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We obtain exact solutions for the Schr�odinger-Pauli matrix equation for a neutral particle of spin
1/2 in a magnetic �eld with a �eld gradient. The analytical wavefunctions are written on the
symmetry plane Y = 0, which contains the incident and splitted beams, in terms of the Airy
functions. The time-evolution of the probability densities, j	+j

2 and j	
�

j2, and the eigenenergies
are calculated. These include a small contribution from the �eld gradient, �, proportional to
(�~)2=3, which amounts to equal energy displacements on both magnetic levels. The results are
generalized for spin S = 3=2, and in this case we found that the m = �1=2 and m = �3=2 magnetic
sublevels are unequaly splitted by the �eld gradient, being the di�erence in energy of the order 0.4
MHz. Replacing real experimental parameters we obtained a spatial splitting of the spin up and
spin down states of the order �z � 4 mm, in accordance to a real Stern-Gerlach experiment.

I Introduction

The experiment of Stern-Gerlach, performed in the �rst
quarter of the 20th century, is introduced in basic quan-
tum mechanics textbooks in order to illustrate the ex-
istence of the spin of a particle [1 � 6]. In spite of its
historical importance, and its wide use as an experimen-
tal paradigm for the discussion of the concept of mea-
surement in quantum mechanics, authors have failed to
exhibit a full, or even particular solution of the prob-
lem, that is, the particles analytical wavefunctions and
their time evolution, as well as their eigenenergies. A
fairly large number of recent works have been published
on the subject, as that of Batelaan et al: [7] who pro-
posed an experimental setup where charged particles
could be separated by their spins in a \Stern-Gerlach
apparatus", contradicting the ideas of Bohr and Pauli
at the beginning of the century; Nic Chormaic et al: [8],
employing interferometry techniques in a Stern-Gerlach
experiment, investigated properties of neutral particles
in a beam; Hannout et al: [9] contributed to the theory
of measurements in quantum mechanics using the idea
of a Stern-Gerlach apparatus. In some other works on
the subject [10�13] the role played by the �eld gradient
remains undetermined.

In this paper, we are concerned with a beam of neu-
tral atoms of spin S = 1=2 and mass m which pene-
trates the �eld region along the x-axis. The magnetic
�eld inside the magnet region can be approximated as
:

B(y; z) = ��yj+ (B0 + �z)k (1)

where B0 represents a homogeneous component of the
�eld, and �(>0) the �eld gradient along the z direc-
tion. One notices that this �eld satis�es the equation
r � B = 0, and also that it can be derived from a po-
tential vector A = �y(�z +B0=2)i+ (B0x=2)j.

From the �eld given in Eq.(1), one can write the
hamiltonian:

Ĥ = I
P̂2

2m
+ �B�̂ �B(y; z) (2)

and therefore the Schr�odinger-Pauli matrix equation:

Ĥ	 = �I
~
2

2m
r2	

+�B [��y�2 + (B0 + �z)�3]	 = i~
@	

@t
(3)

where I is the 2�2 identity matrix and �1; �2 and �3 the
Pauli matrices. 	 = 	(x; y; z; t) is the two-component
spinor:

	 =

�
 +

 �

�
(4)

In what follows we will use the spinor components,
	+ and 	�, de�ned through:

	+ =

�
 +

0

�
; 	� =

�
0
 �

�
(5)

Before proceeding, it is instructive to consider a sim-
ple calculation of the expected value for the position of
the particle on the z-axis in a instant of time t using
(2). This will be given by:
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< Ẑ >� (t) =

Z
	y�(t)Ẑ	�(t)d

3r (6)

Since the hamiltonian in Eq.(2) is independent of t, one

can write:

	�(t) = e�iĤt=~	�(0) (7)

and apply the Baker-Hausdor� identity [5]:

c

eÔÂe�Ô = Â+ [Ô; Â] +
1

2!
[Ô; [Ô; Â]] +

1

3!
[Ô; [Ô; [Ô; Â]]] + � � � (8)

In the present case:

Â = Ẑ and Ô =
i

~
(
P̂x

2

2m
+
P̂y

2

2m
� 2�B�Ŷ Ŝy +

P̂z
2

2m
+ 2�BB0Ŝz + 2�B�ẐŜz)t

From these expressions one obtains:

[Ô; Â] =
P̂z
m
t

[Ô; [Ô; Â]] = �
2�B�t

2

m
Ŝz

[Ô; [Ô; [Ô; Â]]] = �
(2�B�)

2t3

m~
Ŷ Ŝx

[Ô; [Ô; [Ô; [Ô; Â]]]] =
(2�B�)

3t4

m~2
Ŷ 2Ŝz +

(2�B)
3�2B0t

4

m~2
Ŷ Ŝz+

+
(2�B�)

3t4

m~2
ẐŶ Ŝy �

(2�B�)
2t4

m2~
P̂yŜx ; etc:

Considering the \reduced" hamiltonian, Ĥr, acting on the wavefunctions on the plane Y = 0:

Ĥr =
P̂x

2

2m
+
P̂z

2

2m
+ 2�BB0Ŝz + 2�B�ẐŜz

the problem is greatly simpli�ed for all the terms of order higher than 2 vanish. We will call these functions:

�1(x; z; t) � 	+(x; 0; z; t) and �2(x; z; t) � 	�(x; 0; z; t)

from which one can calculate the expected value of Z. We obtain the �nal result:

< Ẑ >1;2 (t) =< Ẑ >1;2 (0)+ < v̂z >1;2 (0)t�
�B�t

2

m
< Ŝz >1;2 (0) (9)

d

this result is in accordance with the theorem of Ehren-
fest [5]. Thus, if the beam has been previously polarized
along the z-axis, by entering the Stern-Gerlach appara-
tus it will be subject to a force equal to +��B for spin-
down particles (< Ŝz > (0) = �1=2), and ���B for
spin-up particles (< Ŝz > (0) = +1=2). Consequently,
the beam is splitted by the �eld gradient, and the parti-
cles are separated by their spin direction on the z-axis.

In the next section eq.(3) is solved on the plane Y = 0,
and the exact wavefunctions are obtained. In section III
the stationary wavefunction are determined along with
the corresponding eigenenergies. The case S = 3=2 is
discussed in Sec.IV and the energy and spatial splittings
are calculated in Sec. IV.1 and IV.2, respectively.
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II Exact Solutions on Y = 0

On this section we will derive exact solutions for the
Stern-Gerlach e�ect on a symmetry plane. We will
consider a magnetic �eld with �eld gradient di�erent
from zero for x > 0 (direction of the incident parti-

cle) and equal to zero for x � 0. The time-evolution
of the particles wavefunctions crossing a Stern-Gerlach
apparatus can be obtained analytically on the symme-
try plane Y = 0, on which the two equations in (3)
become decoupled:

c

�
~
2

2m

�
@2�1
@x2

+
@2�1
@z2

�
+ �B(B0 + �z)�1 = i~

@�1
@t

(10)

�
~
2

2m

�
@2�2
@x2

+
@2�2
@z2

�
� �B(B0 + �z)�2 = i~

@�2
@t

(11)

d

On the basis of the results of the preceeding section, one
can expect that the solutions of the above equations will
contain a function dependent on the varibles z and t,
representing the separation of the beam along the z-
axis. Besides, Berry [14] showed that the solutions of
the Schr�odinger equation of a free-particle can be writ-
ten as products of AiryAi functions by complex expo-
nential functions whose square modulus evolves without
deformation. The fact that Eqs.(10) and (11) contain
the coordinate z suggests that the same type of Airy
functions can be found here.

We therefore propose as possible solutions of (10)
and (11) the following multiparameter functions �1 and
�2:

�1(x; z; t) = F [a(z + bt2)]eictze(i=~)(pxx�~!+t) (12)

and

�2(x; z; t) = G[~a(�z +~bt2)]e�i~ctze(i=~)(pxx�~!�t) (13)

Where px is eigenvalue of P̂x, which is in turn conserved.
Replacing (13) and (12) in (11) and (10), respectively,
one �nds that the functions F and G satisfy the Airy
equation [15] only if the parameters assume the follow-
ing values:

c

a =

�
2m(�B�� 2mb)

~2

�1=3
; ~a =

"
2m(�B�� 2m~b)

~2

#1=3
(14)

~!+ =
px

2

2m
+ �BB0 ; ~!� =

px
2

2m
� �BB0 (15)

c = �
2mb

~
; ~c = �

2m~b

~
(16)

b = ~b =
�B�

4m
(17)

One notices that with this set of parameters, a and ~a are positive, a necessary condition for j �1(z; t) j
2
and

j �2(z; t) j
2 to represent functions which move appart with time. Explicitly, the non-normalized solutions of (10)

and (11) are:

�1(x; z; t) = Ai
h
(
�B�m

~2
)1=3(z + (

�B�

4m
)t2)

i
ei(���B=2~)zt�

�e(i=~)[pxx�((px
2=2m)+�BB0)t] (18)

�2(x; z; t) = Ai
h
(
�B�m

~2
)1=3(�z + (

�B�

4m
)t2)

i
ei(��B=2~)zt�
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�e(i=~)[pxx�((px
2=2m)��BB0)t] (19)

One notices that these solutions are correctly reduced to free particle plane waves in the region outside of �eld, that
is, x � 0. The time-evolution of the probability density is proportional to the squared modulus of �1 and �2:

j �1(z; t) j
2
=
�
Ai

h
(
�B�m

~2
)1=3(z + (

�B�

4m
)t2)

i�2
(20)

j �2(z; t) j
2
=
�
Ai

h
(
�B�m

~2
)1=3(�z + (

�B�

4m
)t2)

i�2
(21)

These functions, however, still do not represent physically correct solutions to the problem. First one notes that
the AiryAi functions oscillate along the z-axis without decaying for large values of z. To get rid of these oscillations
and obtain a proper wavefunction, we simply multiply the solutions (18) and (19) by Heaviside's step functions, �,
which \truncate" the oscillations at the �rst zero (�o). Secondly, we introduce a displacement �o = �1:0188 (�rst
maximum of Ai) in order to make the two functions coincide at t = 0. With this, the �nal correct time-dependent
wavefunctions become:

�1(x; z; t) = Ai
�
a(z + (�o=a) + bt2)

�
��

�
z � (�o=a) + (�o=a) + bt2

�
�

�ei(czt)e(i=~)[pxx�~w+t] (22)

and
�2(x; z; t) = Ai

�
a(�z + (�o=a) + bt2)

�
��

�
�z � (�o=a) + (�o=a) + t

�
2
�
�

�e�i(czt)e(i=~)[pxx�~w�t] (23)

It must be emphesized that the functions (22) and (23) are also solutions of the same set of equations (10) and
(11), with the same set of parameters (14), (16) and (17), but ~w+ and ~w�, which are now given by:

~!+ =
px

2

2m
+ �BB0 �

�o
2
(
�B

2�2~2

m
)
1=3

(24)

~!� =
px

2

2m
� �BB0 �

�o
2
(
�B

2�2~2

m
)

1=3

(25)

The domains of �1 and �2 are <
3�f(x; z; t)=z = (�o=a)� (�o=a)� bt

2g and <3�f(x; z; t)=z = �(�o=a)+(�o=a)+
bt2g, respectively. The spin-up and spin-down probability densities become therefore:

j '1(z; t) j
2
= fAi

�
(
�B�m

~2
)1=3z + �o +

1

4
(
�B

2�2

m~
)2=3t2

�
�

�
h
z � �o(

�B�m

~2
)�1=3 + �o(

�B�m

~2
)�1=3 + (

�B�

4m
)t2

i
g
2

(26)

and

j '2(z; t) j
2
= fAi

�
�(
�B�m

~2
)1=3z + �o +

1

4
(
�B

2�2

m~
)2=3t2

�
�

�
h
�z � �o(

�B�m

~2
)�1=3 + �o(

�B�m

~2
)�1=3 + (

�B�

4m
)t2

i
g
2

(27)

d

In order to producer a plot of the functions we de-
�ne an unit of length, �, as follow:

�2 =

Z
	y(x; z; t)(X2 + Z2)	(x; z; t)dxdz

In terms of �, other physical quantities become:

x; z in units of \�"

t in units of \(m�2)=~"

� in units of \~2=(m�2B�
2)"

@	=@t in units of \~=(m�2)"

@2	=@x2 in units of \1=�2"

� remaining arbitrary. Fig. 1 shows j '1(z; t) j
2
and

j '2(z; t) j
2
for � = 800. It is apparent that the \spin-

up" state separate from the \spin-down" as the parti-
cles cross the magnetic �eld region.
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Figure.1 Time evolution of the spin-up and spin-down prob-
ability densities as particles 
y through the magnet region
for (a) t = 0:0001, (b) t = 0:03 and (c) t = 0:05 and
~ = 1; m = 1; �B = 1 and � = 800.

III Eigenenergies

The eigenenergies of the system are given by the solu-
tions of the stationary equation:

Ĥ	 = E	 (28)

where Ĥ is given by (2). On the plane Y = 0 one
obtains:

�
1

2m
(P̂ 2

x + P̂ 2
z ) + �B(B0 + �z)

�
�1 = E�1 (29)

�
1

2m
(P̂ 2

x + P̂ 2
z )� �B(B0 + �z)

�
�2 = E�2 (30)

Replacing solutions of the type:

�1(x; z) = e(i=~)pxxR(z) (31)

one obtains the following equation for the function R:

R00 � (�z � 
1)R = 0 (32)

where:

� =
2m�B�

~2
(33)

and


1 =
2m

~2
[E �

px
2

2m
� �BB0] (34)

De�ning the new varible � through:

� = �1=3z � 
1�
�2=3 (35)

we �nd the new equation:

R00(�)� �R(�) = 0 (36)

wich is the Airy equation. The solution of Eq.(29) is
therefore:

c

�1(x; z) = Ai(�1=3z + �o)�

�
z �

�o
�1=3

+ �o

�
e(i=~)pxx (37)

Where the step function � has been introduced, as discussed in the preceeding section. The eigenenergy associated
to this functions is:

E1 =
px

2

2m
+ �BBo � �o(

�B
2�2~2

2m
)
1=3

(38)

Similarly, are obtain for �2:

�2(x; z) = Ai(��1=3z + �o)�

�
�z �

�o
�1=3

+ �o

�
e(i=~)pxx (39)
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d

with eigenenergy:

E2 =
px

2

2m
� �BBo � �o(

�B
2�2~2

2m
)
1=3

(40)

We see that the e�ect of the �eld gradient is to produce
a small positive displacement on the magnetic levels,
and consequently, the energy di�erence E1 � E2 does
not depend on �.

IV Solutions for S = 3=2

On this section we generalize the results of the preceed-
ing section to the case S = 3=2. The hamiltonian for
a neutral particle with zero orbital angular momentum
and arbitrary spin Ŝ in a magnetic �eld B is:

Ĥ =
P̂ 2

2m
I +

2�B
~
Ŝ:B (41)

The corresponding Schr�odinger-Pauli matrix equa-
tion becomes:

c

Ĥ	 = �I
~
2

2m
r2	+ �B [��y�2 + (B0 + �z)�3]	 = i~

@�

@t
(42)

where �i, with i = 1; 2; 3, are the spin matrices. For S = 3=2, over Y = 0 we have four decoupled equations:

�
~
2

2m

�
@2�3
@x2

+
@2�3
@z2

�
+ 3�B(B0 + �z)�3 = i~

@�3
@t

(43)

�
~
2

2m

�
@2�2
@x2

+
@2�2
@z2

�
+ �B(B0 + �z)�2 = i~

@�2
@t

(44)

�
~
2

2m

�
@2�1
@x2

+
@2�1
@z2

�
� �B(B0 + �z)�1 = i~

@�1
@t

(45)

�
~
2

2m

�
@2�0
@x2

+
@2�0
@z2

�
� 3�B(B0 + �z)�0 = i~

@�0
@t

(46)

where �1, etc., are the components of the four-dimensional spinor.

d

Following the same proceedure as in the previous

section we obtain the following energies:

E3 =
px

2

2m
+ 3�BBo � �o(

9�B
2�2~2

2m
)
1=3

(47)

E2 =
px

2

2m
+ �BBo � �o(

�B
2�2~2

2m
)
1=3

(48)

E1 =
px

2

2m
� �BBo � �o(

�B
2�2~2

2m
)
1=3

(49)

E0 =
px

2

2m
� 3�BBo � �o(

9�B
2�2~2

2m
)
1=3

(50)

The main di�erence in respect to the previous case,

is the unequal displacements of the magnetic levels for

m = �1=2 and m = �3=2. This situation can be ex-

ploited to measure the e�ects of the �eld gradient on a

beam, as shown below.

IV.1 Energy Splitting

In this section we evaluate the magnetic of the con-

tribution of the �eld gradient to the energy splitting.

Let us assume the following values for the physical

quantities involved:

v = 600 m=s

m = 1:8� 10�25 Kg

�B = 9:27408� 10�24 J=T

h = 6:62607� 10�34 J:s

Bo = 1 T

� = 103 T=m
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With these values we �nd the following value for the

levels E0 and E3:

(
9�B

2�2~2

2m
)
1=3

= 0:1411� 10�8 eV

and for E1 e E2:

(
�B

2�2~2

2m
)
1=3

= 0:1832� 10�8 eV

It is interesting to express the di�erence in energy

between these levels in units of frecuency:

� = (E1 �Eo)=h � 0; 4 MHz

In a real experimental situation we can superimpose

to the static �elds, a radiofrequency �eld tuned to fre-

quencies at this range and change the populations of

the magnetic levels.

Other orders of magnitudes are:

p2x
2m

= 0:2022 eV

�BBo = 0:5788� 10�4 eV

V Spatial splitting

For the case S = 1=2 one obtain the acceleration _v by

making the argument of the Airy function, eq.(22), con-

stant and derivating in respect to time. From this we

have:

_v = �2b = �(�B�=2m)

Calling l the length of the magnet and L the length

between the magnet and the detector, the total devia-

tion of the particle along the z axis is given by:

�z = (
�B�

4m
)
l2

v2x
+ (

�B�

2m
)
lL

v2x

Replacing the values of the constants given above and

making l = L = 0:2m, we �nd �z � 4 mm, which is the

correct order of magnitude for the splitting observed in

a real Stern-Gerlach experiment.

VI Discussions and Conclusions

On this paper we obtained analytical solutions for the

problem of a neutral particle with spin S in a static

magnetic �eld with �eld gradient. These solutions were

built from of the Airy functions, which are in turn so-

lutions of the Schr�odinger equation in the symmetry

plane Y = 0. By choosing adequately the parame-

ters involved, we obtained a discrete energy spectrum,

and spin up and spin down wavefunctions which travels

apart with time, as in a real Stern-Gerlach experiment.

No approximation has been made on the magnitude of

the �eld gradient, �. This contrasts with the usual pro-

ceedure (and physically incorrect) of making � � B0

[6; 16]. Results were obtained for the cases S = 1=2

and S = 3=2. On this last case we showed that the

magnetic energy levels are unequally displaced by the

�eld gradient, and that the splitting is on the KHz -

MHz frequency range. The calculated spatial splitting

is in accordance with what is observed in a real Stern-

Gerlac! h experiment.

As a �nal remark we mention that Eqs (10) and

(11) predict another interesting feature, the fact that in

a real Stern-Gerlach experiment the separation of spin

up and spin down particles is not complete, as stated

in [17]. We found further soltions of those equations

which show an admixture of spin state waves travelling

in oposite direction [18].
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