
Brazilian Journal of Physics, vol. 31, no. 2, June, 2001 277

Remarks on Topological Models and

Fractional Statistics

C.A.S. Almeida�

Universidade Federal do Cear�a - Departamento de F��sica

C.P. 6030, 60470-455, Fortaleza, CE, Brazil

Received on 22 February, 2001

One of the most intriguing aspects of Chern-Simons-type topological models is the fractional statis-
tics of point particles which has been shown essential for our understanding of the fractional quan-
tum Hall e�ects. Furthermore these ideas are applied to the study of high Tc superconductivity.
We present here an recently proposed model for fractional spin with the Pauli term. On the other
hand, in D=4 space-time, a Schwarz-type topological gauge theory with antisymmetric tensor gauge
�eld, namely B ^ F model, is reviewed. Antisymmetric tensor �elds are conjectured as mediator
of string interaction. A dimensional reduction of the previous model provides a (2+1) dimensional
topological theory, which involves a 2-form B and a 0-form �. Some recent results on this model are
reported. Recently, there have been thoughts of generalizing unusual statistics to extended objects
in others space-time dimensions, and in particular to the case of strings in four dimensions. In this
context, discussions about fractional spin and antisymmetric tensor �eld are presented.

I B ^ F Models

Schwarz-type theories are purely topological in the

sense that their partition functions are independent of

the metric and that the only observables in these theo-

ries are topological invariants of the underlying space-

time manifold M. Other observables describe linking

and intersection number of manifolds of any dimension.

Commonly called BF systems, they are character-

ized by a BRST-gauge �xed quantum action which

di�er from the classical action only by a BRST-

commutator which contains the whole metric depen-

dence of the quantum action. On the other hand, since

the vaccum expectation value of a BRST-commutator

vanishes, these �eld theories may be obtained from the

classical actions [1]. Furthemore, if we denote as Q the

BRST-operator which is nilpotent, in these theories the

energy-momentum tensor is Q trivial, i.e.,

T�� = fQ;���g (1)

where ��� represents �elds and the metric.

Connected to BF systems, it is worth mentioning

that antisymmetric tensor �elds theories have been

studied during the past years. They play an impor-

tant role in the realization of the various strong-weak

coupling dualities among string theories. An antisym-

metric tensor of rank p� 1 couples naturally to an ele-

mentary extended object of dimension p� 2, namely a

(p� 2) brane.

As an example of an abelian BF system consider

the following metric independent action on an D-

dimensional manifold M.

S(D; p) =

Z
M

Bp ^ dAD�p�1; (2)

where A and B are forms , p denoting their rank, ^ de-

noting their wedge product and d is the exterior deriva-

tive.

In particular the abelian B^F four-dimensional ac-

tion is

SBF =

Z
M4

fB ^ Fg : (3)

B = B��dx
� ^ dx� ; F = dA;A = A�dx

�: (4)

This action is formulated in terms of the two-form

potential B while F = dA is the �eld-strength of a

one-form gauge potential A.
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Applications:

� Field theories describing the low-energy limit of

fundamental string theories typically contain higher-

rank tensor �elds.

�The topological contribution coming from BF the-

ories appear even in those physical theories with non

trivial physical Hamiltonian where the BF term ap-

pears as an interaction term.

� Color con�nement models.

� Axionic cosmic strings.

� QCD strings.

� Topologically massive models.

II Gauge invariant massive B^F

model in D = 4.

Our starting point is an abelian gauge theory which

contains the vector �eld A and the antisymmetric �eld

B, and incorporated the topological term B ^ F in the

four-dimensional action [2]

SBF =

Z
M4

�
1

2
H ^ �H � 1

2
F ^ �F + kB ^ F

�
: (5)

Here H = dB is the �eld-strength of a two-form

gauge potential B, k is a mass parameter, and � is the
Hodge star (duality) operator. The action above is in-

variant under the following transformations:

ÆA = d�; ÆB = d�; (6)

where � and � are zero and one-form transformation

parameters respectively, and gives the equations of mo-

tion

d �H = �F (7)

and

d �F = �H: (8)

Applying d � on both sides of eq. (8) and using the

eq. (7), we get

(d�d� + �2)F = 0: (9)

Repeating the procedure above in reverse order, we ob-

tain the equation of motion for H

(d�d� + �2)H = 0: (10)

These equations can be rewritten as

(�+ �2)F = 0 (11)

and

(�+ �2)H = 0: (12)

III Abelian gauge invariant

massive models in D = 3

� Dimensional reduction ! B ^ ' models.

Dimensional reduction is usually done by expand-

ing the �elds in normal modes corresponding to the

compacti�ed extra dimensions, and integrating out the

extra dimensions. This approach is very useful in dual

models and superstrings. Here, however, we only con-

sider the �elds in higher dimensions to be independent

of the extra dimensions.

In this case, we assume that our �elds are indepen-

dent of the extra coordinate x3: From (3), on perform-

ing dimensional reduction as described above, we get in

three dimensions

S =

Z
M3

fB ^ d�+ V ^ Fg ; (13)

where V and � are a 1-form and a 0-form �elds respec-

tively.

We recognize that B ^ d� is topological in the sense

that there is no explicit dependence on the space-time

metric. One has to stress that this term may not be con-

fused with the two-dimensional version of the B ^ F ,
which involves a scalar and a one-form �elds. More-

over, a term that is equivalent to the four-dimensional

B^F term is present in action (13) (the so-called mixed

Chern-Simons term, V ^ F ).

� Non-Chern-Simons gauge invariant massive

models in D = 3:

Now, in order to show the topological mass gener-

ation for the vector and tensor �elds, we consider the

model with the topological term B^d�, and with prop-

agation for the two-form gauge potential B and for the

zero-form �eld, represented by the action

S =

Z
M3

�
1

2
H ^ �H +

1

2
d� ^ �d�+ �B ^ d�

�
; (14)

where the second term is a Klein-Gordon term, � is

a mass parameter and H = dB is a three-form �eld-

strength of B.

The action above is invariant under the following

transformations:

ÆA = �d�; Æ' = �; ÆB = d�; (15)
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where � and � are zero and one-form transformation

parameters respectively.

We follow here the same steps that has been used

by Allen et al. [2] in order to show the topologi-

cal mass generation in the context of B ^ F model.

Thus, we �nd the equations of motion for scalar and

tensor �elds, which are respectively d �H = �d� and

d �d� = ��H: Consequently, we obtain the equations

(d�d� + �2)d� = 0 and (d�d� + �2)H = 0:

These equations can be rewritten as

(�+ �2)@�� = 0 (16)

and

(�+ �2)H = 0: (17)

Therefore, the 
uctuations of � and H are massive.

Obviously, these two possibilities can not occurs simul-

taneously. Indeed, in the most interesting case, the

degree of freedom of the massless � �eld is "eaten up"

by the gauge �eld B to become massive and the � �eld

completely decouples from the theory [3].

IV N = 1�D = 4 massive B ^ F

! N = 2�D = 3massive B^'

models

� N = 1�D = 4 massive B ^ F model.

Let us begin by introducing the N = 1 � D = 4

supersymmetric BF extended model. For extended we

mean that we include mass terms for the Kalb-Ramond

�eld. This mass term will be introduced here for later

comparison to the tridimensional case. Actually, this

construction can be seen as a superspace and abelian

version of the so called BF-Yang-Mills models. These

models are described by the action

SBF�YM =

Z
M4

Tr

�
kB ^ F +

g2

4
B ^ �B

�
: (18)

Note that, on-shell, (18) is equivalent to the standard

YM action. This formalism was used by Fucito et al.

[4] in order to study quark con�nement.

As our basic super�eld action we take [5]

SSSBF =
1

8

Z
d4xf�i�[

Z
d2�B�W� �

Z
d2�B _�W

_�
]

+
g2

2
[

Z
d2�B�B� +

Z
d2�B _�B

_�
]g : (19)

where W� is a spinor super�eld-strenght, B� is a chi-

ral spinor super�eld, �D _�B� = 0, � and g are massive

parameters. Their corresponding �-expansions are:

W�(x; �; ��) = 4i��(x)� [4Æ��D(x) + 2i(�����)��F��(x)]��

+4�2��� _�@�
�� _� (20)

B�(x; �; �) = ei��
��@� [i �(x) + ��T��(x) + ����(x)] ,

(21)

where

T�� = T(��)+T[��] = �4i(���)��B��+2"��(M+iN) :

(22)

Our conventions for supersymmetric covariant

derivatives are

D� � @

@��
+ i�

�
� _�

�� _�@�

�D _� � � @

@�� _�
� i���

�
� _�@� . (23)

We call attention for the electromagnetic �eld-

strenght and the antisymmetric gauge �eld which are

contained in W� and B�, respectively. In terms of the

components �elds, the action (19) can be read as

S =

Z
d4xf[� i�

2

�
��� ����

�
+
�

2
B�� eF�� � �DN ]

+
�

2

�
 ��

�
� _�@�

�� _� + � _� (��
�)

_��
@���

�
+g2[

1

8

�
 � + � ��

�
+

1

2
B��B�� � 1

2

�
M2 +N2

�
]g

=

Z
d4x[(

i�

2
��
5�+

�

2
�	
�@��+

�

2
B�� eF�� � �DN)

+g2(
1

8
�	� +

1

2
B��B�� � 1

2

�
M2 +N2

�
)] : (24)

In the last equality above, the fermionic �elds have been

organized as four-component Majorana spinors as fol-

lows

� =

�
��
�� _�

�
; � =

�
��
�� _�

�
; 	 =

�
 �
� _�

�
; (25)

and we denote the dual �eld-strenght de�ning eF�� �
1
2"����F

�� . Furthermore, we use the following identi-

ties

�	� = � ��+  �

�	
5� = � ���  �

�	
�� =  ����+ � ���� . (26)

We have not considered coupling with matter �elds and

a propagation term for the gauge �elds. On the other

hand, our supespace BF term was constructed in a very

simple way. A quite similar construction was intro-

duced by Clark et al. [6].
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The o�-diagonal mass term �� (or ��
5�) has been

shown by Brooks and Gates, Jr. [7] in the context of

super-Yang-Mills theory. Note that the identity


5�
�� =

i

2
"�����

�� (27)

reveals a connection between the topological behaviour

denoted by the Levi-Civita tensor "���� ; and the

pseudo-escalar 
5:

So, it is worthwhile to mention that this term has

topological origin and it can be seen as a fermionic

counterpart of the BF term. In our opinion, this

fermionic mass term deserves more attention.

� The N = 2�D = 3 massive B ^ ' model

We will now carry out a dimensional reduction in

the bosonic sector of (24). Hence, after dimensional re-

duction, the bosonic sector of (24) can be written as

[5]

Sbos: =

Z
d3xf[�"���V �F�� + �"���B

��@�'� �DN ]

+g2[
1

2
B��B�� � V �V� � 1

2

�
M2 +N2

�
]g ; (28)

where V � is a vectorial �eld and ' represents a real

scalar �eld. Notice that the �rst term in r.h.s. of (28)

can be transformed in the Chern-Simons term if we

identify V � � A�. The second one is the so called

B ^ ' term.

Now let us proceed to the dimensional reduction of

the fermionic sector of the model. First, note that the

Lorentz group in three dimensions is SL(2; R) rather

than SL(2; C) in D = 4. Therefore, Weyl spinors

with four degrees of freedom will be mapped into Dirac

spinors. So the correct associations keeping the degrees

of freedom are sketched as

� =

�
��
�� _�

�
! �� = �� � i��

� =

�
��
�� _�

�
! �� = �� � i��

	 =

�
 �
� _�

�
! 	� =  � � i�� : (29)

From (29), we �nd that

	�� ! 1

2
(	+�� +	��+)

�	
�@�� ! 1

2
(	+


b�@b��� +	�

b�@b��+)

�
5� ! 1

2
(�+�+ +����) : (30)

where hatted index means three-dimensional space-

time.

Thus, the dimensionally reduced fermionic sector of

(24) may be written

Sferm: =

Z
d3xf i�

4
(�+�+ +����) +

�

4
(	+


b�@b���
+	�


b�@b��+) +
g2

16
(	+�� +	��+)g . (31)

The action S = Sbos:+Sferm: is invariant under the

following supersymmetry transformations (from now

on, greek indices mean three-dimensional space-time):

Æ�� = �iD�� � (����)
�
� ��F��

Æ�� = iD�� � (����)
�
� ��F��

ÆF �� = i@� (����� ����)� i@� (����� ����)

ÆD = @� (�����+ ����) (32)

Æ ( � � i��) = Æ	� = i�� eT�� � �� eT��;
Æ eT�� = ����� + ���

�
��@� �;

Æ (�� � i��) = Æ�� = �i�� (��)�� T��
��� (���)�� T�� , (33)

where � and � are supersymmetric parameters, which

indicates that we have two supersymmetries in the

aforementioned action.

V Fractional statistics - anyons

The fractional statistics [8] with its theoretical and ap-

plicable consequences plays an interesting interplay role

between quantum �eld theory and condensed matter

physics. Previous speculations [9] that the fractional

quantum Hall e�ect could be explained by quasipar-

ticles (anyons) obeying fractional statistics were con-

�rmed and the behaviour of two-dimensional materials

such as vortices in super
uid helium �lms may be ex-

plained by fractional statistics. As it is known, the

presence of Chern-Simons terms in (2+1) dimensional

gauge theories induce fractional statistics. In such the-

ories, it has been known that there exist excitations,

called anyons, which continously interpolate between

bosons and fermions. In the well-known physical re-

alization, anyons are composite quasi-particles where

magnetic 
ux-tubes are attached to charged particles.

Recently, there have been thoughts of generaliz-

ing exotic statistics to extended objects to the case of
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strings in four dimensions [10]. Abelian BF models in

four dimensions has also been exploited in dual mod-

els of cosmic strings, and axionic black hole theories

where the axion charge is physically detectable only by

external cosmic strings in a four dimensional Aharanov-

Bohm type process [11].

Aneziris et al. [12] showed that more general statis-

tics can exist in (3+1) dimensions. Statistical phases

of BF theory can be seen to arise from certain cosmic

string and superstring phenomena, as well as in the

Nambu-Goto string theory modi�ed with the inclusion

of the Kalb-Ramond �eld ( B �eld) [13].

VI Linking number - intersec-

tion number

In a recent interesting work, Ashtekar and Corichi [14]

showed that there is a precise in which the Heisen-

berg uncertainty between 
uxes of electric and mag-

netic �elds through �nite surfaces is given by the Gauss

linking number of the loops that bound these surfaces.

Topological �eld theories presents observables other

than the partition function. Witten has argued that in

these theories Wilson loops are appropriate metric inde-

pendent and gauge invariant objects. Polyakov has re-

lated the vacuum expectation values of Wilson loops in

the abelian Chern-Simons theory to the classical Gauss

linking number of two loops.

In the case of BF systems, we can reinterpreting the

linking number as the intersection number of one loop

with a disc bounded by the other loop. So, this observ-

able has a natural generalization to other dimensions.

Considering the action (2), the �elds Bp and AD�p�1

allow us to form the following metric independent and

gauge invariant expressions ("Wilson surfaces"):

W [L] = exp

�Z
L

A

�
;W [�] = exp

�Z
�

B

�
(34)

where � and L are disjoint compact and oriented p�
and (D � p � 1)-dimensional boundaries of two ori-

ented submanifold of an D-dimensional oriented man-

ifold M: This formalism was presented by Blau and

Thompson [15], who proved that the expectation value

W (�; L) = hWB(�)WA(L)i is equal to the linking num-

ber of the "surfaces ".

VII Fractional statistics in D=3

from B ^ ' term?

Consider the following action

S = S0 +

Z
d3x

��
2
"���B��@�'+

g

2
J��B�� + hj'

�
;

(35)

where g; h are coupling constants, J�� and j are cur-

rents and sources. S0 depends only on �elds that orig-

inate currents and sources. Integrating out the �elds

B�� and ', we arrive at

Seff = S0 � hg

4�

Z Z
d3xd3yJ��(x) hB��(x)'(y)i j(y):

(36)

From (35) and using the Landau gauge, is easy to

see that

hB��(x)'(x)i = "���@
�
xG(x� y); (37)

where

G(x� y) = � 1

4�

1

jx� yj ; (38)

Therefore

hB��(x)'(x)i = "���

4�

(x� y)�

jx� yj3 ; (39)

The correlation function hB��(x)'(y)i is tanta-

mount to the correlation function hA�(x)A� (y)i of the
pure Chern-Simons theory in the Landau gauge (trans-

verse propagator). The e�ective action (36) can be

rewritten as

Seff = S0�hg
4�

1

4�
"���

Z Z
d3xd3yJ��(x)

(x � y)�

jx� yj3 j(y)
(40)

and

Seff = S0 � hg

4�
(linking number) (41)

On the other hand, Blau and Thompson [15] sug-

gest application of their formalism to the case where

B is a zero-form and A is a one-form, involving a link-

ing number of a point P and a circle 
, through the

expression

WB(P )WA(d) = exp(B(P ) +

I



A) (42)

where a disc d is bounded by 
.

These results support our speculation that we can

de�ne a linking number from the B ^' term, and that

it can exist a fractional statistics even in this case.
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VIII Pauli's term and fractional

statistics in D=3.

As it is known, the presence of Chern-Simons terms

in (2+1) dimensional gauge theories induce fractional

statistics[16, 17]. Stern [18] was the �rst, as far as

we know, to suggest a nonminimal term in the context

of the Maxwell-Chern-Simons electrodynamics with the

intention of mimicking an anyonic behavior without a

pure Chern-Simons limit. This term can be interpreted

as a tree level Pauli-type coupling, i. e., an anomalous

magnetic moment. It is a speci�c feature of (2+1) di-

mensions that the Pauli coupling exists, not only for

spinning particles, but also for scalar ones [19].

We consider here an Abelian Chern-Simons-Higgs

theory where the complex scalar �elds couples directly

to the electromagnetic �eld strength (Pauli-type cou-

pling). The Lagrangian of the model under investiga-

tion is

L = jr��j2 + �

2
"���A�@�A� �A�@

�b+
�

2
b2 (43)

where r�� � (@� � ieA� � i g4"���F
��)�. Note that

this covariant derivative includes both the usual mini-

mal coupling and the contribution due to Pauli's term.

Here A� is the gauge �eld and the Levi-Civita sym-

bol "��� is �xed by "012 = 1 and g�� = diag(1;�1;�1).
The multiplier �eld b has been introduced to implement

the covariant gauge-�xing condition.

Before quantizing the theory, we analyze the above

Lagrangian in terms of Hamiltonian methods. Here we

follow the approach used by Shin et al. [20]. We carry

out the constraint analysis of this model, in order to

obtain a consistent formulation of the theory.

The canonical momenta of the Lagrangian (43),

which can be easily seen by considering its temporal

and spatial components separately, are given by

�0 = 0; (44)

�b = �A0; (45)

�j = ��
2
"ijAi � i

g

2
"ij [��(Di�)� �(Di�)

�]

�g
2

2
@jA0 j�j2 + g2

4
(@0A0) j�j2 ; (46)

� = (@0�
�) + ieA0�

� + i
g

4
��"ijFij ; (47)

�� = (@0�)� ieA0�� i
g

4
�"ijFij ; (48)

where �0, �
j ; �b; � and �� are the canonical momenta

conjugate to A0; Aj , b; � and �� respectively. Also we

have used "ij = "0ij , Di = @i � ieAi and i; j = 1; 2 .

The canonical momenta (44) and (45) do not in-

volve explicit time dependence and hence are primary

constraints. Performing the Legendre transformation,

the canonical Hamiltonian can be written as

Hc = ��� + jD�j2 + ieA0(�� � ����) + �"ijA0@iAj

+Ai@
ib� �

2
b2 � i

g

2
"ij@jA0 [�

�(Di�)� �(Di�)
�]

�g
2

4
@iA0@

iA0 j�j2 � g

4
"ijFij [�

�(D0�)� �(D0�)
�]

�g
2

8
F ijFij j�j2 : (49)

Now, in order to implement the primary constraints

in the theory, we construct the primary Hamiltonian as

Hp = Hc + �0� + �1(�b +A0); (50)

where �0 and �1 are Lagrange multiplier �elds. Con-

serving in time the primary constraints yields the sec-

ondary constraints

 1 = �0 � 0; (51)

 2 = �b +A0 � 0; (52)

which are also conserved in time and where the sym-

bol � indicates weak equality, i. e., the constraints can

be identically set equal to zero only after computing

the relevant Poisson brackets. Thus there is no more

constraint and the above equations are the set of fully

second-class constraints. On the other hand, there is

no �rst-class conditions and so, no gauge conditions to

be determined in theory. This is an e�ect of the gauge

�xing condition imposed previously. As it is known,

the lack of physical signi�cance allows that the second-

class constraints can be eliminated by means of Dirac

brackets (DB's).

Following the standard Dirac brackets formalism

and quantizing the system, we obtain the following set

of non-vanishing equal-time commutators:

[A0(x); b(y)] = iÆ2(x� y) (53)

[Ai(x); �j(y)] = iÆijÆ
2(x � y) (54)

[�(x); �(y)] = [��(x); ��(y)] = iÆ2(x� y) (55)
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After achieving the quantization we proceed to con-

struct the angular momentum operator and compute

the angular momentum of the matter �eld �.

The symmetric energy-momentum tensor can be ob-

tained by coupling the �elds to gravity and then varying

the action with respect to g�� :

T�� =
2p�g

ÆS

Æg��
= (r��)

�(r��) + (r��)
�(r��)

�A�@�b� A�@�b

�g��(jr��j2 �A�@
�b): (56)

The angular momentum operator in (2+1) dimen-

sions is given by

L =

Z
d2x"ijxiT0j :

Hence

L =

Z
d2x"ijxif(�@j�+ ��@j�

�)� ieAjJ0

�ig
2
"jlF

l0(�� � ����)�A0@jb

+Aj@0b� i
g

2
Aj"

kl@k[�
�(Dl�) � �(Dl�)

�]

+i
g2

2
Aj@k(j�j2 F 0k)g; (57)

where

J0 = if��� ���� � g

2e
"ij@i[�

�(Dj�)� �(Dj�)
�]

+i
g2

2e
@i(j�j2 F 0i)g (58)

is the temporal component of the conserved matter cur-

rent.

The key point here is that Gauss' law is no more

a constraint, while J0 and T�� contain derivatives of

A� . Note that, due to its topological character, the

Chern-Simons term does not contribute to the energy-

momentum tensor. These aspects are attributed to the

non-linearity introduced by Pauli's term.

The rotational property of the � �eld is obtained by

computing the commutator [L; �(y)]. Using equations

(53-55) and (57), it is easy to see that

[L; �(y)] = "ijyi@j�� [e

Z
d2x"ijxiAjJ0; �]

+i
g

2
"ij"jkyiF

k0�: (59)

This commutator can be rewritten by means of the

electromagnetic charge operator

Q =

Z
d2xJ0(x)

and becomes

[L; �(y)] = "ijyi@j�� e2

4��
[Q2; �(y)] + i

g

2
"ij"jkyiF

k0�

(60)

or, in more familiar notation

[L; �(y)] = i(y �r)�(y)� e2

2��
Q�(y) + i

g

2
y � E�(y):

(61)

The �rst term in the right hand side of eq. (61)

represents the intrinsic spin and the second is the so-

called rotational anomaly, which is responsible for the

fractional spin. Unlike the Chern-Simons term (whose

contribution is related with magnetic �eld), the Pauli

term induces an anomalous contribution for the spin of

the system, which depends on electric �eld [21]. We

stress that, here the nonminimal coupling constant is a

free parameter.

It is worth mentioning that all the procedure above

can be carried out even if there is no Chern-Simons term

in the Lagrangian (43). In this case the anomalous con-

tribution to spin would just come from the Pauli term.

Now we will discuss the above result in connec-

tion with theories in the broken-symmetry phase. Boy-

anovsky [22] has found that the low-lying excitations of

a U(1) Chern-Simons theory in interaction with a com-

plex scalar �eld in a broken symmetry state are massive

bosons with canonical statistics. He explained his result

as due to the screening of long-range forces in a broken

symmetry phase. In this phase localized charge distri-

butions cannot be supported, which is supposed to be

essential for fractional spin. On the other hand, if we

consider a non-minimally coupled Abelian-Higgs model,

the long-distance damping e�ect by the "photon" mass

� no longer exists. This is an indication that Pauli's

term, which induces an anomalous spin, can be relevant

for the study of broken symmetry states (super
uid) in

the context of e�ective theories in condensed matter.

In nonrelativistic limit, Carrington and Kunstatter

[23] have shown that anomalous magnetic moment in-

teractions gives rise to both the Aharonov-Bohm and

Aharonov-Casher e�ects. They have speculated pos-

sible anomalous statistics without the CS term. As a

matter of fact, we believe that this (in a relativistic the-

ory) was proved here. On the other hand, the Abelian

Chern-Simons term can be generated by means of a

spontaneous symmetry breaking of a nonminimal the-

ory. This connection between Chern-Simons and Pauli-

type coupling was pointed out by Stern. So the Pauli
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term at tree-level (with the nonminimal coupling con-

stant g as a free parameter) can constitute an e�ective

theory which bring us information about physical mod-

els in broken symmetry phase.
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