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We present a set of six non-linear stochastic di�erential equations for the six variables which are
relevant for the dynamical behavior of the magnetic moments in ferro
uids, namely, the three Euler
angles of the magnetic particle, the two polar angles of the magnetic moment relative to the particle
and the modulus of the magnetic moment. The interaction between the magnetic particle and the
solvent 
uid is modeled by dissipative and random noise torques, and so is the interaction between
the particle and its magnetic moment, treated as an independent physical entity. In the appropriate
limits, the model system reduces to the cases of super-paramagnetic or of non-super-paramagnetic
(blocked magnetic moments) particles. Numerical results show that for non-zero moment of inertia
the precession of the magnetic moment around the magnetic �eld is accompanied by \nutation". It
is also indicated how the dynamic complex susceptibility may be calculated from the equations of
motion and the numerical results show that the nutation leads to a second resonance peak.

I Introduction

The rotational dynamics of the magnetic moments in

ferro
uids is the essential phenomenon to explain the

frequency dependent magnetic susceptibility of these

materials. Two distinct rotational relaxation mecha-

nisms may coexist in ferro
uids: the N�eel relaxation,

by which the magnetic moment moves with respect to

the mechanical particle, and the Brownian, or Debye

relaxation, corresponding to the particle's rotation in-

side the 
uid. In most experimental situations one of

these mechanisms is dominant, and this may be the

reason why there is not, up to now, that we know, a

satisfactory theory, suÆciently general to be applied

for all situations, from the pure N�eel to the pure Brow-

nian relaxation, passing by all possible combinations of

those mechanisms. In this respect the model of \two

spheres", by Fannin and Co�ey[14] should be men-

tioned as a �rst e�ort. The non-inertial limit, i.e., when

the contribution of the moments of inertia of the par-

ticle to the equations of motion is negligible, in com-

parison to the other forces involved, has been treated

by Shliomis and Stepanov[3], where they introduce the

egg model. There they compare the magnetic particle

with an egg, the yolk corresponding to the magnetic

moment, and show that in the non-inertial limit and

for weak applied �eld the equations of motion decou-

ple, so allowing one to simultaneously account for the

combined motion of the magnetic moment and the par-

ticle.

The purpose of the present paper is to present a gen-

eral set of equations of motion for the combined system

of magnetic moment plus mechanical particle, inside a


uid. The main limitation of our approach is that we

deal only with axially symmetric particles, with easy

axis of magnetization parallel to the symmetry axis.

However, the magnetic moment is allowed to rotate in-

side the particle, as well as to have an oscillating modu-

lus, and the particle is allowed to rotate with respect to

the solvent, which is immobile with respect to the labo-

ratory. The suspension is considered suÆciently dilute

for the particle-particle interaction to be negligible, so

that we deal only with single particle dynamics.

In contradistinction to most existing theories, our

approach includes in the equations of motion the par-

ticle's moment of inertia. To neglect inertia may be a

good approximation for many ferro
uids, because of the

smallness of the particles, but we are presenting a the-

ory which intends to be suÆciently general to include

non-stable suspensions, for which the particles may be

considerably bigger. In the case of super-paramagnetic

particles, an aspect which distinguishes our theory from

the usual approaches is that the rotation of the poten-

tial gradient on the magnetic moment, accompanying

the Brownian rotation of the particle, is taken into ac-

count.

In section II we write the equations of the rota-

tional motion of an axially symmetric particle inside



Claudio Scherer and Trieste F. Ricci 381

a 
uid (Langevin-type equations), based on the gener-

alized Euler-Lagrange equations. In section III we ob-

tain, from the equations of section II, in a convenient

limit, the equations of motion for the magnetic moment

�, which reduce, in the case of constant modulus of �,

to the Gilbert's equation. In section IV we arrive at

the set of six coupled equations, for the six degrees of

freedom, the three Euler angles of the particle's rota-

tions, the two polar angles of � and its modulus. In

section V we indicate, brie
y, how to calculate, by nu-

merical simulation of the equations of motion, the dy-

namic magnetic susceptibility, a procedure which was

more carefully explained in a previous paper[22]. Some

less general situations are considered in section VI as

particular cases and numerical results are given.

II Rotational Dynamics of a Par-

ticle in a Fluid

Consider a particle of axially symmetric shape in sus-

pension in a 
uid. The principal moments of inertia

will be denoted by I1 = I2 and I3. Disregarding trans-

lational degrees of freedom, its Lagrangian may be writ-

ten in terms of the Euler angles �, � and  (in the nota-

tion of Goldstein[16]), taken as generalized coordinates,

as

L =
I1
2
( _�2+ _�2 sin2 �)+

I3
2
( _ + _� cos �)2�V (�; �) (1)

where V (�; �) is some orientation dependent potential.

It cannot depend on  because of the axial symmetry

of the particle.

The interaction forces (torques) between the parti-

cle and the 
uid are of the dissipative and noise types.

Therefore, they are not included in the Lagrangian,

but instead, we have to use the \generalized Euler-

Lagrange equations", with the corresponding torques,

represented by Qi, at the right hand side:

d

dt

@L

@ _qi
�
@L

@qi
= Qi ; (2)

where qi = �; � or  .

We write the non-conservative torques Qi as sums

of dissipative and noise terms, in the form

Qi = �
@F

@ _qi
+ �i(t) ; (3)

where F is the following Rayleigh dissipation function

[16],

F =
1

2
�( _�2 + _�2 sin2 �) +

1

2
�0( _ + _� cos �)2; (4)

and �i(t) are the noise torques. The dissipation con-

stants � and �0 may be di�erent because �0 is associ-

ated with the particle rotation around the symmetry

axis, while � is associated with the rotations perpen-

dicular to it. Substituting Eqs. (1), (3) and (4) into

Eq. (2) we obtain the following system of equations for

the particle's rotation:

c

I1(�� � _�2 sin � cos �) + I3 _� ( _ + _� cos �) sin � + � _� + V� = �� ; (5a)

I1(�� sin
2 � + 2 _� _� sin � cos �) + I3 cos �

d

dt
( _ + _� cos �)+

�I3( _ + _� cos �) _� sin � + � _� sin2 � + V� = �� ; (5b)

I3
d

dt
( _ + _� cos �) + �0 ( _ + _� cos �) = � : (5c)

d

where V� = @V=@� and V� = @V=@�. The expression

( _ + _� cos �) was left unbroken wherever it appears in

the above equations because it represents the compo-

nent of the angular velocity vector ! along the symme-

try axis and we make use of this fact in the interpreta-

tion of the dissipative torques in terms of the compo-

nents of !, as follows.

Let us de�ne the following four unit vectors: z,

along the laboratory z-axis, c, along the particle's sym-

metry axis, a, perpendicular to the plane containing c

and z (ccz-plane) and b, perpendicular to the cca-plane,
namely,

z = (0; 0; 1) ; (6a)

c = (sin � cos�; sin � sin�; cos �) ; (6b)

a =
z � c

sin �
= (� sin�; cos�; 0) ; (6c)
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b = c� a = (� cos � cos�; � cos � sin�; sin �) : (6d)

As a notation to be used throughout this work, sub-

scripts z; c; a or b on a vector indicate its orthogonal

projection on the z, c, a or b directions and subscript

�c indicates the vector's projection on the plane perpen-

dicular to c .

The particle's angular velocity vector ! may be de-

composed into a sum of two vectors, perpendicular and

parallel to c, respectively,

! = !�c + !c c ;

with

!�c = c� _c = (� _� sin�� _� sin � cos � cos�;

_� cos�� _� sin � cos � sin�; _� sin2 �)

and

!c = _ + _� cos � :

The orthogonal projection of !�c on the z-axis is

!�cz = !�c � z = _� sin2 � ;

and the orthogonal projection of ! (or of !�c) on the

direction perpendicular to the ccz plane is

!a = ! � a = !�c � a = _� :

Thus we see that the dissipative torques present in Eqs.

(5a), (5b) and (5c) are given by !a, !�cz and !c, respec-

tively, times the dissipation parameters � or �0.

The noise torques will be treated along these same

lines. We start by de�ning the noise torque vector by

its orthogonal components,

� = �a a+ �b b+ �c c :

The noise becomes completely de�ned by stating

the statistics of its three components. The usual pro-

cedure is to consider them as statistically independent,

Gaussian white noise. This is, however, not a neces-

sary assumption and we leave it open for future mod-

eling. What we need now is to know how the three

components come into Eqs. (5). Guided by the above

decomposition of the dissipative torque, we are led to

identify

�� = �a ;

�� = ��cz = ��c � z = �b sin � ;

� = �c :

Before we proceed to deduce the equations of mo-

tion for the general case of magnetic particles in sus-

pensions we show, in the next section, how to obtain,

from Eqs. (5), the equations of motion for the spherical

coordinates of a mono-domain magnetic moment.

III Equations of Motion for a

Magnetic Moment

The magnetic moment � of a mono-domain particle is

related to its internal angular momentum S by � = 
S,

where 
 is the gyro-magnetic factor. Although the mod-

ulus S of S is taken as constant in most works on super-

paramagnetism and magnetic 
uids, for very small par-

ticles its oscillation may be signi�cant and we prefer to

allow it to be time dependent. The modern technol-

ogy allows the preparation of samples with magnetic

particles whose diameters are smaller than 20�A[17] and

super-paramagnetic clusters containing only 12 mag-

netic atoms have also been reported[18]. We can model

the magnetic moment by a rotating charged particle, in

the limit of zero moments of inertia, I1 ! 0, I3 ! 0,

and _ !1 so that I3 _ = S. Because in the next sec-

tion we will work with the joint system, a particle and

its 
uctuating magnetic moment, we write the general-

ized coordinates, potential energy, dissipative and noise

torques, with a notation distinct from that correspond-

ing to the particle. Namely, we make the following sub-

stitutions: � ! #; � ! '; I3 _ ! S; V ! W; � !

�; �0 ! �0 and � ! T . We also introduce two mod-

i�cations in the equation corresponding to Eq. (5c),

namely, we write S � S0 instead of S in the dissipative

term and introduce a torque Ws, whose origin will be

explained below. In the said limit and with the new

notation the system of Eqs. (5) becomes:

S _' sin#+ � _#+W# = T# ; (7a)

_S cos#� S _# sin#+ � _' sin2 #+W' = T' ; (7b)

_S + �0(S � S0) +Ws = Ts: (7c)

Here we have written S � S0, instead of S, in the dis-

sipation term of Eq. (7c) to account for the fact that

the relaxation of the 
uctuations of S is towards a most

probable (equilibrium) value S0 and not towards 0. It

may appear strange that, even though we have derived

the equations of motion for S from the equations of

motion for a symmetric particle, in a convenient limit,

we have now to add a term \ad hoc" (S0), which does

not have an equivalent in the particle's equations. This

is so because in classical physics the equilibrium mag-

netization is always zero. Non-zero equilibrium mag-

netic moments can only exist because of the quantum

mechanical nature of matter and, therefore, cannot be

deduced from a pure classical approach. The torque
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Ws was introduced because a crystal �eld may have an

e�ective interaction with �, with origin in an orbital

contribution to S[29], with a possible torque compo-

nent parallel to S. There is not an equivalent term in

Eq. (5c) because of the assumed axial symmetry of the

particle.

It is interesting to study the behavior of Eqs. (7)

in the absence of noise, Ti = 0 and with Ws = 0. Eq.

(7c) has then the trivial stationary solution S = S0.

Assuming this constant value for S in Eqs. (7a) and

(7b) they reduce to

S0 _' sin#+ � _#+W# = 0 ; (8a)

�S0 _# sin#+ � _' sin2 #+W' = 0 : (8b)

The conservative torques, �W# and �W', have,

usually, contributions from two di�erent origins, the in-

teraction of S with a crystalline, anisotropy �eld and/or

with a magnetic �eld, which can also be of several dif-

ferent origins. In the case of magnetic �eld, H, the

potential energy is W = �� �H . With a little of al-

gebraic work one can show, in this case, that the set

of Eqs. (8) is equivalent to the well known Gilbert's

equation [10],

d�

dt
= 
 ��

�
H �

�

�2
d�

dt

�
; (9)

for � = 
S and S = S0. This equation was used by

W. F. Brown[12] as a starting point for his stochastic

theory of super-paramagnetism, where he assumed the

magnetic �eld H to contain a noise term. A more gen-

eral theory for super-paramagnetism, which allows also

for oscillations on the modulus � = 
S of the mag-

netic moment, was worked out by Ricci and Scherer

[20, 21, 22], based on the set of Eqs. (7). For this rea-

son we will not continue to explore the consequences

of Eqs. (7) in the present paper, turning, instead, to

the more general approach, where the rotations of the

mechanical particle are taken into account, in addition

to the motion of S relative to the particle.

IV Equations of Motion for a

Small Magnetic Particle in

Suspension

In recent years several researchers[1, 4, 14, 23] have

drawn attention to the importance of the motion of

the magnetic particle, its inertia and viscous interaction

with the 
uid, to the dynamic magnetic susceptibility

of ferro
uids. A theoretical treatment of this problem,

which is both, more fundamental and more general than

those previously published, follows naturally from the

context described above.

Taken together, the systems of Eqs. (5) and (7) con-

tain all the degrees of freedom relevant to the problem.

To the potential energy terms, V in Eqs. (5) and W in

Eqs. (7), the interaction energy between the magnetic

moment and the particle, which we will denote by U ,

has to be added. Due to the particle's symmetry, this

term can only depend on S and on the angle between

S and the symmetry axis, c. It is convenient to de�ne

another orthogonal set of unit vectors, related to the

direction of the magnetic moment, namely, s, in the

S direction, u, perpendicular to the csz-plane and v,

perpendicular to the csu-plane,
s =

S

S
= (sin# cos'; sin# sin'; cos#) ; (10a)

u =
z � s

sin#
= (� sin'; cos'; 0) ; (10b)

v = s�u = (� cos# cos'; � cos# sin'; sin#) : (10c)

The interaction energy U can then be written as U(S; s�

c). In principle the particle can interact also with other

�elds, besides H, as is the case if it has an electric

dipole and an electric �eld is present. For this reason

we keep also the potential energy V (�; �) in the new set

of equations.

The dissipative interaction associated with the rota-

tion of S relative to the particle will be written in terms

of the relative angular velocity vector. Since only ro-

tations perpendicular to S can lead to a meaningful

interaction torque with origin on the relative motion,

we de�ne the relative angular velocity !r as

!r =$ �!�s ;

where

$ = s� _s

is the angular velocity of rotation of the magnetic mo-

ment with respect to the laboratory and

!�s = s�! � s = ! � (s � !)s :

is the orthogonal projection of the particle's angular

velocity ! on the plane perpendicular to S. The dissi-

pative interaction torque on the particle is then +� !r.

The plus sign is because of the way we de�ned !r,

where the particle's angular velocity appears with a

minus sign. Guided by the interpretation of the dis-

sipative torque terms of Eqs. (5) in terms of angular

velocity components, as explained bellow the said equa-

tions, we write down immediately the dissipative torque

terms to be added to the left-hand sides (therefore, with

a � sign) of Eqs. (5), namely
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�� !ra = ��!r � a ;

�� !r�cz = �� [!r � (!r � c) c] � z = �� (!rz � !rc cos � ;

�� !rc = �� !r � c :

d

Of course, all this scalar products, as well as those

which follow, in the next equations, may be easily writ-

ten as functions of the four angles �; �; # and ' and

their time derivatives, by using Eqs. (6) and (10). How-

ever, because scalar products are very easily handled in

numerical procedures, we prefer to leave them in this

form.

Clearly, the torque on the magnetic moment, due to

the relative motion, is the \reaction" to the torque on

the particle, i.e., it is equal to ��!r, and, in place of � _#

and � _' sin2 # in Eqs. (7) we shall use (remembering

that !r�s = !r)

� !ru = �!r � u ;

� !rz = �!r � z :

No term coming from the relative angular velocity !r
has to be added to Eq. (7c) because !r is perpendicu-

lar to S. However, there is the term �0 (S�S0) already

present in that equation, with origin in the (quantum)


uctuations of S, and this term will be kept. Since

angular momentum has to be conserved, its reaction

counterpart on the particle has to be added to Eqs.

(5). Calling

R = (S � S0) s ;

the terms to be added to the left-hand sides of Eqs. (5)

are

c

��0 Ra = ��0 R � a = ��0 (S � S0) s � a ;

��0 R�cz = ��0 [R� (R � c) c] � z = ��0 (S � S0)[s� (s � c) c] � z ;

��0 Rc = ��0 R � c = ��0 (S � S0) s � c :

d

The noise torques of interaction between the par-

ticle and the magnetic moment can be written down

along the same lines of procedure as done for the noise

torques of the 
uid on the particle, at the end of sec-

tion II. We assume three orthogonal, independent, noise

torque vectors, along the unit vectors de�ned with re-

spect to the direction of the magnetic moment:

T = Ts s+ Tu u+ Tv v : (11)

Being T the torque on the magnetic moment, then the

torque on the particle is �T . Following the same line

of reasoning as done before, we identify the torques in

Eqs. (7):

T# = Tu ;

T' = T�sz = Tv sin# ;

Ts = Ts :

Correspondingly, the following terms have to be added

to the right-hand-sides of Eqs. (5):

T� = �Ta = �T � a ;

T� = �T�cz = �[T � (T � c) c] � z ;

T = �Tc = �T � c :

Therefore, the state of the composed system, the

particle and its magnetic moment, is described by the

6 generalized coordinates, �; �;  ; #; ' and S, whose

dynamical behavior is governed by the following set of

coupled di�erential equations:
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c

I1(�� � _�2 sin � cos �) + I3 _� ( _ + _� cos �) sin �+

� _� � �!ra +��0 Ra + V� + U� = �a � Ta ; (12a)

I1(�� sin
2 � + 2 _� _� sin � cos �) + I3 cos �

d

dt
( _ + _� cos �)+

�I3( _ + _� cos �) _� sin � + � _� sin2 � � �!r�cz � �0 R�cz + V� + U� = �b sin � � T�cz ; (12b)

I3
d

dt
( _ + _� cos �) + �0 ( _ + _� cos �)� �!rc � �0 Rc = �c � Tc ; (12c)

S _' sin#+ �!ru +W# + U# = +Tu ; (12d)

_S cos#� S _# sin#+ �!r�cz +W' + U' = +T�sz ; (12e)

_S + �0(S � S0) + US = Ts : (12f)

d

This set of six equations is of very general appli-

cability on magnetic suspensions. It allows for a large

variety of modeling: There are three independent con-

servative interaction potentials, V; U and W , four dis-

sipative parameters, �; �0; �, and �0, and also the noise

torques � and T , whose statistical properties are open

for modeling. Particle-particle interaction was not ex-

plicitly taken into account.

V Dynamic Susceptibility

To calculate, from the set of Eqs.(12) the dynamic mag-

netic susceptibility, and therefore the absorption lines

of magnetic resonance, it is better to transform them

into the usual form of �rst order di�erential Langevin

equations[19]. Noting that the �rst three equations are

second order, we introduce new variables,

_� = �

_� = �

_ + _� cos � = � (13)

and transform Eqs.(12), so that, together with

Eqs.(13), we have a set of nine �rst order equations.

For example, Eq.(12a) becomes

I1( _� � �2 sin � cos �) + I3� � sin � + ��

��!ra � �0Ra + V� + U� = �a � Ta

We use also the Wiener processes Wj(t), which are

related to the white noise components �j (or whatever

appears at the right hand side of Eqs.(12)) by

Wj(t) =

Z t

0

�j(t
0)dt0;

and make the usual substitutions �j(t)dt ! dWj(t) to

write the set of stochastic di�erential equations in the

form

dXi(t) = Ai(X(t); t)dt +
X
j

Bij(X(t))dWj (t) (14)

where Xi(t) are the dependent variables

�; �; �; �; �;  ; #; '; S and Ai(X(t); t) and

Bij(X(t)) are obtained by comparison between Eq.(14)

and those from the set of �rst order equations men-

tioned above, after the expressions for V; U and W

have been introduced. In the typical case of magnetic

resonance, with a strong constant magnetic �eld H0

parallel to the z-axis and a periodic weak �eld F (t) per-

pendicular to it, the Ai(X(t); t) turn out to be written

in the form

Ai(X(t); t) =
X
j


ij(X)Fj(t) +A0

i (X): (15)

Following the procedure of reference[22], the response

functions are then given by

�ij(t) =
X
k

h
kj(x)@khXi(t j x)i0ieq : (16)

The symbol Xi(t j x) means the stochastic variable Xi

at time t, given that the \vector" of stochastic vari-

ables X had the value x at the initial time t = 0,

hXi(t j x)i0 means average over many realizations of

Xi, from 0 to t, in abscence of the perturbing �eld F (t),
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starting from the point x, @k means derivative with re-

spect to the k component of the initial \point" x and

h� � �ieq means average over the equilibrium distribution

of initial points. This equilibrium average may include

average over the distribution of particle's characteris-

tics, if polydispersity is to be considered. For example,

if the particles are all made of the same material and

have the same shape, varying only in size, assuming

some given distribution of a linear dimension, r, then

the other particle's parameters shell be scaled accord-

ingly. For example,

S0 / r3; I / r5; � / r3: (17)

As was shown in reference[22], Eq. (16) may be eval-

uated from numerical simulations of Eq. (14). From

the results obtained for �ij(t) we can then calculate

the susceptibility �ij(!) by numerical Fourier-Laplace

transform.

VI Some Limit Cases and Re-

sults of the Simulation

Several interesting limit situations are readily obtained

from Eqs.(12). The \super-paramagnetic" limit, for

which the particle's coordinates, �; �, and  , are taken

as constants, so that the system reduces to the last

three equations, or, equivalently, to Eqs. (7), has

been treated in three previous papers by Ricci and

Scherer[20, 21, 22]. A further simpli�cation, in this

limit, which is appropriate for most cases of practi-

cal interest, follows by assuming S = S0 =constant.

In this case the only relevant equations are Eq. (12d)

and Eq. (12e), and, moreover, the term in _S also van-

ishes. The noise torques Tu and T�sz may then be writ-

ten in terms of a stochastic magnetic �eld, rendering

our set of equations in a form equivalent to Brown's

generalization[12] of Gilbert's equation, Eq. (9). This

case has been treated by several authors, of which a

very interesting account is given in a recent paper by

Garcia-Palacios and L�azaro[15], where much numerical

work is presented.

The \blocked" limit (also called \Brownian"

limit[24] or \inertial limit"[2]), corresponds to the case

when the magnetic moment is blocked along the par-

ticle's symmetry direction, i.e., # = � and ' = �.

This may happen because the sample is kept below the

\blocking temperature" TB [28] or because the mate-

rial is so highly anisotropic that the magnetic moments

only exists parallel to the easy axis[18]. The particle is

still immersed in a 
uid carrier, being able to rotate,

together with its magnetic moment.

In terms of the set of Eqs.(12), the blocked limit is

obtained by assuming an interaction potential U of the

form �U0Æ(s�c), with U0 !1, so that the only states

energetically possible are those with s = c, i.e., # = �

and ' = �. By summing Eq. (12a) with Eq. (12d)

and Eq. (12b) with Eq. (12e) the interaction terms U�
and U# as well as U� and U' cancel out. The terms

containing !ra, !r�cz, Ra, R�cz, T a, and T �cz become

identically zero, and Rc becomes (S � S0). Choosing �

and � to denote the common polar angles, the system

of equations, in the notation of the previous section,

becomes:

c

I1( _� � �2 sin � cos �) + I3 �� sin � + � � + V� + S � sin � +W� = �a ; (18a)

I1( _� sin
2 � + 2 � � sin � cos �) + I3 cos � _�� I3�� sin � + �� sin2 �

+V� + _S cos � � S � sin � +W� = �b sin � ; (18b)

I3 _�+ �0�� �0(S � S0) = �c � Tc ; (18c)

_S + �0(S � S0) = +Tc : (18d)

d

This is still a rather general set of equations. A

�rst obvious simpli�cation occurs, in most cases of in-

terest, when S = S0. Then also _S = 0 and Tc = 0 and

the system is reduced to three equations. Much work

has been done in this case, mainly in the context of

electric dipolar molecules, for which S = S0 = 0. For

example, McConnell[25], Co�ey et al.[26], and Gaiduk

and McConnell[27] describe dielectric relaxation and

dynamics of polar molecules in great detail.

As a simple illustration we will assume a constant

modulus for the magnetic moment, i.e., S = S0, and

for the interaction potential we consider only W =
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�� �H = �
S0s �H, where H = H0z is a constant

�eld. The interaction energy between the magnetic mo-

ment and the �eld is then

W = �� �H = �S0 
 H0 cos �:

With this simpli�cations, the system of Eqs. (18) be-

comes

c

I1( _� � �2 sin � cos �) + I3 �� sin � + � � + S0 � sin � + S0 
 H0 sin � = �a (19a)

I1( _� sin
2 � + 2 � � sin � cos �) + I3 cos � _�� I3�� sin � + �� sin2 � � S0 � sin � = �b sin � (19b)

I3 _�+ �0� = �c : (19c)

We will consider in this simple illustration only the limit of very weak noise. Then Eq.(19c) has the approximate

stationary solution � ' 0. We, therefore, neglect � in Eqs.(19a) and (19b), which become

I1( _� � �2 sin � cos �) + � � + S0 � sin � + S0 
 H0 sin � = �a ; (20a)

I1( _� sin � + 2 � � cos �) + �� sin � � S0 � = �b ; (20b)

d

which, together with the de�nition of � and � in

Eqs.(13), form a set of four �rst order Langevin equa-

tions.

The simulations, of which we present some results

in the �gures, have been developed along the following

procedure: An ensemble of 500 particles were initially

put on the equator, i.e., � = 0 and with � = � = � = 0

and the equations of motion, with a di�erent realiza-

tion of the noise for each particle, were solved for some

time, long enough for the ensemble to acquire a station-

ary distribution. Along this period the average value of

Sz = cos(�) (we choose S0 = 1) was calculated. The re-

sult is shown in Fig.1, for several values of the \moment

of inertia", I=I�, where I is I1 and I� is an arbitrary

reference value. We see that for very low I , hSzi in-

creases monotonically to its stationary value (which is

very close to 1 because the noise is very low), like in

the super-paramagnetic case, when the magnetic mo-

ment precesses around the magnetic �eld following a

spiral path. For bigger values of the inertia, � does

not behave monotonically, but shows oscilations, a phe-

nomenon known as \nutation".

In order to calculate the response functions, the new

state of each particle was taken as the initial state for

500 independent realizations of the noise. Average val-

ues of these 250000 realizations have been calculated

along the time, according to Eq. (16). By numerical

Fourier-Laplace transform of the response functions we

obtain the dynamic susceptibilities, �ij(!). The imag-

inary part of the diagonal component, Im �xx(!), is

directly related to the magnetic resonance line. We

show it, for several values of the moment of inertia, in

Fig.2. For small I (� super-paramagnetic limit) there

is only one resonance peak (�! is physically equivalent

to +!). For bigger values of I e second peak becomes

apparent, which corresponds to the phenomenon of nu-

tation, seen in Fig.1. We note that the frequency units,

in Fig.2, are di�erent for the di�erent plots, and, there-

fore, the absolute values of the frequencies should not

be used for comparison between the di�erent plots.
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Figure 1. Average value of Sz(t) for four di�erent values of the moment of inertia.

Figure 2. Imaginary part of the susceptibility for four di�erent values of the moment of inertia.
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