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Superconducting Quantum Interference Devices coupled to gradiometers were used to detect 
aws
in metals. We detected 
aws in aluminum samples carrying current, measuring �elds at lift-o� dis-
tances up to one order of magnitude larger than the size of the 
aw. Con�gured as a susceptometer
we detected surface-braking 
aws in steel samples, measuring the distortion on the applied magnetic
�eld. We also used spatial �ltering techniques to enhance the visualization of the magnetic �eld
due to the 
aws. In order to assess its severity, we used the generalized inverse method and singular
value decomposition to reconstruct small spherical inclusions in steel. In addition, �nite elements
and optimization techniques were used to image complex shaped 
aws.

I Introduction

Nondestructive Evaluation (NDE) consists in the devel-

opment of measurement technologies and analysis tech-

niques for the quantitative characterization of materials

and components by a noninvasive way. It aims to as-

sess the integrity, properties and composition; and to

measure geometrical features such as 
aws and other

imperfections. NDE is used in process control, in pro-

duction quality control, and in components, which are

already in use. NDE enjoys also an increasingly im-

portant role in both: the development and the under-

standing of new materials. Its goals are improving the

quality and cost e�ectiveness of producing these mate-

rials, and perhaps what is more important, extending

the useful lifetime of components and structures fabri-

cated by them. At present, many e�orts are intended

to develop and perfect techniques that are capable of

monitoring and controlling the amount and rate of ma-

terial degradation during in-service life, which has been

accomplished, using advanced sensors along with data

processing and imaging techniques.

Among the several NDE techniques available [1], we

focused our e�orts on electromagnetic NDE that con-

sists basically in applying current or magnetic �eld to a

sample and measuring the response. We used SQUIDs

(Superconducting QUantum Interference Devices) and

inverse problem techniques, for measuring and sizing


aws in metal samples. Conventional technology, in

many situations, lacks adequate sensitivity, spatial res-

olution, dynamic range and frequency response; the

SQUID deals with all those problems with unequalled

skill. In order to provide quantitative images compara-

ble to the ones obtained by other NDE techniques such

as ultrasound, x-ray or thermal imaging, we applied

inverse problem algorithms, to obtain two and three-

dimensional images of 
aws in the samples under test.

We �rst described a home made SQUID as part of a

NDE system set up to measure 
aws in aluminum sam-

ples. In order to better visualize the measurements we

implemented two-dimensional spatial �lters to process

the data. Next, a SQUID susceptometer is presented

and tested to detect 
aws on steel samples. With the

purpose of imaging the 
awed samples, inverse problem

techniques are introduced and tested with simulations

and actual measurements.

II The wire-junction SQUID

The SQUID is the most sensitive device known for the

measurement of magnetic 
ux. It can be built basi-

cally from a superconducting ring closed by a Joseph-

son junction. There are two types of SQUIDs. The

RF SQUID has one Josephson junction and the DC

SQUID has two Josephson junctions in parallel. Its op-

eration is based on two phenomena that occur when the

material the SQUID is made of becomes supercondut-

ing: 
ux quantization and the Josephson e�ect. Flux

quantization dictates that the 
ux inside the SQUID

ring cannot change continuously, but only in multiples
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of �0, the 
ux quantum (�0 = h=2e = 2:07 � 10�15

Tesla- m2). The Josephson e�ect states that a super-

conducting current can cross the Josephson junction,

which consists of a weak link between two supercon-

ductors, up to a limit known as the critical current.

These properties cause the SQUID impedance to be

a periodic function of the magnetic 
ux threading the

SQUID. The net result is that the SQUID works as

a 
ux-to-voltage converter with unparalleled sensitiv-

ity. In order to become superconducting, conventional

SQUIDs, made of niobium, must be immersed in liquid

helium.

Figure 1. (a) Schematic drawing of an RF-SQUID coupled
to a 
ux transformer. The primary coil is con�gured as a
second order gradiometer. (b) Top view of the RF-SQUID
sensor showing the wire-junction design.

Our niobium two-hole RF SQUID [2], developed in

collaboration with James E. Zimmerman from NIST, is

radio frequency biased, through a resonant circuit, by

means of a room temperature current source. The res-

onant circuit is coupled to the SQUID by inserting its

inductor element in one of the SQUID holes, as depicted

in Fig. 1. A key advantage of our SQUID is the Joseph-

son junction design. It is made of two niobium 0.4 mm

wire segments, one 
at on the end and one pointed,

pushed against each other, as shown schematically in

Fig. 1b. Due to its extremely high sensitivity, the

SQUID is not used directly to measure magnetic �elds.

Rather, it is encapsulated in a superconducting shield,

with the magnetic signal coupled to it by a 
ux trans-

former. The 
ux transformer consists of a primary coil

wound in a di�erential con�guration and a secondary

coil coupled to the SQUID, by inserting it in the other

SQUID hole, as shown in Fig. 1. This secondary coil is

inside the shield and the primary coil is placed at the

position where the magnetic �eld should be measured.

When the external magnetic �eld induces current in the

primary coil, this current generates a magnetic �eld in

the SQUID through the secondary coil. We used the

primary coil in a con�guration known as an axial sec-

ond order gradiometer. An axial gradiometer consists

of coaxial coils connected in series with speci�c num-

ber of turns with appropriate polarity, and separated

by distances called baselines, as shown schematically in

Fig. 1a.

In a �rst approximation, it works as a spatial dis-

criminator, favoring the detection of �elds from near

sources against �elds from distant ones. With the pur-

pose of dealing with all kinds of gradiometer designs,

in a quantitative way, we developed a one-dimensional

model for the gradiometer based on spatial �ltering

techniques [3,4]. This model is valid if the �eld is ap-

proximately constant over the gradiometer area. Later

on, E. Andrade Lima et al. [5,6] developed a general

two-dimensional model, where this restriction was re-

moved. The model is not dependent on any particular

�eld source; it relies only on the geometrical features of

the gradiometer such as coil area and shape, and the

baseline. It can be used to simulate any gradiometer re-

sponse, perform gradiometer analysis and design, and

for calibration.

Our SQUID gradiometer has 15 mm diameter coils,

40 mm baseline and achieves a 50� 10�15 Tesla/
p
Hz

sensitivity down to 0.1 Hz. More sophisticated systems,

using a DC SQUID, can be one order of magnitude more

sensitive. Due to its high sensitivity, and to the discov-

ery of new materials, to which superconductivity occurs

at liquid nitrogen temperatures, SQUID systems open

new frontiers for nondestructive evaluation of electri-

cally conducting and also ferromagnetic materials.

III Electric current injection

method

The Electric Current Injection (ECI) method is used in

materials where the electrical conductivity due to the


aw di�ers signi�cantly from the conductivity of the

bulk material. This method is applicable to regularly

shaped objects, made of materials that are electrically

conductive but not magnetically permeable. The ECI

method is carried out by injecting current between two

points of the test sample and detecting the associated

magnetic �eld. For practical values of applied electric

current in metals, the strengths of the associated mag-

netic �eld and of the �eld distortion due to the 
aw

are orders of magnitude smaller than the earth's �eld.



Brazilian Journal of Physics, vol. 31, no. 4, December, 2001 589

For instance, a sizable 10 mm hole through a conduc-

tive plate carrying a 10 A current generates a peak �eld

distortion of about 0.5 �T at 10 mm distance. A high

sensitivity is needed when the probe cannot be placed

at close proximity to the sample under test or when

searching for a smaller defect.

In order to test the feasibility of using the SQUID

as a part of an ECI system [7], we measured several alu-

minum samples with dimensions 1 m � 1 m � 1 mm,

with single circular holes with diameters ranging from

2 mm to 8 mm. A current was applied to the ends of

the plates with amplitudes varying from 100 mA to 5

A. The measurements were taken by moving the plate

under the SQUID system in two orthogonal directions.

Very often, the actual sample to be inspected may not

be accessible, so, we used lift o� distances much larger

than the hole diameters. In this situation the �eld dis-

tortion due to the 
aws were immersed in the magnetic

�eld generated by the �nite plate itself.

Fig. 2a is a contour plot representation of the mea-

sured �eld at a 90 mm lift-o�, due to a plate carrying

a 5 A current and an 8 mm 
aw. A slight distortion

of the contour lines, due to the 
aw, can be seen over

the hole position along the x direction at y = 100 mm.

Fig. 2b shows a characteristic dipolar pattern due to

the 
aw, as a result of processing the signal in Fig. 2a

with a high-pass spatial �ltering algorithm developed

by C. Hall Barbosa et al. [8]. A spatial �lter is a pro-

cessing technique applied to signals that vary in space,

analogous to the conventional �ltering techniques that

are applied to time varying signals. The implemented

algorithm is based on spatial operations performed on

local neighbors of every input 
ux value. Each point

is replaced by a weighed average of its neighbors. This

can be done, by convolving the magnetic 
ux with a

spatial mask that de�nes the �nite impulse response �l-

ter weights [9]:

�0(m;n) =
X

k;l2W

X
w(k; l) � �i(m� k; n� l) (1)

where �i(m;n) and �0(m;n) are the input and output


ux of the spatial �lter, respectively, W is the win-

dow de�ning the spatial mask and w(k; l) are the �lter

weights given by the matrix below:

Figure 2. (a) Contour plot representation of Bz measured at
a distance of 90 mm from an 1 m � 1 m � 1 mm aluminum
plate carrying 5 A current, with an 8 mm hole centered at
x = 90 mm and y = 100 mm. (b) Contour plot representa-
tion after application of the spatial �lter algorithm, where
the dipolar pattern can be observed. The � mark indicates
the center of the hole and the dotted lines in the contour
plot represent negative �eld values.

The algorithm was implemented with a technique

known as unsharp-masking, which consists in �ltering

the image with a high order low-pass �lter, as the one

represented by the matrix above, and then subtracting

the result from the original image.



590 A.C. Bruno

IV Magnetic �eld perturbation

method

This method is used to detect 
aws in ferromagnetic

materials where the 
aw permeability di�ers signi�-

cantly from the one of the bulk sample. Consider a

uniform steel plate placed perpendicularly to the axis

of a magnetizing coil. It can be shown that, at the cen-

ter of the coil, the �eld lines are perpendicular to the

plate surface [10]. If we scan a magnetometer over the

plate and a surface-breaking 
aw is present, the �eld

will be distorted in this region due to the discontinuity

in the magnetic permeability. The �eld distortion will

be proportional to the volume of the 
aw to a certain

depth. Because of the resulting shielding of magnetic

�elds, just a small amount of the applied �eld pene-

trates deeply into the sample, thus making the �eld

perturbations from deep 
aws diÆcult to be detected.

We used a SQUID susceptometer system, custom-

made by Conductus, Inc., in collaboration with John

P. Wikswo, Jr. at Vanderbilt University, to measure


awed plates and pipes [11,12]. The system consists of

DC SQUIDs coupled to �ve �rst-order axial gradiome-

ters and a magnetometer, all capable of being used in

conjunction with three superconducting magnets. The

gradiometer used for these measurements has 3 mm di-

ameter coils with 8 turns, a 40 mm baseline and a sensi-

tivity of 100 pT/
p
Hz. A static magnetic �eld of up to

100 mT can be generated at the sample site by a 38 mm

long magnet with a 24 mm diameter that is concentric

with the gradiometer.

The test samples consist of low carbon steel plates

150 � 120 � 13 mm placed about 3 mm below the

pick-up coils. In this case we placed the SQUID system

close to the sample due to the proximity of the sam-

ple borders. A pattern of four 
aws at the vertices of

a 20 mm square was drilled in the steel surface, with

the 
aws having several depths. Each 
aw consists of a

blind hole machined with drill bits having a 45Æ angle

tip, with diameters ranging from 5 mm to 0.8 mm and

depths from 5 mm to 0.3 mm.

A very high system stability was observed, as an

apparently un
awed plate is scanned by the system.

The measurements were made inside a magnetic shield

enclosure. The main source of noise was the small vi-

brations of the sample due to the movement of the x-y

scanning stage in the presence of the applied �eld.

Applying the �eld perpendicular to the sample

makes this technique more suitable for detecting

surface-breaking 
aws. If the �eld is applied parallel

to the sample, super�cial 
aws will be diÆcult to de-

tect if the sensor sensitivity stays the same. As an

example, Fig. 3a shows a wire-mesh representation of

the normal component of the magnetic detected by the

SQUID, due to a 100 mT �eld applied parallel to the

surface of the test sample. From left to right, the upper


aws have a diameter of 5 mm and depths of 2.5 mm

and 4 mm respectively. The lower 
aws have a diameter

of 1.5 mm and depths of 4 mm and 2 mm respectively.

Notice that only the dips corresponding to the upper


aws are visible. The �eld ramp is caused by a mis-

alignment between the surface of the sample and the

plane of the gradiometer coil. When only 10 mT is ap-

plied perpendicular to the sample, the distortions due

to all 4 
aws can be visualized as seen in Fig. 3b. The

di�erent pattern for the upper ones represents multi-

ple resets in the SQUID electronics due to the amount

of �eld distortion, which re
ects the large size of these

two 
aws for this particular susceptometer sensitivity

range; the resets could have been avoided by reducing

the SQUID sensitivity, but then the small 
aws might

have been missed.

Figure 3. (a) Wire-mesh visualization of the magnetic �eld
Bz detected by the SQUID scanning a steel sample having
four 
aws. The two dips are due to the upper 
aws when an
100 mT �eld is applied parallel to the sample surface. (b)
Applying a magnetic �eld ten times smaller perpendicular
to the sample allow us to see all four 
aws.
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V Forward problem for simple


aws

Once the magnetic �eld associated to a 
aw is detected,

there remains the problem of how to estimate its geo-

metrical shape. One option can be the use of neural

networks to associate a magnetic �eld pattern with the


aw geometry [13]. Another approach is to solve the

so called inverse problem. The �rst step in solving the

inverse problem is to design a forward problem, which

consists in �nding a suitable model that contains the


aw characteristics we are interested. Simple 
aws that

can be restricted to straight-line voids, when the two

surfaces are close together, such as small inclusions or

cracks, can be modeled by positioning magnetic dipoles

in the region of the 
aw. This is based on the fact that

a 
aw has boundary surfaces, which reduces the 
ux

density in the material when it is magnetized. Magne-

tostatic theory shows that somemagnetic dipole sources

exist at such boundary surfaces, pointing in the oppo-

site direction of the applied �eld. The magnetic �eld

due to a dipole can be obtained from the gradient of

the magnetic scalar potential [14]:

b(r) = ��0r
�
m � (r � r0)
4�jr� r0j3

�
; (2)

where �0 is the permeability of the free space, r is the

measurement position, r0 is the dipole position and m

the dipole magnetic moment. The normal component

of the magnetic �eld bz measured at position (x; y; z)

for a dipole located at position (x0; y0; z0), and pointing

in the x direction, can be written as:

bz(x; y; z) =
�3�0(x� x0)(z � z0)

[(x� x0)2 + (y � y0)2 + (z � z0)2]5=2
mx:

(3)

The description of the dipole model above, disregards

the bulk magnetization of the sample, so this expression

accounts only for the �eld generated by the 
aw.

VI Inverse problem for simple


aws

In such case, an analytical inverse solution is possible.

Once the magnetic �eld is obtained, the strength of

the magnetic dipole mx can be found, using the inverse

procedure explained below. The strength will be point

wise proportional to the di�erence between the normal

components of the magnetic �eld intensity in the ad-

joining media. Similar inverse problems also exist in

other areas such as biomagnetism [15], geomagnetism

[16], and electrical impedance tomography [17] and a

number of di�erent approaches have been used to solve

them [18-21]. Although knowing that in general, this

problem has no unique solution, it was shown that it is

possible to �nd a best estimate for the inverse solution,

using adequate a priori information and, constraining

the possible solutions to predetermined source con�gu-

rations suited for each speci�c problem [22,23].

We applied the so-called truncated generalized

inverse or minimum-norm least-squares estimation

[24,25], where the chosen solution minimizes the

squared di�erence between the measured �eld and the

�eld generated by the estimated source distribution. It

also has the property of minimum norm solution, as

compared to all other possible solutions, which means

that the solution found would be the one with minimal

energy. In order to test feasibility of this approach, we

will simulate the measurement of a structure consist-

ing of a permeable bar with a constant permeability �,

containing 
aws in the shape of spherical inclusions of

radius �. It has a thickness t, width w, and length l.

Its cross sectional plane is located between the x coor-

dinates �w=2 and +w=2 and between the z coordinates
�t and 0, as shown in Fig. 4.

Figure 4. Permeable bar with thickness t, width w, and
length l. An external magnetic �eld is applied along the
x direction. The inverse solution will be seek on a series
of planes, each one consisting of a regularly spaced grid of
Nd magnetic dipoles pointing against the externally applied
�eld as illustrated above.

The search for possible solutions was con�ned to a

set of zx planes containing a regularly spaced N � N
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grid of magnetic dipoles with unknown strengths. The

orientation of the dipoles in the solution plane is �xed

along the �x direction, since the applied �eld Ha is

along the +x direction and the �eld is detected per-

pendicularly to the top of the bar.

By obtaining the strengths for each grid position of

the recovery dipoles, it is possible to locate the 
aw, and

estimate its spatial distribution, i.e., positions where

the dipole strengths are greater than zero. Assuming

that the normal component of the �eld is measured at

Np positions, we will represent it by an Np � 1 vector

bz. The N�N recovery dipole grid will be represented

by an Nd � 1 vector m. Thus, the �eld vector bz due

to the 
aw, can be written as a linear function of the

unknown recovery dipoles strength vector m:

Lm = bz; (4)

where L is the (Np � Nd) geometric or lead-�eld ma-

trix. From the forward solution stated in eq. (3) each

element of L is given by:

Ly =
(xi � xj)(zi � zj)

[(xi � xj)2 + (yi � yj)2 + (zi � zj)2]5=2
; (5)

where (xi; yi; zi) are the measurement positions,

(xj ; yj ; zj) the recovery dipole positions, i = 1; :::; Np

and j = 1; :::; Nd:

We will consider here cases where Np > Nd, as this

is the usual situation found in real measurements, i.e.,

more measurement positions than dipoles in the recov-

ery model. In this case, only an approximate solution

can be found. Nevertheless, the generalized inverse al-

lows us to obtain a best estimation of m, denoted by

m
�. This estimate will minimize the norm of the resid-

ual error jjejj:
jjejj = jjLm� � bzjj: (6)

Multiplying both sides of (4) by LT the transpose

of matrix L, the expression for the minimization of the

residual error norm is:

L
T
Lm

� = LTbz: (7)

However, due to imprecision in the measurements, the

square matrix LTL can be singular and a unique solu-

tion of the form:

m
� = (LTL)�1LTbz; (8)

cannot be obtained. Through the application of the

generalized inverse technique, it is still possible to �nd

the best estimate of the dipole distribution applying the

singular value decomposition on the lead-�eld matrix L,

yielding to the following product of matrices:

L = USVT; (9)

where U is an orthogonal Np�Np matrix, V is also an

orthogonalNd�Nd matrix, and S is a diagonalNp�Nd

matrix, whose elements are arranged in a noncrescent

order. The nonzero elements of S are called the singu-

lar values of L. Substituting (9) in (4) and applying the

de�nition of the generalized inverse, the approximate

solution is given by:

m
� = VS�1UT

bz: (10)

Two di�erent distributions of spherical inclusions

inside the permeable bar were simulated. The z com-

ponent of the �eld above the sample surface due to an

inclusion is given by [26]:

bz(x; y; z) = �0 � �� �0
2�+ �0

Ha � �3�

3(x� x0)(z � z0)

[(x� x0)2 + (y � y0)2 + (z � z0)2]5=2
; (11)

where �0 is the permeability of the free space, and

Ha is the magnetizing �eld applied along the x direc-

tion. We scanned a 1 mm regularly spaced recovery

grid with 11� 11 magnetic dipoles located between -5

mm � x0 � 5 mm, and -10 mm � z0 � 0 mm through

the y axis. The magnetic �eld produced by one single

spherical inclusion, with 1 mm of diameter, centered at

x0 = 0 mm and z0 = -3 mm, can be seen in Fig. 5a.

Figure 5b shows the cross sectional view of the single

spherical inclusion at plane y0 =0 mm. A uniform mag-

netic �eld of 1T was applied to the bar. In the present

simulations the bulk �eld of the material was neglected.

The reconstruction is represented as a gray scale

image, where white represents the maximum dipole

moment (inclusion) and black represents its minimum.

The magnetic image as a result of the reconstruction

method applied to the �eld due to the single inclusion

can be seen in Fig. 5c.

In the second simulation, we used a cluster of 13

spherical inclusions with 0.5 mm diameter centered

about x0 = 0 mm and z0 = -3 mm. The corresponding

�eld is plotted in Fig. 6a. The cross sectional view of

the second distribution can be seen in Fig. 6b. Despite

the similarities of the detected �elds, the technique was

able to successfully distinguish between the two distinct

inclusion con�gurations as shown in Fig. 6c. As far as

the inclusions located in the lower part of the cluster

are concerned, the image reconstructed from the second

distribution lacks better resolution. This is because the

magnetic �eld produced by the upper inclusions blinds

the inverse technique and the image cannot be recon-

structed accurately.



Brazilian Journal of Physics, vol. 31, no. 4, December, 2001 593

Figure 5. (a) Normal component of the magnetic �eld pro-
duced by an 1 mm diameter spherical inclusion inside a
ferromagnetic structure (�= 1000 H/m) subjected to an ex-
ternal magnetic �eld of 1T. (b) Illustration of the cross sec-
tional view of a 1 mm diameter spherical inclusion in the bar
centered at z0= -3 mm and y0 =0 mm. (c) Reconstructed
image obtained. The grayscale image has been displayed to
present maximum dynamic range.

Figure 6. (a) Normal component of the magnetic �eld pro-
duced by a cluster of 13 spherical inclusions with 0.5 mm
diameter inside the permeable bar subjected to an external
magnetic �eld of 1T. (b) Illustration of the cross sectional
view of the 13 inclusions inside the bar. (c) Image recon-
struction of the cluster of inclusions. The grayscale image
has been displayed to present maximum dynamic range.
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VII Forward problem for com-

plex 
aws

Unfortunately, for 
aws with complex geometries and

due to nonlinear response of ferromagnetic materials,

an analytical approach is seldom used actually. In such

case three- dimensional �nite-element modeling is es-

sential for precise characterization of large 
aws, al-

though there are still many problems to be solved in-

cluding the hysteresis in the magnetization characteris-

tic of ferromagnetic materials.

We designed our forward problem as a particular

case, when the sample is free from electric currents.

Thus, we can write Maxwells equations in our solution

space, i.e. the region in space where we want to calcu-

late the magnetic �eld as:

r�H = 0; (12)

r�B = 0: (13)

where,B andH are related byB= �H and � is the per-

meability of the sample, which in the majority of cases

depends on H. Then, a scalar potential  (x; y; z) can

be de�ned, from which the �eld H is derived through

the expression

H = �r : (14)

This de�nition is valid for any curl free �eld, so we can

rewrite eq. (13) as

r � �H = r � �(�r ) = 0; (15)

which in explicit three-dimensional form is

@

@x
�
@ 

@x
+

@

@y
�
@ 

@y
+

@

@z
�
@ 

@z
= 0 (16)

Our problem resides in solving the above second-order

di�erential equation for  with the appropriate bound-

ary conditions, to take into account the applied �eld.

Once the potential is known, the �eld generated by the

sample with or without 
aws, can be obtained using

eq. (14). The solution of eq. (16), for most practical

geometries, is impossible to be obtained by analytical

methods. One of the numerical methods used to solve

it, is known as the Finite Element Method. It consists

in trying to �nd an approximation  � to the potential

 which satis�es

@

@x
�
@ �

@x
+

@

@y
�
@ �

@y
+

@

@z
�
@ �

@z
�= 0 (17)

in all solution space. Normally, a polynomial approxi-

mation is used. Instead of forming a continuous approx-

imation over all the solution space, we can form piece-

wise approximations that are valid inside each part. In

order to do that, the solution space is divided into a

number of �nite size elements, the �nite elements. The

polynomial approximation will depend on the shape of

the element used. These elements form a mesh over

the solution space. It is clear that the smaller these

elements or the denser the mesh, the closer the nu-

merical solution will be to the exact one. As a last

remark, since the permeability � is not constant, it is

necessary to establish an iterative procedure until con-

vergence is obtained. There are a number of software

packages available that solve this class of problems and

in particular the one stated by eq. (17), for a given

solution space geometry [27].

VIII Inverse problem for com-

plex 
aws

Our approach to solve the inverse problem associated

with complex shaped 
aws relies on the use of a �nite

element procedure to simulate the �eld due to a mesh in

which the coordinates of speci�c nodes can be altered.

The �eld generated by the model is compared in a least

squares sense to the one actually measured due to a


awed sample. If the di�erence is larger than a thresh-

old the mesh coordinates are altered and the process

starts again, until the �eld generated by the model �ts

the measured �eld. This is an ill-posed problem with

no unique solution, so we have to make use of a priori

information, in order to constrain the possible solutions

to a predetermined class of source con�gurations.

Figure 7. Schematic drawing of half the magnetic circuit
used to test the inverse technique. NdFeB magnets with op-
posite orientations join the two plates. The magnetic �eld
sensor is not shown.

We are particularly interested in studying corro-

sion pits, which usually start by having a hemispheric

shape. To test the inverse procedure, we used the fol-

lowing setup, which half is depicted schematically in

Fig.7, where two permanent magnets generate a mag-

netic �eld through the plates. Fig. 8 shows an example

of a mesh using hexahedral elements generated to sim-

ulate the central upper plate in of Fig. 7. Notice that
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the geometry of the �nite elements in the central part of

the mesh was chosen to have a circular shape. Choos-

ing the height 
� of the nodes at the circular paths, will

allow us to design 
aws with circular shapes of various

sizes and depths.

Figure 8. Detail of the �nite element mesh used to perform
the inverse solution.

Our shape design problem can be stated as: �nd

(
�1 ; 

�

2 ; 

�

3 ; :::) such that

Z



jr	� �Hmeas:j2d
 � Æ

where Æ is a threshold, 
 is the space where the mea-

surements Hmeas: were performed, and (

�

1 ; 

�

2 ; 

�

3 ; :::) is

the design-variable vector with the heights of circles in

the �nite element mesh we are looking for.

The inverse procedure was implemented and tested

with experimental data by R. Schi�ni et al. [28,29] re-

producing the magnetic circuit of Fig.7 containing two

ferromagnetic plates (140 � 140 � 6.35 mm) joined by

NdFeB magnets with opposite orientations. Point wise

Hall magnetic sensors (0.2 � 0.2 mm2) were used to

scan the outside surface of the upper plate measuring

the tangential component of the magnetic �eld. Sev-

eral hemispheroidal pits with di�erent shapes were ma-

chined on the sample plate and the inverse procedure

carried out. The results obtained show very good agree-

ment with the actual shapes. As an example, Fig. 9a

shows the magnetic �eld measurement due to an 8 mm

diameter pit with 2 mm depth, which is shown in Fig.

9b. The measurements were made at a 4 mm distance

from a plate. The result of the inverse procedure is

shown in Fig. 9c.

Figure 9. (a) Measured magnetic �eld perpendicular to the
plate using a point wise Hall probe. (b) Detail of the ge-
ometry of the fabricated corrosion pit with 8 mm diameter
and 2 mm depth. (c) Result of the inverse problem using
the �nite element approach.

IX Conclusions

We successfully used SQUID systems to detect circu-

lar shaped 
aws in aluminum samples carrying currents

down to the mA range. Due to the SQUID sensitivity,

measurements of millimeter sized 
aws could be made

at distances 10 times its size. With the system con�g-

ured as a susceptometer we were able to detect surface-

breaking 
aws having volumes down to 0.1 mm3 in steel
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samples, measuring the distortion on the applied mag-

netic �eld. Spatial �ltering techniques proved to be

very useful to extract the signal due to the 
aw when

the �eld generated by the sample itself was one order of

magnitude higher. To size the detected 
aws, we used

an inverse problem technique based on the truncated

generalized inverse and singular value decomposition

to reconstruct simulated spherical inclusions in steel.

Finally, using point wise �eld measurements, �nite ele-

ments and optimization techniques were used to image

complex shaped 
aws, such as corrosion pits.
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