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The Heisenberg XXZ model is a chain model with nearest-neighbor interactions. Its thermody-
namics is exactly obtained via Bethe ansatz. Recently, we developed a method to derive the high-
temperature expansion of the grand potential per site of translationally invariant chain models,
with periodic boundary conditions. Here we apply this approach to the XXZ model with periodic
boundary conditions for the Ising limit case (t = 0) and the free fermion case (� = 0 and h = 0),
obtaining results in agreement with the literature. In this new way of obtaining the coeÆcients of
the high-temperature expansion of the grand potential, the coeÆcients are derived from an auxiliary
function written only in terms of open connected sub-chains.

I Introduction

In many aspects exactly solvable models are very

important in physics. They can, for example, give us in-

sights about more realistic models. The exactly solvable

models and their limits have also been applied along

decades as tests of applicability of new approaches.

Chain models as the Heisenberg XXZ model [1] and

the one-dimensional Hubbard model[2, 3, 4, 5] are ex-

actly solvable models due to their integrability prop-

erty. The Bethe ansatz has been applied to writing the

thermodynamic functions of those models as non-linear

integral equations (NLIE) (see the references mentioned

above). The numerical analysis of those NLIE has been

under study since the seventies. Those numerical anal-

yses are very involved and in 1995 Destri and de Vega[6]

got a high temperature expansion from the NLIE of the

free energy of the XXZ model.

The XXZ model has two limiting cases: i) the Ising

model [7] and ii) the free fermion model [8], whose re-

spective free energies have closed analytical expressions.

Recently, we proposed a new approach to obtaining

the high temperature expansion of the free energy in the

thermodynamic limit of chain models[9], the results of

which are valid for both fermionic and bosonic models,

and which does not rely on the Bethe ansatz (a key-

stone to all previous approaches to integrable models).

In the revised version of reference [9], we applied this

method to get the �-expansion of the free energy of the

XXZ model. We showed that the �3 term of the expres-

sion derived by Destri and de Vega[6] had to be �xed.

Certainly, the approach proposed in reference [9] can

be used as an independent check for the results, in the

high temperature limit, derived by the Bethe ansatz,

but we must �rst show its applicability; we intend to

do so by recovering the analytical expressions of two

limiting cases known in the literature.

The aim of this paper is to highlight the alternative

method of reference [9] which evaluates the �-expansion

of the grand potential per site to translationally invari-

ant chain models with �rst neighbors interaction and

subject to a periodic boundary condition [9]. In order

to exemplify the method, we consider the XXZ model

in Ising limit case (t = 0) and free fermion case (� = 0

and h = 0). We compare our results (t = 0) with [7] and

(� = 0 and h = 0) with [8] reobtaining their results.

In section 2, we summarize the results of reference
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[9], and in section 3 the method developed there is ap-

plied to the Heisenberg XXZ model in both the Ising

limit case and the free fermion case. We recover the

known results in literature. In section 4 we draw our

main conclusions.

II Grand Potential per Site for a
Chain Model

Here we present a survey of an alternative method for

calculating the coeÆcients of the high temperature ex-

pansion of the thermodynamic functions of translation-

ally invariant chain models with interaction between

nearest neighbors and satisfying a periodic boundary

condition[9].

Let us consider a one-dimensional regular lattice

(a periodic chain) with N sites, so that its Hilbert

space is simply H(N) =
N

 H, H being the irreducible

representation at one site, including all its degrees

to freedom. The dimension of this Hilbert space is

dimH(N) = trN (1l). The notation trN means the trace

over all N sites and their internal degrees of freedom,

e.g. spin.

The grand canonical partition function of a quan-

tum system in the chain with N sites is given by

ZN (�; �) = trN (e
��K); (1)

where K = H ��N , � being the chemical potential and

N being an operator that commutes with the Hamilto-

nian of the system. The expansion of ZN (�; �) around

� = 0 is

ZN (�; �) = trN (1l) +

1X
n=1

(��)n
trN (K

n )

n!
: (2)

Let A be any operator that acts on H(M) where

M � N . We de�ne hAi � trM (A)
trM (1l) , for any dimension of

H(M), as the normalized trace of operator A.

Using the de�nition of normalized trace, eq.(2) be-

comes

ZN (�; �) = trN (1l)
n
1 +

1X
n=1

(��)n
hKn i

n!

o
: (3)

We consider a general Hamiltonian H subject to two

constraints: the interaction is only between �rst neigh-

bors and the Hamiltonian H is translationally invariant.

The most general operator K satisfying both conditions

is

K =

NX
i=1

eKi;i+1; (4)

where

eKi;i+1 = 11
 : : :
1i�1
Ki;i+1
1i+2
 : : :
1N (5)

and Ki;i+1 2 Hi 
Hi+1. We use the notation 1i 2 Hi

for the identity matrix in the irreducible sub-space of

the ith particle.

In reference [9] we showed that the coeÆcients hKn i

in eq.(2) can be written, for arbitrary n, as

hKn i

n!
=

[n;N ]X
r=1

[n;N ]X
m=r

N

r

�
N �m� 1

r � 1

�
K(n)
r;m : (6)

The notation [n;N ] means min(n;N) and K
(n)
r;m is de-

�ned by

K(n)
r;m �

nX
fnig

00 mX
fmig

00 rY
j=1

K
(nj)
1;mj

; (7)

where
Pn

fnig
00
means the restriction:

Pn

fi=1g
00

and

ni 6= 0 for i = 1; 2; ::;m. We also use the notation

fnig � fn1; n2; : : : ; nrg and fmig � fm1;m2; : : : ;mrg.

The function K
(n)
1;m is de�ned as

K
(n)
1;m =

nX
fnig

"

 mY
i=1

K
ni
i;i+1

ni!

�
g; (8)

and each term on the r.h.s. of eq.(8) corresponds to the

g-trace of an open connected sub-chain.

In the de�nition of the function K
(n)
1;m we have the

g-trace which means

c

�
K

n1
i1;i1+1K

n2
i2;i2+1 : : :K

nm
im;im+1

n1! n2! : : : nm!

�
g

�
1

n!

X
P

hP(Kn1
i1;i1+1 ;K

n2
i2;i2+1 ; : : : ;K

nm
im;im+1)i; (9)
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where
Pm

i=1 ni = n with ni 6= 0 and the in-
dices ik, k = 1::m have distinct values. The
notation hP(Ki1;i1+1 ;Ki2;i2+1 ; : : : ;Kim;im+1)i repre-
sents all the permutations of the n operators
fKi1;i1+1 ;Ki2;i2+1 ; : : : ;Kim;im+1g.

We show in reference [9], that the grand potential
per site W(�; �),

W(�; �) = � lim
N!1

1

N�
lnZN (�; �) (10)

in the thermodynamic limit is written as

W(�; �) = �
1

�
fln(tr1(1)) + ln(1 + �)g : (11)

where

� =

1X
n=0

dn

d�n

�
'(�)n+1

(n+ 1)!

� ����
�=1

(12)

where � is a parameter, and the auxiliary function '(�)
is equal to

'(�) =

1X
m=1

�m
�m

; (13)

and

�m �
1X

n=m

(��)nK
(n)
1;m: (14)

From eqs.(11)-(14) we see that only the open connected
sub-chains contribute to the grand potential per site, in
the thermodynamic limit. The weight of each sub-chain
in the �-expansion of W(�; �) is already presented in
eq.(11).

III The Heisenberg XXZ Model

Let us consider the Hamiltonian of the well known
anisotropic one-dimensional Heisenberg XXZ model
with spin- 12 [1, 10, 11]

H =
NX
j=1

(Sxj S
x
j+1 + S

y
j S

y
j+1 +�Szj S

z
j+1 � 2hSzj ); (15)

where h is the external magnetic �eld and (Sxj ; S
y
j ; S

z
j )

are spin- 12 operators the jth site in a periodic chain
with N space sites; � is called the anisotropy parame-
ter and for � > 0 (� < 0) we have a repulsive (attrac-
tive) interaction core. The case � = 1 (� = �1) cor-
responds to the isotropic antiferromagnetic (ferromag-
netic) Heisenberg model with ground state fully polar-
ized. Through the Jordan-Wigner transformation[12],
the Hamiltonian (15) is mapped onto the spinless
fermionic model, whose Hamiltonian is

c

H =

NX
j=1

�
t (ayjaj+1 + a

y
j+1aj) + V njnj+1 +Enj

�
+N(h+

�

2
); (16)

d

where V = 2�, E = �2h� 2�, ni = a
y
iai and a

y
i (ai)

is the fermionic creation (annihilation) operator at the

jth site. The operators ayi and ai satisfy the usual anti-
commutation relations of the fermionic �elds. In writng
hamiltonian (16) we consider the situation where the
number of down-spins is odd [1]. However we point out
that this choice does not restrict our results since we
are interested in the thermodynamic limit of the model.
The hopping constant t is included in the hamiltonian
(16) only to help counting the powers of terms that
contribute to a given order �n in the �-expansion of
the free energy. Throughout the calculations, we have
taken t = 1. The term N(h+ �

2 ) leads to a shift in the
energy of the ground state of the model.

The Hamiltonian (16) has two liming cases: the
Ising model (t = 0) and the free fermion case (� = 0

and h = 0), that have closed analytical expressions for
their respective free energies. Now we are going to ap-
ply the method outlined in section 2 to each of these
models.

III.1 The Ising Limit Case (t = 0)
For the sake of simplicity, we will drop along the cal-

culations the contribution of the constant term on the
r.h.s. of the Hamiltonian (16); it will be recovered in
the �nal expression of the free energy. The Hamiltonian
of the Ising model is:

V =

NX
j=1

�
V njnj+1 +Enj

�
: (17)

To obtain the auxiliary function '(�) from which the
free energy in the thermodynamic limit will be derived,
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we must calculate V
(n)
1;m. Applying eq.(8) to this model,

we have

V
(n)
1;m =

nX
fnig

00D mY
i=1

(V nini+1 +Eni)
ni

ni!

E
: (18)

To this particular model the g-traces are already the
normalized traces. In order to evaluate the normalized
traces we apply the property of the operator number of
a fermionic particle: (ni)

m = ni, m 6= 0. In doing that
we get

c

V
(n)
1;m =

nX
fnig

00D
n1

�m�1Y
i=1

(V ni+1 +E)nini+1

ni!

�(V nm+1 +E)nm

nm!

E
: (19)

We should remember that the normalized trace of the number operator in this model is hnii=
1
2 . Due to the fact

that all operators in Hamiltonian(17) commute among themselves, we expand the terms in the product of eq.(19)
using the binomial expansion, obtaining

V
(n)
1;m =

1

2m

nX
fnig

00�m�1Y
i=1

(�2h)ni

ni!

�1
2

n (�2h)nm
nm!

+
(2(�h��))nm

nm!

o
: (20)

d

In order to calculate the �m functions (see eq.(14)) we
perform the summation over n = 1; 2; :::;1. The re-
stricted sums over the indices fmig are easily done if
we recognized that in the thermodynamic limit they can
be substituted by m independent sums with each index
fmig varying from 1 to 1. Then the �m functions can
be written as a product of sums and

�m =
�e2�h � 1

2

�m�1 (e2�h + e2�(h+�) � 2)

4
: (21)

Our next step is to obtain the auxiliary function '(�),
substituting eq.(21) in eq.(13), that is

'(�) =
(e2�h + e2�(h+�) � 2)

4�

1X
m=1

�e2�h � 1

2�

�m�1

:

(22)

The summation on the r.h.s. of eq.(22) is easily done
and we obtain the following expression

'(�) =
(e2�h + e2�(h+�) � 2)

4

� 1

�� e�h�1
2

�
: (23)

Finally, substituting this '(�) into the de�nition of �
(see eq.(12)), we obtain

� =
1

2

(
e2�h � 3

2
+

r�e2�h � 1

2

�2
+ e2�(h+�)

)
:

(24)
At this stage of our calculations, we put back the

contribution from the shift of the energy of the ground
state (e��(h+

�

2
)) in the expression of the free energy of

the Ising model

c

WI(�) = �
1

�

�
ln(2) + ln(1 + �)

�
= �

1

�
ln
�
e
���
2 cosh(�h) +

q
e��� sinh2(�h) + e��

�
: (25)

d
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Expression (25) coincides with the results found in
the literature[7].

III.2 Free Fermion Model (� = 0
and h = 0)

The free fermion model in one-dimension comes

from the Heisenberg Hamiltonian(16) with � = 0 and
h = 0.

For this model, the H
(n)
1;m are null when n is odd. For

this reason, our expansion is done only for even values
of n. Below we present the calculated expressions for

H
(n)
1;m up to n = 10:

c

H
(2)
1;1 =

t2

4
(26a)

H
(4)
1;1 =

t4

48
H
(4)
1;2 =

t4

24
(26b)

H
(6)
1;1 =

t6

1440
H
(6)
1;2 =

t6

240
H
(6)
1;3 =

7t6

960
(26c)

H
(8)
1;1 =

t8

80640
H
(8)
1;2 =

t8

5760
H
(8)
1;3 =

43t8

40320
H
(8)
1;4 =

17t8

13440
(26d)

H
(10)
1;1 =

t10

7257600
H
(10)
1;2 =

t10

241920
H
(10)
1;3 =

t10

13824
H
(10)
1;4 =

113t10

483840
H
(10)
1;5 =

319t10

1451520
; (26e)

which give us

�1 =
(�t)2

4
+

(�t)4

48
+

(�t)6

1440
+

(�t)8

80640
+

(�t)10

7257600
+O(�11); (27a)

�2 =
(�t)4

24
+

(�t)6

240
+

(�t)8

5760
+

(�t)10

241920
+O(�11); (27b)

�3 =
7(�t)6

960
+

43(�t)8

40320
+

(�t)10

13824
+O(�11); (27c)

�4 =
17(�t)8

13440
+

113(�t)10

483840
+O(�11) (27d)

�5 =
319(�t)10

1451520
+O(�11): (27e)

From the results (27) we obtain the function '(�) for the model. The sum of sub-chains (see eq.(12)) that contribute
to WF (�; �) is

� =
1

4
(�t)2 +

1

576
(�t)6 �

1

2304
(�t)8 +

29

230400
(�t)10 +O(�11): (28)

From eq.(11), we get

WF (�) = �
ln(2)

�
�

1

2�

n1
2

(�t)2

1!2
�

1

4

(�t)4

2!2
+

1

2

(�t)6

3!2
�

17

8

(�t)8

4!2
+

31

2

(�t)10

5!2
+O(�11)

o
: (29)

We recognize that the coeÆcients in expansion (29) can be written in terms of the Euler's number En(x) evaluated
at x = 1. Extending our results, using Euler's number for arbitrary n, we obtain

WF (�) = �
ln(2)

�
�

1

2�

1X
n=1

E2n�1(1)
(�t)2n

n!2
= �

1

2��

Z 2�

0

d� ln(1 + e2�t cos(�)): (30)

The integral on the r.h.s. of eq.(30) is just the well known result for the free fermion model[8].
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IV Conclusions

Some chain models have the property of integrability,
and their exact thermodynamics is usually obtained via
Bethe ansatz. The thermodynamic functions are writ-
ten in terms of NLIE. The analysis of their thermo-
dynamic properties implies a very involved numerical
manipulation of those NLIE. It is important that we
have alternative formalisms, preferably algebraic and
independent. We have thereby the possibility of test-
ing methods and known results. One of these methods
was showed in [9].

As an illustrative application of such method, we
consider the Heisenberg XXZ spin- 12 chain model,
and we derive its thermodynamic potential for two
limit cases: the fermionic spinless version of the one-
dimensional Ising model (when t = 0) and the free
fermion case (� = 0). For the Ising model, we re-
cover the result of reference [7] by re-summing the �-
expansion series of the thermodynamic potential. For
the free fermion model, we calculate WF (�; �) up to
order (�t)10 and show that all terms agree with known
results[8]. The important point is that the results
are analytical and this technique can be applied to
any translationally invariant chain models (fermionic
or bosonic) with �rst neighbors interaction, subject to
periodic boundary condition.

Finally we want to mention that it is in progress the
application of the present approach to derive the high
temperature expansion of the spin-1 Heisenberg model.
We point out that the thermodynamics of this model
can not be studied by the Bethe ansatz method once it
does not owe the integrability property.
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