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We investigate the 
ow of two immiscible, viscous 
uids in the con�ned geometry of a Hele-Shaw
cell. We consider that one of the 
uids is a ferro
uid and that an external magnetic �eld is applied.
The interfacial instabilities which arise between the 
uids are studied for various situations: (a)
di�erent cell geometries (radial, rectangular); (b) frontal and parallel 
ows; (c) distinct applied
�eld con�gurations (tangential, perpendicular, normal) and (d) motionless and rotating cells. The
interplay between applied magnetic �eld and several other destabilizing/stabilizing factors in de-
termining the interface behavior is analyzed. Stability analysis and numerical simulations are used
to describe linear and nonlinear stages of the interface evolution.

I Introduction

The formation of patterns and shapes in the natural

world has long been a source of fascination for both

scientists and laymen [1, 2]. Nature provides an end-

less array of patterns formed by diverse physical, chem-

ical and biological systems. The scales of such patterns

range from the growth of bacterial colonies [3] to the

large-scale structure of the universe [4]. This enormous

range of scales over which pattern formation occurs and

the intriguing fact that they emerge spontaneously from

an orderless and homogeneous environment captivate

our imagination.

Interface dynamics plays a major role in pattern

formation. It determines the shapes of objects, and

therefore, it has important applications in a wide range

of interdisciplinary �elds: hydrodynamics [5] (convec-

tion patterns and shapes of boundaries between 
uids),

metallurgy [6] (dendritic shapes of crystals), and biol-

ogy [3, 7] (shapes of plants, cells, etc.). Despite the

great variety and richness of this immense set of pat-

tern formation systems, in this work we focus on a few

speci�c examples of interfacial patterns, which arise at

the interface separating two viscous 
uids, when they


ow in very narrow, quasi-two-dimensional passages.

The outline of the work is the following: sec-

tion II introduces the Sa�man-Taylor problem, which

addresses 
uid 
ow in a con�ned device called Hele-

Shaw cell. Flow of both nonmagnetic and magnetic


uids (ferro
uids) are discussed. Section III consid-

ers 
ow of ferro
uids in rotating Hele-Shaw cells. The

combined e�ects of external, applied magnetic �eld and

rotation on the shape of the interfacial patterns are ana-

lyzed. It is shown, through a linear stability study, that

an in-plane, azimuthal magnetic �eld is able to stabi-

lize the 
uid-
uid interface. Numerical simulations are

used to examine interface behavior under perpendicu-

lar applied �eld. Section IV studies the situation in

which the 
uids 
ow parallel to each other, for various

magnetic �eld con�gurations. We show that depend-

ing on the �eld direction it can stabilize or destabilize

the interface. For such parallel 
ows, solitons arise at

the interface. We suggest magnetic forces may intro-

duce new and interesting behaviors related to soliton

interations. Finally, section V presents our concluding

remarks and perspectives.

II Fluid 
ow in con�ned geome-

try

A. The Sa�man-Taylor problem and the Hele-

Shaw cell

The Sa�man-Taylor problem [8, 9] addresses motion

of two viscous immiscible 
uids in the narrow space be-

tween two plates, known as a Hele-Shaw cell [10]. When

a 
uid of low viscosity displaces a 
uid of higher viscos-

ity, the interface between them becomes unstable and

starts to deform. Dynamic competition in such con-

�ned environment leads ultimately to the formation of

beautiful �ngering patterns [9].
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The original Hele-Shaw cell (that has little to do

with the current version) was �rst utilized about a cen-

tury ago by a British naval architect of that name [10].

A long and narrow channel containing a 
uid was used

to study the 
ow of water around the hull of a ship.

The cell made its reappearance in the 1950's [8, 11, 12],

in the study of the problem of oil recovery from porous

media. The process involved pumping water down an

oil well in order to push trapped oil into surrounding

wells where it could be recovered. It turned out to be

a quite frustrating experience, as the water would tend

to propagate via a branching type of deformation, leav-

ing a substantial fraction of the oil behind. The viscous

�ngering instability made oil recovery ineÆcient. The

Hele-Shaw cell was modi�ed to study this kind of in-

stability: a top plate was added to the channel and two


uids were introduced.

To this day, investigations of the viscous �ngering

instability have found the Hele-Shaw cell to be a sim-

ple yet elegant device in the study of interfacial pattern

formation. Nowadays experiments and theory focus on

two basic Hele-Shaw 
ow geometries (i) rectangular [8]

and (ii) radial [13]. In rectangular geometry cells the

less viscous 
uid is pumped against the more viscous

one along the direction of the plates. A gravity-driven


ow is also possible, if we tilt the cell and allow gravity

to act. Meanwhile, in the radial geometry case, the less

viscous 
uid is injected to invade the more viscous one,

through an inlet located on the top glass plate. Typi-

cal examples of viscous �ngering patterns can be seen in

reference [9]: rectangular cells produce patterns show-

ing \�ngers" of the less viscous 
uid inside the more

viscous one, while radial cells lead to the formation of

\fan-like", branched structures.

For both geometries, the initial developments of the

interface instability track the predictions of linear sta-

bility theory [8, 9]. After the initial surface deforma-

tion, as the unstable modes of perturbation grow, they

become coupled in a weakly nonlinear stage of evolu-

tion [14, 15]. Finally, the system evolves to a compli-

cated late stage, characterized by formation of �ngering

structures, in which nonlinear e�ects dominate [9].

The 
uids are driven by pressure gradient or gravity,

and it is a simplifying feature of the Hele-Shaw geome-

try that the 
uid velocity is simply proportional to the

pressure gradient [8, 9]. In this case, the Laplace equa-

tion applies. At �rst glance, it may seem very simple

to solve Laplace equation. The basic equations for the

Hele-Shaw system are indeed simple. However, their

solutions are de�nitely not so simple. The diÆculty

of solving the Laplace's equation lies in the existence

of moving boundary conditions, which involve a func-

tional of the unknown interface shape. This is what is

called a free boundary problem, which is in general not

possible to be solved analytically in a closed form.

The basic physical aspects leading to viscous �ngers

can be summarized as follows: in the Sa�man-Taylor

problem, if a forward bump is formed on the interface

between the 
uids, it enhances the pressure gradient

and the local interface velocity. Because the velocity

of a point on the interface is proportional to the local

pressure gradient, the bump grows faster than other

parts on the interface. On the other hand, the e�ect

of surface tension competes with this di�usive insta-

bility. Surface tension acts to reduce the pressure at

highly curved parts of an interface, and sharp bumps

are forced back. As a result we have the formation of

the �ngering patterns mentioned above.

B. Con�ned ferro
uids

An interesting variation of the traditional Sa�man-

Taylor problem is to consider the situation in which one

of the 
uids in the Hele-Shaw cell is magnetic. Magnetic


uids are also known as ferro
uids [16]. Roughly speak-

ing, a ferro
uid can be de�ned as a colloidal suspension

of tiny magnetic particles in a nonmagnetic solvent. It

is composed of 3 � 15 nm particles of solid, magnetic,

single-domain material particles coated with a mono-

layer of surfactant molecules and suspended in a 
uid

carrier. Although the solid particles are ferromagnetic,

a ferro
uid is actually paramagnetic because the indi-

vidual particle magnetizations are randomly oriented.

Thermal agitation keeps the particles suspended be-

cause of Brownian motion, and the coating prevents

the particles from sticking to each other. In ionic fer-

ro
uids coating is replaced by electrostatic repulsion.

Since the magnetic particles are much smaller than the

Hele-Shaw cell thickness, we neglect their particulate

nature and consider a continuous paramagnetic 
uid.

For the present work, we will be interested solely in

describing the general mechanisms leading to the very

nice labyrinthine structures in ferro
uids. The reader

can �nd much more information about these fascinating

complex 
uids in Rosensweig's classic book [16].

We proceed by discussing the 
ow of ferro
uids in

the con�ned Hele-Shaw geometry for both rectangu-

lar and radial setups. First, suppose we have a verti-

cal, rectangular Hele-Shaw cell, in which the upper less

dense and less viscous 
uid is nonmagnetic, while the

lower, more dense and more viscous one is a ferro
uid.

Instead of pumping the less viscous 
uid against the

more viscous one by applying an external pressure gra-

dient, lets us consider the situation in which we apply a

uniform magnetic �eld, perpendicular to the cell plates.

In the absence of an applied magnetic �eld, the inter-
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face is 
at and gravitationally stable. When we turn

on the uniform magnetic �eld, interesting things begin

to happen. The externally applied �eld tends to align

the tiny magnetic moments in a direction normal to the

plates. Consequently, these magnetic moments start to

repel each other within the plane of the Hele-Shaw cell

and the interface begins to deform. The surface tension

between the two 
uids tries to stabilize the interface.

Gravity is also stabilizing if the more dense 
uid is on

the bottom. If the �eld intensity is increased, �ngers

start to develop and begin to split at their tips. Finally,

by increasing the �eld even further, a labyrinth-type

pattern is formed [17, 16]. These patterns are quite dif-

ferent from those that arise when nonmagnetic 
uids


ow in rectangular Hele-Shaw cells.

Similar branching labyrinth patterns occur in a

radial geometry setup, in which an initially circu-

lar ferro
uid droplet is surrounded by a nonmagnetic


uid [18, 19, 20, 21, 22, 23]. In the absence of an ap-

plied magnetic �eld, the equilibrium ferro
uid shape is

determined by surface tension, resulting in a circular

droplet. Interfacial instability is driven by the compe-

tition between capillary and magnetic forces. Surface

tension acts to minimize the length of the interface be-

tween the 
uids and favors compact domain shapes. In

contrast, the repulsive dipole-dipole interaction tends

to maximize the distance between dipoles and favors

extended domain shapes. Eventually, as a result of the

competition, multiply bifurcated labyrinthine patterns

are formed. The branched patterns are quite distinct

from the \fan-like" patterns obtained for radial 
ow

with nonmagnetic 
uids. So, for both rectangular and

radial geometries, as a result of the ferro
uid interac-

tion with the external �eld, the usual viscous �ngering

instability [8, 9] is supplemented by a magnetic 
uid

instability [16], resulting in a variety of new interfacial

behaviors.

In the following sections we revisit the tradicional

radial and rectangular magnetic liquid setups discussed

above, by adding modi�cations into the system: (a) in

the radial case, instead of considering the cell at rest

(motionless Hele-Shaw cell), we assume that it is under

rotation around the axis passing through the center of

the cell (rotating Hele-Shaw cell); (b) in the rectangu-

lar case, instead of analyzing the situation in which one


uid is pushed by the other (frontal 
ow), we investi-

gate the case in which the 
uids 
ow side by side, with

their 
ow velocities pointing along the initially unper-

turbed, 
at interface separating them (parallel 
ow).

For these two new situations we examine the relevant

e�ects acting on the interface, due to applied magnetic

�eld, by employing linear stability theory and numeri-

cal methods.

III Ferro
uid 
ow in rotating

Hele-Shaw cells

In recent years, reseachers have been studying a number

of modi�cations of the classic Sa�man-Taylor setup [9].

An interesting variation of the traditional viscosity-

driven �ngering instability is the investigation of radial

Hele-Shaw 
ows in the presence of centrifugal driving.

The inclusion of centrifugal forces can be considered

by rotating the cell, with constant angular velocity,

around an axis perpendicular to the plane of the 
ow.

In this case, the interface instability can also be driven

by the density di�erence between the 
uids [24, 25].

In contrast to the \fan-like" patterns obtained in mo-

tionless Hele-Shaw cells, which show �ngers that split

at their tips, rotating cell e�ects make the initial cir-

cular droplet to throw out attached droplets, which

subsequently throw out �ngers that form a set of new

droplets [25], leading to what we could call a \hammer-

head shark" pattern.

In this section we analyze the situation in which one

of the 
uids is a ferro
uids and study the e�ects on the


uid-
uid interface when magnetic �eld and rotation

are simultaneously present [26]. We consider the situa-

tion in which a non-uniform, azimuthal, in-plane �eld

is applied. The competition between rotation and mag-

netic �eld is analyzed. We show the azimuthal magnetic

�eld provides a new mechanism for stabilizing the inter-

face. The destabilizing e�ect of perpendicular applied

�eld is studied through numerical methods.

Consider a Hele-Shaw cell of thickness b containing

two immiscible, incompressible, viscous 
uids (see Fig.

1). We assume that b is smaller than any other length

scale in the problem, and therefore the system is con-

sidered to be e�ectively two-dimensional. Denote the

densities and viscosities of the inner and outer 
uids,

respectively as �1, �1 and �2, �2. The 
ows in 
uids

1 and 2 are assumed to be irrotational. Between the

two 
uids there exists a surface tension �. We assume

that the inner 
uid is the ferro
uid (magnetization ~M),

while the outer 
uid is nonmagnetic. During the 
ow,

the 
uid-
uid interface has a perturbed shape described

as R = R+ �(�; t), where � represents the polar angle,

and R is the radius of the initially unperturbed inter-

face.

The cell rotates, with constant angular velocity 
,

about an axis perpendicular to the plane of the 
ow

(Fig. 1). An external magnetic �eld ~H , produced by a

long, straight wire carrying a current I , is directed along

the axis of rotation. Current I produces an azimuthal

magnetic �eld external to the wire ~H = (I=2�r) �̂,
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where r is the distance from the wire, and �̂ is the unit

vector pointing in the direction of increase of �.

Figure 1. Schematic con�guration of the rotating Hele-Shaw
cell with ferro
uid.

Following the standard approximations used by

Rosensweig [16] and others [19, 22, 23] we assume that

the ferro
uid magnetization ~M is collinear with the ex-

ternal �eld ~H and that the in
uence of the demagne-

tizing �eld is neglected. It is also assumed that the

ferro
uid is electrically nonconducting and that the

displacement current is negligible. For the quasi two-

dimensional geometry of a Hele-Shaw cell, the three

dimensional 
ow may be replaced with an equivalent

two-dimensional 
ow ~v(x; y) by averaging over the z di-

rection perpendicular to the plane of the Hele-Shaw cell.

Imposing no-slip boundary conditions and a parabolic

velocity pro�le one derives Darcy's law for ferro
uids

in a Hele-Shaw cell [23, 27], which must be augmented

by including centrifugal forces,

c

�~v = �
b2

12

(
~rp�

1

b

Z +b=2

�b=2

�0( ~M � ~r) ~Hdz � �
2r r̂

)
; (1)

d

where p is the hydrodynamic pressure, �0 is the free-
space permeability, and r̂ denotes a unit vector pointing
radially outward. Equation (1) describes nonmagnetic

uids by simply dropping the terms involving magneti-
zation.

It is convenient to rewrite equation (1) in terms of
velocity potentials, since the velocity �eld ~v is irrota-
tional. We write ~v = �~r�, where � de�nes the veloc-
ity potential. Similarly, we rewrite the magnetic body
force in equation (1) as �0( ~M � ~r) ~H = �0M~rH = ~r	,
where we have introduced the scalar potential

	 = �0

Z
M(H)dH =

�0�H
2

2
; (2)

with M = M(H) = �H , � being a constant magnetic
susceptibility.

With the de�nitions of � and 	 we notice that
both sides of equation (1) are recognized as gradients
of scalar �elds. After integrating both sides of equa-
tion (1), we evaluate it for each of the 
uids on the
interface. Then, we subtract the resulting equations
from each other, and divide by the sum of the two 
u-
ids' viscosities to get the equation of motion

c

A

�
�2 + �1

2

�
+

�
�2 � �1

2

�
= �

b2

12(�1 + �2)

(
���	+

1

2
(�2 � �1)


2r2

)
: (3)

d

To obtain (3) we have used the pressure boundary
condition p1�p2 = �� at the interface, where � denotes

the interfacial curvature in the plane of the Hele-Shaw

cell [26]. The sign convention for the curvature � is such

that a circular interface has positive curvature. The di-
mensionless parameter A = (�2 � �1)=(�2 + �1) is the

viscosity contrast.

In the framework of our linear analysis, we assume

a small perturbation of the initially circular interface
of the form �(�; t) = �n(t) exp (in�) with n = 0; 1; 2; :::,

to derive the linear dispersion relation �(n) de�ned by

d�=dt = �(n)�n. Knowing that � obeys Laplace's equa-

tion and expressing it in terms of � through the kine-
matic boundary condition [16], equation of motion (3)
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leads to [26]

�(n) =
b2�n

12(�1 + �2)R3

�
N
 �NB � (n2 � 1)

�
: (4)

We de�ne the dimensionless parameters N
 = [R3(�1�

�2)

2]=�, and NB = �0�I

2=(4�2�R) as the rotational

and magnetic Bond numbers, respectively.

Inspecting equation (4) we observe the interplay of

rotation, magnetic �eld and surface tension in deter-
mining the interface instability. If �(n) > 0 the distur-

bance grows, indicating instability. The contribution

coming from the surface tension term has a stabilizing

nature. N
 may be either positive or negative, depend-
ing on the relative values of the densities. If �1 > �2,

N
 > 0 and rotation plays a destabilizing role. In con-

trast, NB always tends to stabilize the interface. This

indicates that the rotation-driven instability could be

delayed or even prevented if a suÆciently strong mag-
netic �eld is applied.

The stabilizing role of the magnetic �eld can be ex-

plained by its symmetry properties and non-uniform

character. Notice that such a �eld possesses a radial

gradient. The magnetic �eld in
uence is manifested as
the existence of a body force due to �eld nonuniformity.

The �eld produces a force directed radially inward, that

tends to move the ferro
uid toward the current-carrying

wire (regions of higher magnetic �eld). This force op-
poses the centrifugal force and favors interface stabi-

lization. This e�ect is similar to the gradient-�eld sta-

bilization mechanism discussed by Rosensweig [16].

A quantity of importance can be extracted from

�(n): the fastest growing mode n�, given by the closest
integer to the maximum of equation (4) with respect

to n

nmax =

r
1

3
[1 + (N
 �NB)]: (5)

n� is strongly correlated to the number of ripples

present in the early stages of pattern formation. By
equation (5) we verify that, for positive N
, increas-

ingly larger values of NB tend to decrease the number

of interface ripples. The azimuthal magnetic �eld can

be seen as a control parameter to discipline the num-
ber of interface undulations. This fact is illustrated in

Fig. 2.

The e�ect of a uniform magnetic �eld applied per-

pendicular to the rotating cell is worth investigating

as well. Linear stability analysis of the perpendicular

�eld con�guration has been carried out in reference [26].
As expected, the perpendicular �eld has a destabilizing

role. It is of interest to study the combined role of ro-

tation and perpendicular �eld in more advanced stages

of the interface evolution. Intensive numerical simu-
lations, based on conformal mapping techniques [23],

have been performed by Jackson and Miranda [28] in

order to investigate rotating cell ferro
uid patterns, un-

der perpendicular �eld, in the fully nonlinear regime.

Representative examples of such numerical simulations

are shown in Fig. 3.

50 100 150 200

2

4

6

8

10

(a)

(b)

(c)

nmax

NB

(a)

(b)

(c)

N
Ω

=50

N
Ω

=100

N
Ω

=200

Figure 2. Plot of nmax as a function of NB for increasing
values of N
. These curves are obtained using equation (5).

Fig. 3(a) depicts the interface evolution of an

initially, nearly circular ferro
uid droplet of radius

R = 2 cm, under the in
uence of a perpendicular �eld

(NB = 0:575), in a motionless Hele-Shaw cell of thick-

ness b = 0:4 cm. The overlaid contours shown in Fig.

3(a) have approximately equal time steps and the total

\numerical experiment" time t = 5 s . We used a ran-

dom initial condition [23]: we splinkled a small amount

of random noise (amplitude < 0.05 R) in the �rst four

Fourier modes as an initial condition. Fig. 3(b) shows

the ferro
uid droplet shape at t = 5 s, when the droplet

comes to rest. The dumbbell-shaped structure shown

in Fig. 3(b) is similar to the one simulated numerically

by Tsebers and Zemitis [29], who used boundary in-

tegral equation techniques. Related numerical studies

for droplets in motionless cells have been carried out in

references [30, 31].

Figs. 3(c) and 3(d) are obtained using the same

physical parameters as those used in 3(a) and 3(b), but

now rotation is added (N
 = 0:6) and the total numer-

ical experiment time t = 2 s. The ferro
uid droplet

now evolves, under perpendicular �eld, in a rotating

Hele-Shaw cell. Fig. 3(d) shows the droplet shape at

t = 2 s. This shorter evolution time is expected since
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both rotation and applied �eld are destabilizing e�ects.

In contrast to Fig. 3(c), the droplet in 3(d) is not at

rest. The interface con�guration in 3(d) corresponds to

some intermediate state for the motion of the droplet

due to centrifugal forces acting on its periphery.

Figure 3. Numerical simulations showing the interfacial in-
stability of an initially, nearly circular ferro
uid droplet in
a Hele-Shaw cell, in the presence of a perpendicular mag-
netic �eld: (a) and (b) motionless cell; (c) and (d) rotating
cell. Figures (b) and (d) depict the resulting droplet shape

obtained in time evolution (a) and (c), respectively. The
physical parameters are given in the text.

We summarize our preliminary numerical results [28]
as follows: (i) without rotation, the droplet comes to
rest in a �nal �ngered stage. With rotation included,
there is no �nal stage. This is an unstable situation
and the droplet ends up shooting o� to one side or
the other after enough time. A possible explanation to
such behaviors is the fact that the Fourier mode n = 1,
that corresponds to a translation of the circle, is unsta-
ble (stable) for rotating (motionless) cells; (ii) rotation
leads to more bulbous ends and to a thinner (although
reasonably constant thickness) connecting arm.

IV Parallel 
ow with con�ned

ferro
uids

Most of experimental and theoretical investigations of
the Sa�man-Taylor problem in the literature consider

uid motion in con�ned Hele-Shaw cells under frontal


ow. In contrast, we consider the so-called parallel 
ow

which occurs when the 
uids 
ow parallel to the ini-
tially unperturbed interface separating them.

Recent studies [32, 33, 34] examined the dynamics
of 
uid interfaces under parallel 
ow in Hele-Shaw cells.
Zeybek and Yortsos [32, 33] studied, both theoretically
and experimentally, parallel 
ow in a horizontal Hele-
Shaw cell in the large capillary number limit. For �nite
capillary number and wavelength, linear stability anal-
ysis indicates that small perturbations decay, but the
rate of decay vanished in the limit of large capillary
numbers and large wavelength. Furthermore, a weakly
nonlinear analysis of the problem found Korteweg-de
Vries (KdV) dynamics leading to stable �nite ampli-
tude soliton solutions. Solitons were indeed observed
experimentally. Gondret and Rabaud [34] incorporated
inertial terms into the equation of motion in a Hele-
Shaw cell and found a Kelvin-Helmholtz instability for
inviscid 
uids. For viscous 
uids they derived a Kelvin-
Helmholtz-Darcy equation and found the threshold for
instability was governed by inertial e�ects, while the
wave velocity was governed by the Darcy's law 
ow of
viscous 
uids. Their experimental results supported
their theoretical analysis.

Here we perform the linear stability analysis for par-
allel 
ow in which one 
uid is a ferro
uid and a mag-
netic �eld is applied [35]. We consider three separate
�eld con�gurations: (a) tangential, for in-plane �elds
tangent to the unperturbed interface; (b) normal, for
in-plane applied �elds normal to the unperturbed inter-
face; (c) perpendicular, when the �eld is perpendicular
to the plane de�ned by the Hele-Shaw cell plates. We
show the magnetic �eld provides additional mechanisms
for destabilizing the interface, and we analyze qualita-
tively the interactions between solitons caused by the
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magnetic �eld. We neglect inertial terms because they
are not needed to understand the interfacial instability.

As we did in section III let us brie
y describe the
physical system of interest. Consider two semi-in�nite
immiscible viscous 
uids, 
owing with velocities U1 and
U2, along the x direction, in a rectangular Hele-Shaw
cell (see Fig. 4). To achieve steady-state parallel 
ow

Figure 4. Schematic con�guration of the parallel 
ow ge-

ometry. The lower 
uid is a ferro
uid, and the upper one
nonmagnetic. The external magnetic �eld may be oriented
along the x, y or z axis.

the velocities and viscosities must obey the condition

�1U1 = �2U2. We assume that the lower 
uid is the

ferro
uid (magnetization ~M), while the upper 
uid is

nonmagnetic. In order to include the acceleration of

gravity ~g, we tilt the cell so that the y axis lies at an-

gle � from the vertical direction. To include magnetic

forces, we apply a uniform magnetic �eld ~H0, which

may point along the x, y or z axis. During the 
ow,

the 
uid-
uid interface has a perturbed shape described

as y = �(x; t) (solid curve in Fig. 4).

As was the case for the rotating cell case studied

in section III the starting point of our analysis is the

generalized Darcy's law [23, 27]. By applying similar

conditions as those used in section III we end up get-

ting the equation of motion

c

A

�
�2 + �1

2

�
+

�
�2 � �1

2

�
=

b2

12(�1 + �2)
�(

��+
1

b

Z +b=2

�b=2

( ~M � ~r')dz + (�2 � �1)g cos� y

)
;

(6)

d

where we have introduced the scalar magnetic potential

' =

Z
S

~M � ~n0

j~r � ~r0j
d2r0 (7)

and the local �eld ~H = �~r'. Demagnetizing e�ects
are neglected. The unprimed coordinates ~r denote arbi-
trary points in space. The primed coordinates ~r0 are in-
tegration variables within the magnetic domain S, and
d2r0 denotes the in�nitesimal area element. The vector
~n0 represents the unit normal to the magnetic domain

in consideration.

We perturb the interface with a single Fourier mode
�(x; t) = �k exp[i(!t � kx)], where k denotes a wave
number. Following linear stability analysis standard
procedures, we �rst consider that the velocity poten-
tial for 
uid i, �i, obeys Laplace's equation r

2�i = 0
and vanishes as y ! �1. Then, we use the kinematic
boundary condition [16] to express �i in terms of the
perturbation amplitudes to obtain the dispersion rela-
tion for growth of the perturbation �(x; t)

c

! = k

�
�1U1 + �2U2

�1 + �2

�
�

ijkj�

12(�1 + �2)

�
NBIj(k)� (kb)2 � (k0b)

2
�

(8)

d

where NB = 2M2b=� is the magnetic Bond number

and k0 =
p
[(�1 � �2)g cos�]=�. The real part of ! is k

times the phase velocity, and is the viscosity-weighted

average of the two 
uid velocities. Note that the mag-

netic �eld does not alter the phase velocity of the waves.

The imaginary part of !, which governs the exponential
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growth or decay of the wave amplitude, does include

e�ects of the magnetic �eld. Exponential (unstable)

growth occurs when the imaginary part of ! is nega-

tive.

Terms containing Ij(k) originate from the Fourier

transforms of

M2Ij(x) �
1

b

Z +b=2

�b=2

Mj
@'

@rj
dz; (9)

the magnetic contribution to equation (6). The sub-

script j = x; y; z indicates the tangential, normal

and perpendicular magnetic �eld con�gurations, re-

spectively. After some algebra we �nd relatively simple

integral expressions for the magnetic terms Ij(k) [35]

c

Ix(k) = �2

Z 1

0

�
sin �

�

�
[
p
(kb)2 + �2 � � ] d�; (10)

Iy(k) = 4

Z 1

0

�
sin �

�

�2
[
p
(kb=2)2 + �2 � � ] d�; (11)

and

Iz(k) = 4

Z 1

0

sin2 �

"
1

�
�

1p
(kb=2)2 + �2

#
d�: (12)

d

Consider the stability of the 
uid-
uid interface for
the di�erent �eld con�gurations. The initially 
at in-
terface is unstable to perturbations with wave number
k when NBIj(k)�(kb)

2�(k0b)
2 is positive. If the heav-

ier 
uid is below the lighter 
uid, (�1 > �2), then both
gravity and surface tension stabilize the system and k0
is real. Therefore, in the absence of applied magnetic
�eld (NB = 0), the temporal growth rate of any per-
turbation is negative and waves are damped. On the
other hand, if the external magnetic �eld is nonzero, the
stability of the interface will depend on the �eld's di-
rection. Fig. 5 illustrates how the magnetic terms (10),
(11) and (12) vary with reduced wave number kb. In-
specting Fig. 5 and the imaginary part of the dispersion
relation (8) we note that a tangent �eld con�guration
(Ix(k) < 0), makes the growth rate even more negative
than when the �eld is absent. So a tangent external
�eld has a stabilizing nature, reinforcing the e�ects of
gravity and surface tension. In contrast, since Iy(k)
and Iz(k) are both positive quantities, if a suÆciently
strong magnetic �eld is applied normal to the 
uid-
uid
interface, or perpendicular to the cell plates, the growth
rate may become positive, leading to a possible destabi-
lization of the interface. We conclude that the magnetic
�eld can destabilize the interface even in the absence of
inertial e�ects. These e�ects can be explained very sim-
ply: for normal and perpendicular �elds, the ferro
uid
spreads out in the Hele-Shaw plane due to magnetic re-
pulsion, leading to interface deformation. In contrast,

for a tangent �eld, any interface perturbation tends to
be stabilized, due to magnetic attraction.

1 2 3 4 5

-10

-5

0

5

10

15

(a)

(c)

(b)

Ij(k)

kb

Figure 5. Plot of Ij(k) as a function of kb for (a) tangential,
(b) normal, and (c) perpendicular magnetic �eld con�gura-
tions.
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In addition to the interface stability issue discussed

above, it is of interest to study the action of the applied

magnetic �eld on the solitons that appear in parallel


ow in Hele-Shaw cells. We suggest that the solitons

may be considered as localized perturbations on the 
at

interface. When magnetic �elds are present the solitons

acquire net dipole moments equal to the magnetization

of the 
uid multiplied by the integrated area of the

soliton. Dipole interactions are long-ranged, falling o�

as 1=x3 for moments separated by a distance x. This

contrasts with the 
uid-dynamic interaction of solitons

which decays exponentially with separation. An inter-

esting additional feature of the dipole-dipole interaction

is its variation with the relative orientation of dipole

moments and the vector joining them. In the case of

solitons with parallel moments ~m1 and ~m2 displaced

from each other along the x axis, the interactions will

be attracting, with strength 2m1m2, when the mag-

netizations lie along the x axis (tangetial) but will be

repelling, with strengthm1m2 when the magnetizations

lie along the y (normal) or z (perpendicular) axes. In

this sense parallel 
ow with ferro
uids could be used as

a novel system to investigate soliton interactions.

V Concluding remarks and per-

spectives

In this work we reviewed the basic aspects related to

interfacial pattern formation in Hele-Shaw 
ows, and

discussed modi�cations regarding 
ow of ferro
uids in

such con�ned geometry: free boundary motion in rotat-

ing radial cells and the interface behavior under parallel


ow in rectangular cells with ferro
uids.

First, we addressed the interplay between centrifu-

gal and magnetic forces in determining the instability

of the 
uid-
uid interface in rotating cells. The lin-

ear stability analysis of the problem shows that a non-

uniform, azimuthal magnetic �eld, applied tangential

to the cell, tends to stabilize the interface. We veri-

�ed that maximum growth rate selection of initial pat-

terns is in
uenced by the applied �eld, which tends to

decrease the number of interface ripples. Numerical

simulations were presented in relation to the case in

which a uniform magnetic �eld is applied normally to

the plane de�ned by the rotating Hele-Shaw cell. In a

future work we plan to investigate numerically the dy-

namical competition between rotation (which push the

�ngers \sideways") and magnetic �eld (which tends to

bifurcate the �nger tips) in the highly nonlinear pattern

formation stage. We point out that, to date, there are

no experiments on rotating cells with ferro
uids. Since

the experimental Hele-Shaw setup is relatively simple,

it would be of considerable interest to perform such ex-

periments which are likely to lead to new and exciting

interfacial patterns in the highly nonlinear regime. It

would be nice to compare numerical simulations with

real experiments.

Finally, we presented the linear stability analysis for

parallel 
ow in a Hele-Shaw cell when one of the 
uids

is a ferro
uid. We showed that the dispersion relation

governing mode growth is modi�ed so that the magnetic

�eld can destabilize the interface even in the absence of

inertial e�ects. However, we found that the magnetic

�eld does not a�ect the speed of wave propogation for

a given wave number. We pointed out that magnetic

�eld creates an e�ective interaction between the soli-

tons. M. Widom and I plan to investigate the in
uence

of the magnetic �eld on the shape of the solitons in

a more quantitative fashion, by performing the weakly

nonlinear analysis of the system.
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