
gaussian. In this case the e�ective coupling coeÆcient
is given by [21]

�eff = �(2)
w0w1w

w2
0w

2
1 + w2

0w
2
2 + w2

1w
2
2

�
~!0!1!2

��0c3n0n1n2

�
(3)

where wj is the spot size inside the crystal (beam ra-
dius), and �(2) is the e�ective second order suscepti-
bility, taking into account the polarization of the �elds
and the crystal orientation [2, 38].

To integrate eq. 2, we can consider that the gain is
small, so in a �rst order approximation the amplitude
change in a single pass by the crystal is given by

�0(`) = �0(0)� 2���1(0)�2(0)

�1(`) = �1(0) + 2��0(0)�
�
2(0)

�2(`) = �2(0) + 2��0(0)�
�
1(0) (4)

with

� = �eff `
sin(�k`=2)

�k`=2
e�i�k`=2: (5)

In eq.4 we can see that the gain for the signal and
idler modes increases with the pump amplitude. So
does the depletion of the pump for an increasing value
of the signal and idler. The amplitude of the coupling
coeÆcient � varies with a sinc function of (�k`=2), giv-
ing an e�ective bandwidth for the gain on the value of
�k.

To calculate the accumulated phase in a round trip,
we consider the propagation in free space and inside
the crystal. The last one will depend on the refractive
index for each beam, given the beam polarization (due
to the crystal birefringence) and the wavelength dis-
persion. Thus the accumulated phase in a round trip
is

'j =
!j
c
(nj`+ L) = 2pj� + Æ'j ; pj = integer (6)

where Æ'j is the detuning of the �eld j from the cavity
resonance. The phase shift in the reection of the mir-
rors can be considered later, and will be neglected for
the moment.

The losses of the beam in a round trip must in-
clude the reection through the coupling mirror, and
also other spurious losses in other cavity mirrors, crys-
tal absorption, etc. Considering those losses as an ele-
ment with transmission t = e��, we have an additional
energy loss of 2�j in each round trip. The total loss is
therefore given by 0j = j + �j .

Considering that we are near the triple resonance,
which is a condition for low oscillation threshold, the
detuning is very small (jÆ'j j � 2�). Therefore, the
total amplitude in a round trip for a steady-state con-
dition can be �nally expressed as

�0
0
0(1� i�0) = �2���1�2 +

p
20�

in
0 (7)

�1
0
1(1� i�1) = 2��0�

�
2

�2
0
2(1� i�2) = 2��0�

�
1
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where we used the normalized detuning

�j = 'j=
0
j : (8)

We see in the �rst term of eq. 7 the external pump
�eld of the OPO as �in0 coupled by the input mirror.
The last two equations give us the operation condition
for cavity detuning of signal and idler and the threshold
value of the TROPO.

The solution of eq.7 for the amplitudes of the �elds
gives us di�erent operation regimes for a triply reso-
nant OPO[22], and the stability of each solution must
be studied. One simple solution is the trivial, with
�1 = �2 = 0. This solution remains stable for pump
values lower than a given limit. Above this threshold
the trivial solution becomes unstable and the system
will oscillate.

An immediate condition for the OPO oscillation is
obtained multiplying the second equation in eq.7 by the
complex conjugate of the third. To assure the resulting
equality

01
0
2(1� i�1)(1 + i�2) = 4j�j2j�0j2 (9)

we have from the imaginary part the �rst condition to
the steady-state operation

�1 = �2 = �: (10)

II.1 Oscillation threshold

From the real part of eq.9 we can calculate the intra-
cavity pump power threshold for the OPO oscillation,
obtaining

j�0j2 = 01
0
2(1 + �2)

4j�j2 : (11)

Therefore, once the OPO oscillates, the pump power
will be limited to the threshold value in the case of the
assumed approximations (small gain, small detuning,
small losses), clamping the intracavity amplitude to the
value given by eq.11, depending on the detuning of the
signal and idler and on their losses. The threshold de-
pendence for the phase matching �k is included in the
value of j�j2.

In the case of the TROPO, we can use the �rst of
eqs.7 to obtain the threshold value of the input power
for the OPO oscillation. Thus we have, for �1 = �2 = 0
and j�0j2 given by eq. 11, the threshold input power

j�in0 j2th =


02
0 

0
1

0
2(1 +�2)(1 +�2

0)

8j�j20 : (12)

The threshold will be clearly minimum in the ex-
act resonance for all three modes. It will also depend
on the ratio of the intracavity losses to the coupling
mirror losses for the pump mode. It will be useful to

de�ne now the pump ratio as the pump power normal-
ized to the minimum threshold at zero-detuning and
zero-phase mismatch

� =
j�in0 j2
j�in0 j2res

=
Pin
Pth

(13)

which will be used later in the output power and eÆ-
ciency calculations.

II.2 Signal and idler frequencies

The oscillation condition (eq.10) will determine the
possible wavelengths for oscillation in the OPO, con-
sidering also the cavity lenght and the phase matching
condition. It will be clearer when expressing the refrac-
tive indexes in a di�erent form, as the average and the
di�erence of signal and idler refractive index

n = (n1 + n2)=2; Æn = (n1� n2)=2 (14)

and the beat note frequency between signal and idler
as �! = !1 � !2. We will �rst assume that there is a
small di�erence between the losses in each mode, which
can be caused by di�erent reection coeÆcients of the
mirrors at signal and idler wavelengths, or crystal bire-
fringence on the absorption coeÆcient. Expressing the
losses in this symmetrical form we have

0 = (01 + 02)=2; Æ0 = (01 � 02)=2: (15)

It is easier to work with the sum and the subtrac-
tion of the phases of the �elds in a round trip in the
cavity. From eq. 6, we can see that

'2 � '1 = 2�m+ (Æ'2 � Æ'1)

'2 + '1 = 2�q + (Æ'2 + Æ'1) (16)

where m = p2 � p1 and q = p2 + p1 are integers,
and necessarily have the same parity. It is straight-
forward to calculate the beat note frequency using the
de�nitions above and eqs.6, 8 and 10. Assuming that
n!0 � Æn�!, we have

�! = �Æn`!0 + 2�mc

L+ n`
+

Æ0

0

�
!0 � 2�qc

L+ n`

�
(17)

where c is the speed of light in vacuum.
If the signal and idler losses are equal (1 = 2),

then Æ'2 = Æ'1. We obtain the equation expressed in
ref. [19]

�! = �Æn`!0 + 2�mc

L+ n`
= �2�D

�
Æn

`

�0
+m

�
(18)

with D = c=(L+ n`). So we can say that:
a) The beat note frequency has a discrete set of val-

ues, determined by q and m (which have the same par-
ity). For a given q, the separation between two neigh-
boring values of �! is 2D, therefore approximatelly the
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free spectral range at the subhamonic frequency of the
pump !0=2.

b) This frequency can be �nely tuned by adjusting
Æn.

c) Considering di�erent losses for each mode doesn't
change the behavior predicted in [19] close to degener-
acy, since the second term in the right side of eq.17
is reduced close to the perfect phase matching in the
quasi degenerate case, as we will see later. For higher
values of �!, it becomes important, especially because
the narrow spectral range of the coating for high reec-
tivity cavity mirrors will lead to unbalanced losses for
signal and idler modes.

II.3 Resonance of signal and idler

Another condition for the OPO operation is a small
detuning for signal and idler. We will calculate now
the cavity length L where the OPO will oscillate, be-
ginning by the exact resonant condition Æ'1 = Æ'2 = 0.
Clearly this condition is not absolutely necessary and a
small detuning can be allowed, but it will tell us which
longitudinal mode (m,q) is closest to oscillation due to
its lower threshold.

From the phase '2+'1 = 2�q (q integer, positive),
we can calculate the cavity length for exact signal and
idler resonance

L+ n` = q�0 � Æn`�!=!0: (19)

This equation becomes quite cumbersome when we
remember that �! also depends on L (eq.18). But a
simple assumption can be made. To perform the cavity
length scanning, searching the resonance position, the
displacement of L is in the range of the wavelength, so
the change in the value of D will be negligible, and we
can work with an average value of L in the denominator
of eqs.17 and 18.

As we can see from these equations, we have a dense
comb of resonance positions for signal and idler. For a
cavity length given by q, we have a full range of val-
ues m that will de�ne around this point the possible
lengths for oscillations, separated by a distance much
smaller than �0. This distance between adjacent oscil-
lation points, remembering the parity of q and m, is
given by

�L = Æn`
4�D

!0
= Æn

2`

L+ n`
�0: (20)

The existence of this dense series of points comes
from the additional degree of freedom given by the beat
frequency that isn't found, for instance, in the case of
SHG. As we will see, the possible values for the beat
frequency are limited by the phase matching condition.

II.4 Phase matching

The phase mismatch can be viewed as a reduction in
the coupling coeÆcient � in eq.4, leading to an increase

in threshold power. From the phase matching condi-
tion we have �k = [(n0 � n)!0 � Æn�!]=c, so exact
phase matching is obtained for �! = !0(n0�n)=Æn. A
value di�erent from this one will increase the threshold
power. To understand the e�ect of mismatching on the
selection of the values �! for oscillation, we will con-
sider that the cavity has a zero detuning for the three
�elds.

The threshold value is therefore given by eqs.5 and
12, and it can be expressed as

j�in0 j2pm =
00

2
01

0
2

8�2eff`
20

sinc�2
�
�k`

2

�
: (21)

The new normalized pump power can be expressed as
�pm = j�0j2=j�in0 j2pm.

Since the oscillation condition for a given input
power is that �pm � 1, we can say from this condition
and the pump power de�ned in eq.13 that the oscilla-
tion will occur if

sinc2
�
�k`

2

�
� 1

�
: (22)

From this condition we obtain the range of values
�! that are allowed to oscillate for a given pump power.
Observe that this bandwidth is higher for higher pump
power. For instance, consider that � = 2. In this case,
we have j�k`j � 2:8 as a limit condition. The range of
values of the beat note frequency is 5:8c=(Æn`) around
the value of �! for exact phase matching. The number
of possible oscillating modes calculated from eq. 18 will
be

N = 2:8
L+ n`

Æn`
(23)

so we expect to have typically more than ten modes
selected by a given phase matching bandwidth, owing
to the small value of Æn.

II.5 Pump resonance

A TROPO is expected to oscillate close to the pump
resonance, condition which will increase the intracavity
pump power. The cavity length for exact resonance for
the pump �eld is given by

L+ n0` = �0s; s = integer: (24)

Combining the pump resonant condition with sig-
nal and idler resonance condition given by eq.19, we
can calculate the beat note frequency �! for the triple
resonance condition

�! = 2�
c

Æn`
(q � s) + !0

n0 � n

Æn
: (25)

When we have exact phase matching we can see
from the de�nition of �k that q = s. So the cavity
position and the phase matching will generally select
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the value of q, and inside this group we have many
modes m of oscillation.

The same procedure used above for the phase
matching condition can be applied to obtain the width
of the region where the OPO can oscillate arround the
exact pump resoance. In this case, for a perfect phase
matching and signal resonance, the oscillation condi-
tion is given by � � �

1 +�2
0

�
. For a central value of

cavity length L given by eq. 24, we have a width

�Lp =
�0
�
00
p
� � 1 (26)

of positions where the oscillation is possible. It is clearly
necessary that �Lp > �L de�ned in eq.20 for the OPO
oscillation. Otherwise, beside the positioning of the
cavity length at the pump resonance, we need to tune
the value of Æn for exact resonance of the three modes,
which is inconvenient for a continuous operation and
stabilization of the OPO.

II.6 Type I phase matching

The discussion presented above can be applied to
type II phase matching, where the value of Æn depends
much more on the crystal orientation than on the sig-
nal and idler wavelengths, since the di�erence of the
refractive index due to the crystal birefringence is one
order of magnitude higher than the variation due to dis-
persion. This assumption is no longer valid for type I
phase matching. In this case, signal and idler have the
same polarization, and the refractive index di�erence
is caused only by dispersion. The calculated equations
remain a valid approximation only for wavelength op-
eration far from degeneracy. Close to degeneracy we
can express the dependence of Æn on the beat note fre-
quency in a �rst order approximation

Æn =
@n

@!

????
!0=2

�!

2
= n0(!)

�!

2
: (27)

The derivative n0(!) of the refractive index with re-
spect to frequency will play a major role in the oscilla-
tion conditions for the OPO. Applying this relation to
the equations calculated before we have:

II.6.1 Beat note modes

From eq. 18 we have

�! = � 2�mc

L+
�
n+ n0(!)!02

�
`
�= �2�Dm (28)

as a good approximation, since n� n0(!)!0=2. There-
fore the beat note frequency separation is still given by
the cavity length. But here, degenerate operation can
be achieved, since Æn becomes zero in the degenerate
case. In type II phase matching, the degenerate condi-
tion must be adjusted by a delicate variation of Æn.

II.6.2 Signal and idler resonance

The cavity length for signal and idler resonance has
now a quadratic dependence on �!. From eqs. 19 and
27 we can see that

L+ n` = q�0 � n0(!)`

2!0
�!2 (29)

and the distance between two resonance positions is

�L =
`

L+ n`
�0n

0(!)�!: (30)

As a consequence, the di�erence between mirror sep-
aration for which there is oscillation is linearly reduced
with the beat note frequency. The oscillating modes can
easily overlap close to degeneracy. This leads to mode
jumps and an increasing diÆculty to stabilize the cavity
at one operation mode �! for quasi-degenerate type I
phase matching.

II.6.3 Phase matching

Exact phase matching is assured if �!2 =
2!0 (n0 � n) =n0. Near degeneracy, this takes us back
to the straightforward condition n0 = n. We can calcu-
late from eq. 22 the range of values of �! for the type
I phase matching. For the same condition of � = 2 we
obtain a bandwidth of

p
5:8c=n0`, bigger than the one

obtained in the type II crystal.

II.6.4 Pump resonance

Close to degeneracy, n0 = n, therefore s = q will
limit us to a group q of oscillating modes. This will
give an interesting condition, coming from eq.29. The
cavity length for oscillation has a quadratic dependence
on �!. Scanning the cavity in the pump resonance,
we will have a dense group of oscillation points for the
OPO, but below a given cavity length, these oscillations
will be interrupted. In type II quasi degenerate oper-
ation this wouldn't occur, since negative values of �!
would still satisfy the oscillation condition, that cannot
be ful�lled in type I quasi degenerate operation [23].

II.7 Frequency tuning

As we can see, the oscillation of the OPO will be
determined by the conditions of cavity resonance and
phase matching. So the selection of the wavelength will
include the selection of the mode, given by the integers
m and q, and a �ne tuning using the variation of Æn.

In Fig. 2 we see the selection of the oscillating mode
in a type II phase matching. The diagonal lines repre-
sent the values of �! for exact resonance for a given
cavity length Lcav as described in eq.19. Each line cor-
responds to a mode q, and is in fact composed of a close
set of points, representing the di�erent values of m for
a given group q. The shadowed areas show the phase
matching selection of the beat note frequency region
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and the cavity length selection by the pump resonant
condition. In fact, if the cavity has a high �nesse for
the pump, the width of the cavity length selection can
be so small that only a single value of m is allowed for a
given value of q, but di�erent values of q can oscillate,
depending on the phase matching region. Therefore,
if we scan the cavity length Lcav we will see the oscil-
lation at di�erent points of the pump resonance peak.
If their oscillation length are closely spaced, the OPO
can easily jump from one mode to another, and this will
represent an additional diÆculty in its use as a tunable
laser source.
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Figure 2. Selection of modes for type II phase matching.
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Figure 3. Selection of modes for type I phase matching.

In Fig. 3, we have the same analysis for a type I
phase matching. As we have seen, the range of values
of �! that can oscillate satisfying the phase match-
ing condition is much wider than in the case of type
II phase matching. On the other hand, from eq.29 we
observe that the separation of the beat note frequency
�! for di�erent values of q at the same position L is
increased. Therefore, it is unlikely to have mode jumps
from one mode q to another close to degeneracy.

An interesting limit occurs when the pump reso-
nance coincides with the resonance of the degenerate
case. In this situation, the oscillation around the pump
resonance peak is limited to a single side of the peak.
For increasing values of L, we will have oscillation lim-
ited to the condition �! = 0, very di�erent of the type
II phase matching. This situation may be comfortable
to obtain degenerate operation in this OPO, locking the
cavity to the side of the resonance peak at degenerate
condition .

II.8 Output power

Calculating the output power of an OPO using eq.7,
we can obtain an expression relating the intracavity sig-
nal �eld and the pump amplitude expressed by eq. 13.
Therefore we have from eqs.7 and 12 that

� =

�
1���0 +

4j�j2j�1j2
02

0
0

�2
+ (� +�0)

2: (31)

From this equation, we observe that for �0� � 1
and � � (1 + �2)(1 + �2

0), there is a nonzero solution
for the cavity �elds. For the triply resonant case it will
be given by

j�j j2 = 0k
0
0

4j�j2
�p

� � 1
�
; (32)

with j; k = 1; 2 e j 6= k.
The output beams, coming out from the cavity

through the coupling mirror, are then

j�outj j2 = j
0
k

0
0

2j�j2
�p

� � 1
�
: (33)

This is the stable solution above threshold, when
the trivial solution (�j = 0) becomes unstable. For
high values of detuning and pump intensities, unsta-
ble operation will begin, with self-pulsing and chaotic
operation of the OPO [22].

For �0� > 1, there are two solutions for eq.31, be-
ing one stable and the other unstable. Together with
the trivial solution, we have a range of bistable opera-
tion in the OPO, as seen in theoretical [24] and exper-
imental works [25].

It is interesting to compare the �eld intensities
(Ij = j�outj j2) of signal and idler outputs. From their
mean values we have

I1
I2

=
1

0
2

201
: (34)

Therefore, for equal losses, the average photon ux
will be equal for each beam. Although this is not the
noise compression mentioned in the introduction, since
we are dealing only with average values of the �eld and
not with their uctuations, this gives us a hint of the
intensity correlation in signal and idler beams.
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The total output power can be calculated, in order
to obtain the eÆciency of the process. The total output
power is given by the sum of the signal and idler output
powers. For !1 = !2, 1 = 2, �1 = �2, this power will
be given by

Pout = ~!0

�
000
2j�j2

�p
� � 1

��
= 4�max

�p
P � Pth � Pth

�
:

(35)
So the eÆciency will depend on the factor �, being

maximum for � = 4 in the TROPO. Here we de�ned
the maximum eÆciency as

�max =


0
0
00

= ��0 (36)

where �j = j=
0
j is the ratio of the cavity losses

through the coupling mirror transmitance to the total
loss of the cavity. As we will see, this is an important
parameter for the noise correlation between signal and
idler beams.

III Quantum properties in an

OPO

The OPO plays a major role in Quantum Optics, pro-
ducing many non-classical states of light. It began with
the generation of squeezed vacuum [14], followed by the
production of macroscopic quantum correlated beams
[15] and quantum noise compression of the reected
pump beam from a TROPO cavity [17]. Recently, the
generated squeezed vacuum was applied in experiments
for Quantum Teleportation [26], and the use of quan-
tum tomography allowed the reconstruction of the out-
put squeezed state an OPO [27].

On the other hand, the production of macroscopic
beams with correlated intensities was used in high sen-
sitivity spectroscopy [28], and this intensity correlation
can be used to control the intensity in the signal from
the intensity uctuations in the idler by a feedback or
a feedforward system [29], obtaining noise compression
below the vacuum level.

We will present a general description of the quan-
tum properties OPO, beginning with the Master Equa-
tion of the density matrix of the three �elds inside the
OPO cavity. After that, we will present the equiva-
lent Fokker-Planck equation for the Wigner distribu-
tion, and then the Stochastic Di�erential equations.
From these equations, all the compression relations for
the signal, idler and pump can be obtained. We �nish
the presentation obtaining, from these equations, the
intensity correlation for the signal and idler beams in
the output of the OPO.

III.1 Master equation

To obtain the Master Equation, we will follow the
description presented in ref. [30]. The Master Equation

for the density operator � of the three mode �eld inside
the cavity is given by

d

dt
� = � i

~
[Hf +Hi +Hext; �] + (�0 +�1 +�2) �:

(37)
The �rst term in the commutator (Hf ) comes from

the free modes of the �eld inside the cavity. So we have

Hf = �~�0
00
�
ay0a0 � ~�1

01
�
ay1a1 � ~�2

02
�
ay2a2 (38)

where a+i , ai are the creation and anihilation operators
of the electric �eld [13], � is the round trip time in the
cavity (assumed equal for all the three modes), and �j

is the detuning, as de�ned in eq. 8.
The second term in the commutator is the e�ective

interaction between the �elds, given by the nonlinear
medium inside the cavity. So we have

Hi = i~
2�

�

�
ay1a

y
2a0 � a1a2a0y

�
(39)

where the coupling constant � is the same de�ned in
eq. 5. The last term of the commutator corresponds to
the pump driving �eld (") injected in the cavity

Hext = i~
0
�
"
�
ay0 � a0

�
: (40)

The last term of the Master Equation gives the
losses of the cavity in each mode

�j� =
0j
�

�
2aj�a

y
j � ayjaj�� �ayjaj

�
: (41)

It is shown in many references how to transform
from the density matrix formalism into the quasi-
probability distributions, e.g. ref. [31]. We will use
this procedure to obtain a Fokker-Planck equation of
the �elds inside the cavity.

III.2 Wigner representation and
Fokker-Planck equation

The density matrix can be treated in a much sim-
pler way as a quasi-probability distribution in phase
space. We can use the Wigner distribution of the �eld
in the phase space, where we have the appropriate re-
placement of the operators (a+i ; ai) of the �elds by com-
plex amplitudes (��i ; �i). The density matrix is also
replaced by a quasi-probability distribution in phase
space, leading to a Fokker-Planck equation. This pro-
cedure is completely described in ref. [31], and here we
will present the outline of this method applied to the
OPO cavity.

One interesting characteristic of the Wigner repre-
sentation is that the operators are replaced by classical
variables that can be interpreted as an average value
plus a uctuation term. This leads to a simple inter-
pretation of the �eld as a classical �eld with added vac-
uum uctuations. These uctuations are normalized
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to those of a coherent state, and from the resulting
variances of the output �elds we can demonstrate the
quantum noise compression, or the correlation of the
�elds amplitudes.

Making the substitution of the Master Equation
operators by the operators in the Wigner representa-
tion, we have the equivalent di�erential equation for
the Wigner distribution
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where the vector f�jg has six terms for the �elds and
their complex conjugates (�0; �

�
0; �1; �

�
1; �2; �

�
2). In-

deed, in this eq. we can recognize a Fokker-Planck
equation, except by the last triple derivative. For a
regular, well behaved distribution (e. g. gaussian), this
term can be neglected. So eq.42 can be expressed as

@

@t
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@

@�k

�
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T
�
jk
W (f�jg) (43)

where the vector A is called the drift vector, and the
matrix product BBT is the di�usion matrix.

III.3 Stochastic di�erential equa-
tions

The Fokker-Planck equation is equivalent to a set of
Stochastic Di�erential Equations (SDE), also known as
Langevin equations

d

dt
�j = Aj + [B�(t)]j (44)

where �(t) is a vector of uctuating variables �j(t) with
a zero mean value, and the property that

h�i(t)�j(t0)i = ÆijÆ(t� t0): (45)

A �rst consequence of this formulation can be ob-
served in the analysis of the mean values of the �elds,
calculated from the Langevin equations. One can im-
mediately see that the set of equations

d

dt
��j = hAji (46)

is identical, in the steady state regime (d�=dt = 0)
to eq. 7, presented before, obtained from the classical
values of the �elds. Therefore eq.46 gives the average
values of the �eld and the stability of these solutions.

The set of the Langevin equations (eq.44) presents
many quadratic terms that avoid a simple and straight-
forward treatment for the �eld uctuations. In this
case, it is more convenient to use a linearized approxi-
mation of the �eld uctuations. Replacing the �eld by
its mean value and a small uctuation

�j(t) = ��j(t) + Æ�j(t) (47)

and neglecting all small quadratic terms on the uctu-
ation, we have a set of SDE describing a linear process
with a constant di�usion, that can be treated to ob-
tain the spectra of the uctuations of the �elds. This
is the procedure used in ref.[30], using the description
of ref.[31].

Although this description of the �eld can give us a
direct expression for the noise spectra of the �elds in
an OPO, allowing the observation of noise compression
and correlation of �eld amplitudes, the resulting treat-
ment of the 6 � 6 matrix is cumbersome, and for our
purposes a simple substitution of variables will sepa-
rate the set of six di�erential equations in two groups
of uncoupled SDE's. The noise spectra of the reected
pump uctuations and of the signal and idler beams,
are calculated and presented in ref. [34, 35]. Up to the
moment, only the reected pump �eld squeezing has
been experimentally observed [17].

If we replace the �elds �1, �2 by the linear combi-
nation

�+ =
�1 + �2p

2

�� =
�1 � �2p

2
(48)

in eq.44, we can obtain a new set of SDE equations
for the �elds uctuations. Linearizing the �elds above
around their mean values we obtain the following equa-
tions for the uctuating terms Æ��, Æ�+:

d

dt
Æ�+ =

2�

�
�0Æ�

�
+ �
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�
��+Æ�0
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�
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20
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�+Æ�
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0
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�0

�
(1 + i�)Æ��+ +

p
20

�
�2(t)

d

dt
Æ�� = �2�

�
�0Æ�

�
�

�0

�
(1� i�)Æ�� +

p
20

�
�3(t)

d

dt
Æ��� = �2�

�
��0Æ��

�0

�
(1 + i�)Æ��� +

p
20

�
�4(t): (49)

We adopt here the operating conditions of the OPO,
�1 = �2 = �, and assume that the losses are the same
for both signal and idler modes (1 = 2 = ). The two
last equations below form a separate system of equa-
tions. So the problem of the uctuations of the �elds
for the pump beam is reduced to the evaluation of the
4� 4 matrix of the �eld variances.

The �eld relation calculated for the intracavity �eld
doesn't give immediately the uctuations of the �elds
coming out from the cavity. We must consider the out-
put coupler as a beam splitter, where we have the inci-
dence of the intracavity �eld and of the vacuum �led.
This treatment has been extensively used by many au-
thors [32, 33]. The vacuum uctuations can be consid-
ered in two separate terms. One comes into the cavity
from the coupling mirror, and the second one is cou-
pled by other spurious losses of the cavity. De�ning the

vector fÆ��(t)g =

�
Æ��(t); Æ�

�
�(t)

�
, the �eld uctu-

ations can be calculated from the following equation
[32]

d

dt
fÆ��g = �MfÆ��(t)g

+

p
2

�
f�a(t)g+

p
2�

�
f�b(t)g (50)

where f�a(t)g and f�b(t)g are respectively the vacuum
inputs from the coupling mirror and the spurious losses,
and

M =

"
0

� (1� i�) 2�
� �0

2�
� �

�
0

0

� (1 + i�)

#
: (51)

Using the Fourrier transform of the �eld,

fÆ��(
)g =
R fÆ��(t)ge�i
tdt =

�
Æ�(
); Æ��(�
)

�
,

we obtain

fÆ��(
)g =
(M+ i
I)�1

�p
2

�
f�a(
)g+

p
2�

�
f�b(
)g

�
(52)

with I being the 2� 2 identity matrix.
The output uctuations are then given by the sum

of the intracavity �eld transmitted by the output mir-
ror and the reected vacuum uctuations on this mir-
ror. Making the approximation of the reectivity of the

coupling mirror to 1, we have

fÆ�out(
)g = f�a(
)g �
p
2fÆ��(
)g (53)

for the di�erence of the signal and idler �elds uctua-
tion in the output of the cavity.

III.4 Intensity correlation

The amplitude correlation of the signal and idler
beams can be measured by the di�erence of the pho-
tocurrents produced by each beam. The resulting out-
put (considering the detection quantum eÆciency to be
100%) is I�(t) = I1(t) � I2(t). The �eld Ii(t) can also
be expressed as a mean value and a uctuating term,
corresponding to the noise of the beam. For a �eld am-
plitude �j(t) = ��j + Æ�j(t), the �eld uctuations will
be

ÆIj(t) = Ij(t)� �Ij = ���jÆ�j(t) + ��jÆ�j(t)
�: (54)

It is more convenient, and equivalent in form, to ro-
tate the phase of the beam, obtaining a real value for
the mean �eld. In other words, multiplying the �eld �j
by ei�j , we have

ÆIj(t) = j��j j
�
Æ�j(t) + Æ��j (t)

�
= j��j jÆpj(t) (55)

where Æpj(t) is the amplitude uctuation of the �eld.
Once we are working with a balanced cavity, where

the losses of signal and idler �elds are the same, the
mean amplitude of the �elds will be equal (j�1j = j�2j).
The uctuations of the intensity di�erence will be given
by

ÆI�(t) = j��j [Æp1(t)� Æp�2(t)] = j��j j
�
Æ��(t) + Æ���(t)

�
:

(56)
When we measure the �eld uctuations, using a

Spectrum Analyzer, we obtain the noise spectra of the
photocurrent uctuations in time [36]. From the Four-
rier transform of the photocurrent di�erence ÆI(t), we
have the noise spectra

S(
) = j��j2hÆp�(�
)Æp�(
)i: (57)

We have to calculate the amplitude di�erence uc-
tuations Æp�(t) from eq.53. The matrix presented in eq.
51 depends on the pump amplitude, whose intensity is
given by eq.11. Making the choice of the phase in order
to simplify the calculation of the �eld uctuations, we
have

�0 =
0

2�
(1� i�): (58)

This will give us the amplitude uctuation in the
frequency domain

Æp�(
) =

�
1� 2

20 � i
�

�
Æpa(
)�

�
2
p
�

20 � i
�

�
Æpb(
)

(59)
where Æpa(t), Æpb(t) are the real part uctuations of the
stochastic values �a(t), �b(t).
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One can immediately calculate, from the equation
above, the noise spectrum S(
), remembering the nor-
malization of the amplitude uctuations to the shot
noise

hÆpi(�
)Æpj(
)i = Æij : (60)

The noise uctuations are then given by [37]

S(
) = j��j2
"
1� �

1 + (
=
0)
2

#
(61)

where the cavity bandwidth for the signal and idler
mode is 
0 = 20=� , and � is the same value used in eq.
36. This gives us a direct physical interpretation of the
noise spectrum. For a shot noise measurement, like the
division of a single monomode beam in a 50/50 beam
splitter, and the subtraction of both photocurrents, we
have the normalized noise S(
)=I = 1. But in the case
of twin beams, the two outputs have a noise correlation
below the shot noise. This gives us a noise reduction
of the uctuations with a lorentzian dependence on the
analysis frequency 
. The weighting factor � of the
noise compression gives the maximum correlation, that
is obtained at frequency 
 = 0.

Since the photons are created in pairs inside the
cavity from the annihilation of a pump photon, the
beam intensities are expected to have a high degree of
correlation. For the spontaneous emission of a nonlin-
ear crystal (parametric uorescence), we have a precise
time correlation between the two emitted photons. In
the OPO, since the generated photon will have a decay
time to come out from the cavity, this correlation will
only be observed if we wait a time long enough for the
photon to come out from the cavity. That is the reason
why we have a lorentzian curve for the di�erence noise,
with the frequency normalized by the cavity bandwidth.

The factor � gives the ratio of photons that, coming
out from the cavity, reach the detector. If there are no
other losses than the coupling mirror, this factor will
reach unity and the beams will be perfectly correlated
in intensity. Every time that there is the loss of one
photon from one of the beams, the correlation will be
degraded. Another important point in this example of
sub-shot noise measurement comes from the indepen-
dence on pump uctuations. If the system is well bal-
anced, for both optical losses and electronic detection,
the "classical" amplitude uctuations will cancel at the
subtraction. This is no longer true for unbalanced cav-
ity losses, as can be seen in [35], but the sub-shot noise
level can still be attained, or even recovered for an ex-
ternal balance of the beam intensity.

IV Experimental results

We have built an OPO for the study of noise correla-
tion, using a 10 mm long, type II phase matched KTP
for 1064 nm/532 nm conversion (� = 90Æ; � = 23Æ).

According to the manufacturer (Cristal Laser S. A.),
its absorption is 2% at 532 nm and 0.05% at 1064 nm.
The faces of the crystal were AR coated, with residual
reection of 0.5% at 532 nm and 0.1% at 1064 nm. In
this biaxial crystal, the refractive index for the z orien-
tation is 1.83 at 1064 nm and 1.89 at 532 nm. For the
x and y orientation, the di�erence in the refractive in-
dex is small, and for our purpose, we can consider their
values as 1.74 at 1064 nm and 1.78 at 532 nm [38].

The cavity is made by two spherical mirrors of ra-
dius 13 mm. The cavity length is 18 mm, assuring a
FSR = 6 GHz and a value of z0 = 7 mm. We have here
a confocal cavity , what will simplify the alignment of
the mirrors and the injection of the pump beam. The
Rayleigh length value isn't optimized to the relation
given by Boyd and Kleinman [21] for optimal paramet-
ric interaction between gaussian beams (` = 5:6z0).
The cavity length is controlled by individual transla-
tion stages for each mirror and �ne tuning is made with
piezo-electric transducers.

The �rst alignment and implementation was made
with two mirrors with high reectivity for 1064 nm
(99.8%) and a lower reectivity for 532 nm (81%). The
measured cavity �nesse for the pump beam was F =
12 and the estimated �nesse for the subharmonic was
around 200.

A second cavity was employed replacing the initial
output coupler by a mirror of R = 97% at 1064 nm and
R = 99.8% at 532 nm, assuring a measured �nesse F =
24 at 532 nm and an estimated �nesse of 100 at 1064
nm.
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Figure 4. Setup of the OPO.

The setup is shown in Fig. 4. The laser is a diode
pumped frequency doubled Nd:YAG (Lightwave 142),
with 200 mW output power. The power control over
the setup is made by the half waveplate (532 nm) W1
and the input polarizer of the optical isolator. This
polarizer, with the Faraday Rotator (FR) and its sec-
ond polarizer, completes the optical isolator, avoiding
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instability in laser operation caused by the OPO cavity
reection. The second 523 nm waveplate (W2) rotates
the beam polarization to the extraordinary axis of the
KTP crystal (xy plane). Lenses L1 and L2 enable the
mode matching of the laser beam with the cavity. The
crystal is mounted in an oven, with temperature con-
trolled up to 0.1ÆC and with a range from 20 to 160ÆC.

The polarization of the output is controlled by the
1064 nm half waveplate W3. The polarizing cubes
PBS1 and PBS2 (Newport 10BC16PC.9) provide an
extinction ratio better than 1:1000 in transmission, giv-
ing a good separation of signal and idler beams. The
infrared beams are focused by a pair of lenses into
the photodetectors ETX300 (Epitaxx), with homemade
ampli�ed electronics for the high frequency (HF) com-
ponents of the photocurrent. The DC component is
also measured using a digital oscilloscope. The HF out-
puts are subtracted in an active circuit, and the result-
ing noise power is measured in the Spectrum Analyzer
(HP 8560). The remaining green light is transmitted
through the dichroic mirror, being detected in a visible
photodetector PDA55 (Thorlabs).

IV.1 Threshold and eÆciency

Scanning the cavity length using the PZT, we can
put it on resonance with the pump wavelength and
observe the oscillation either by the light generation
around 1064 nm or by the depletion of the intracavity
power at the fundamental wavelength, which is moni-
tored by the photodetector VIS.

The best value obtained for the oscillation thresh-
old was 8 mW of pump power, changing with the align-
ment of the mirror in the cavity. A typical value ob-
tained, after some running time and slow crystal degra-
dation (possibly due to gray tracking [39]), is 30 mW.
In Fig. 5 we can see in the normalized pump intensity
that the depletion of the beam is increased with the
pump power, and the value for the oscillation condition
is clipped to a maximum value when we have oscilla-
tion, as described in eq.11. The intracavity pump �eld
presents a parabolic shape, and from the �tting of this
equation the cavity losses 1; 2 can be evaluated, giv-
ing the value of the �nesse for the signal and idler �elds.

We can also see that as we increase the pump power,
many peaks appear. These peaks represent di�erent
modes (m, q) of oscillation, and their relavite positions
in the cavity lenght scanning are given by eq.19.

Measuring the peak intensity of the generated beam
for di�erent pump powers, we could measure the eÆ-
ciency of our OPO. The �t of the output power value
given by eq.35 to the measured values is presented in
Fig. 6. From the measured value of �0 = (43 � 3)%
and the �tted value of �max = 0.8 % we have � =
(2:0�0:2)%. The value of �0 is obtained from the mea-
surement of the transmittance of the input mirror at
532 nm (pump) and the measured �nesse of the cavity
for the pump beam, giving the total loss of the cavity.

We can see clearly from eq.61 that the noise squeezing
will be very small, and this system isn't adequate as
a twin beam generator, remaining an interesting setup
for the description of the OPO operation.
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Figure 5. Normalized output for the �rst cavity.
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This small value of � comes from the high reec-
tivity of the coupling mirrors. In this situation, the
crystal losses are important, and the surface quality of
the optical components involved also limits the e�ec-
tive losses. Mirrors and crystal surfaces have surface
quality better than �=10. Previous measurements with
lower surface quality mirrors prevented the oscillation,
due to an increase in the threshold value due to higher
losses.

After the initial study, we have used another cav-
ity con�guration with an output coupler for the 1064
nm as the cavity mirror. This con�guration increased
the overall losses at the subharmonic mode, giving a
higher threshold, but the ratio � is much improved by
increasing transmissivity of the coupling mirror.

As can be seen in Fig. 7, for a pump power about
twice the threshold, we could observe only a single peak
for the OPO oscillation. When we don't have oscilla-
tion at exact pump resonance (zero detuning), we can
observe a pair of peaks, like those expected for di�erent
modes m of oscillation in the condition observed from
eq.20, �Lcav > �L. It is also clear that the deple-
tion of the pump beam has a parabolic behavior on the
signal detuning, as given by eq.11.
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Figure 7. Resonance for the second cavity. Pump power =
110 mW.

Repeating the measurement of the peak power in
the OPO output scanning the cavity, we obtained the
maximum eÆciency from the �tting of eq.35 (Fig. 8).
From the measured value of �0 = (76 � 3)%, and
the adjusted value �max = (37 � 2)%, we expect that
� = (51� 3)%.

Therefore, he hope to observe a noise correlation 3
dB below the shot noise level in this OPO. The cavity
bandwidth limits the range of the spectrum where com-
pression can be observed. In our case, the bandwidth
is 200 MHz. Since the electronic circuit is frequency
limited to 50 MHz, the chosen frequency for noise mea-
surement is 10 MHz. In this case, we can approximate
eq. 61 by S = 1� �.

In spite of many advantages regarding the squeez-
ing, the higher pump power involved is a limitation in
this set-up, due to thermal bistability and crystal degra-
dation. We will discuss briey these aspects, before
proceeding to the noise measurement.
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Figure 8. Output power and eÆciency for the second cavity.

IV.2 Thermal bistability
KTP crystals are commonly used in OPO and SHG

owing to their small absorption at 1064 nm. In spite
of their higher absorption at 532 nm, they don't pose
problems in pulsed SHG, when it is often used in a sin-
gle pass condition. Owing to the type II phase match-
ing, it is hardly used in a double resonant cavity con-
�guration. In this case, LiNbO3 crystals are preferred
for SHG from CW Nd:YAG lasers using cavity con-
�guration to enhance the conversion eÆciency. In a
triply resonant OPO the KTP absorption will cause
some problems due to the thermal bistability.

In a KTP crystal, the value of @n=@T is about
3 � 10�5K�1 [38]. Therefore, the heating of the sam-
ple caused by absorption will produce an increase in
the refractive index and in the e�ective optical path of
the beam. If the cavity length is reduced, using the
PZT scanning, as we get near the resonance the intra-
cavity intensity will increase, and so will the tempera-
ture due to the absorption of the crystal. This heating
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of the attenuator.
We performed a small sequence of measurements of

the squeezing degradation for di�erent neutral density
�lters in the OPO output. As observed in Fig. 13, for a
decreasing attenuation, we have an increasing normal-
ized noise. We can conclude that there is noise compres-
sion in the intensity correlation, 33% below shot-noise
(41% correcting for losses).
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Figure 13. Squeezing degradation for increasing attenua-
tion. The OPO output polarization is rotated 100Æ by the
half wave plate.

Making the di�erence of the high frequency compo-
nent in each photodetector in the electronic circuit, we
could obtain the intensity noise correlation in the signal
and idler beams. When separated by the correct orien-
tation of the half waveplate, we have in one port of the
circuit the noise of the signal and in the other the noise
of the idler intensity. If we turn this waveplate, mixing
the waves in the polarizing beamsplitter, we will have
a division of half the intensity of each mode in each de-
tector. As commonly used, the photocurrent di�erence
of a single mode divided in a 50/50 beam splitter will
give us the vacuum uctuation level, or the uctuation
expected for a coherent state of the same average in-
tensity. With two modes, whose beat frequency is well
above the detectors bandwidth, the resulting noise will
correspond to the coherent state uctuations.

Therefore, when rotating the beam polarization,
changing from a complete separation of both modes in
the detectors to their mixture in a 50/50 beamsplit-
ter con�guration, we expect that the noise will change
from the correlation noise to the shot noise. If there is
compression in the correlation noise, it will be seen as
a noise level reduction in comparison to the shot noise,
which is measured for a 45Æ rotation of the signal and
idler at the polarizing cube (see Appendix).

We repeated the noise measurement for di�erent an-
gles of the half waveplate, changing the mixture of the
beams in the polarizing beamsplitter. The results, pre-
sented in Fig. 14, show that a maximum of squeeing
is obtained, and the normalized noise for signal and

idler separation is 60.9%. For an overall detection ef-
�ciency of 81.1% (photodetector eÆciencies, losses in
lenses, beam-splitters, etc.), we concluded that we have
a noise compression down to 52%, or -2.8 dB of the
shot noise level. This agrees with the expected value
obtained from the measurement of �max and �0, that
gave us a expected value of S = 1� � = (0:49� 0:03).
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Figure 14. Correlation noise for di�erent angles of polariza-
tion rotation.

V Conclusions

We presented in this paper a general overview for the
CW operation of an OPO. We included in our treat-
ment the description of the OPO tuning properties with
type I and type II crystals and the calculation of the
conversion eÆciency of the pump into the signal and
idler beams. We presented also a review of the quan-
tum properties of the OPO, and studied the intensity
uctuations of the twin beams in a type II OPO, show-
ing quantum correlation in twin beams. The techni-
cal problems of heating and crystal degradation where
also treated in the present work, and the synchronous
measurement of noise and intensity is presented as an
eÆcient way to circumvent these problems during mea-
surements.

The OPO remains, after more than three decades,
a fascinating subject of study in quantum and nonlin-
ear optics. The renewed interest in the OPO comes
from new materials manufacturing, and the commer-
cial application of this wideband tunable laser-like light
source. On the other hand, since the beginning of ex-
perimental quantum optics, it provides a reliable and
simple source of intense beams with quantum correla-
tions. Among other sources of squeezed light in nonlin-
ear crystals, the OPO provides the best result in noise
compression. For that reason, there is now a raising
interest in the OPO as a source of beams with spatial
correlation, and spatial noise compression.
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Appendix

The sinusoidal dependence of the current uctua-
tions measured in Fig. 14 can be easily explained if we
consider that the frequency di�erence of the two out-
put modes is high enough to eliminate the interference
term in the detection process. Consider the idler mode
passing through a beam splitter, with a transmission co-
eÆcient t and a reection coeÆcient r, where t2+r2 =1
(t, r: real). The unused port of the beam splitter will
be left open to the vacuum uctuations input �in0 . In
the con�guration of Fig. 15, the �elds on the photode-
tectors are �(1) = t�ini + r�ini0 and �(2) = �r�ini + t�ini0 .
Expressing the input �eld as a mean value and a uc-
tuating term like in eq. 47, we will have for the uctu-
ations in the photocurrent di�erence

ÆIi�(t) = ��ini
��
t2 � r2

�
Æpi + 2rtÆpi0

�
(63)

where Æpi denotes the real part of the �eld uctuations
Æpi(t) = Æ�i(t) + Æ��i (t).

αin αin
0

α(2)

α(1) I1

I2

BS D1

D2
_ I-

Figure 15. Detection system for a single beam.

In our detection system, the beam splitter is a cube
polarizer and a half waveplate. In this condition, the

transmission coeÆcient of the signal will be equal to
the reection coeÆcient of the idler and vice versa, in
a way that the signal contribution to the photocurrent
di�erence will be

ÆIs�(t) = ��ini
��
r2 � t2

�
Æps + 2rtÆps0

�
(64)

Adding up the contributions of the signal and idler
�eld photocurrents to the total photocurrent di�erence,
we obtain for the noise spectra of the photocurrent uc-
tuations

S0(
) =
�
t2 � r2

�2
S(
) + 4r2t2 (65)

with S(
) de�ned in eq.57.
In our setup (Fig. 4) the beam splitter transmission

will depend on the polarization rotation of the beam.
So the values of t and r are: t = cos�, r = sin�. In
this case, it is straightforward to see that the function
of the noise spectra on the polarization rotation will be

S0(
) = 1 + cos(2�) [S(
)� 1] (66)

as presented in Fig. 14.
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