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Studies of black hole formation from gravitational collapse have revealed interesting non-linear
phenomena at the threshold of black hole formation. In particular, in 1993 Choptuik studied the
collapse of a massless scalar �eld with spherical symmetry and found some behaviour, which is quite
similar to the critical phenomena well-known in Statistical Mechanics and Quantum Field Theory.
Universality and echoing of the critical solution and power-law scaling of the black hole masses
have given rise to the name Critical Phenomena in Gravitational Collapse. Choptuik's results were
soon con�rmed both numerically and semi-analytically, and have extended to various other matter
�elds. In this paper, we shall give a brief introduction to this fascinating and relatively new area,
and provide an updated publication list. An analytical \toy" model of critical collapse is presented,
and some current investigations are given.

I Introduction

Gravitational collapse of a realistic body has been one
of the most important and thorny subjects in General
Relativity (GR) since the very early times of GR [1].
The collapse generally has four kinds of possible �nal
states. The �rst is simply the halt of the process in a
self-sustained object, such as, stars. The second is the
dispersion of the collapsing object and �nally leaves
behind a at spacetime. The third is the formation
of black holes with outgoing gravitational and matter
radiation, while the fourth is the formation of naked
singularities. For the last case, however, the cosmic
censorship hypothesis [2] declares that these naked sin-
gularities do not occur in Nature.

Due to the mathematical complexity of the Einstein
�eld equations, we are frequently forced to impose some
symmetries on the concerned system in order to make
the problem tractable. Spacetimes with spherical sym-
metry are one of the cases. In particular, gravitational
collapse of a minimally coupled massless scalar �eld in
such spacetimes was studied both analytically [3] and
numerically [4], and some fundamental theorems were
established. Quite recently this problem has further at-
tracted attention, due to Choptuik's discovery of crit-
ical phenomena that were hitherto unknown [5]. As a
matter of fact, it is so attractive that Critical Phenom-
ena in Gravitational Collapse has already been a very
established sub-area in GR, and several comprehensive

review articles already exist[6, 7, 8, 9, 10, 11, 12, 13].
In this paper, a summary of an invited talk given at

the XXI Brazilian National Meeting on Particles and

Fields, we shall �rst briey review the subject and give
an updated list of publication in this area, which will
be done in Sec. II. Then, in Sec. III, we shall present
an analytic \toy" model of a collapsing massless scalar
�eld. The word \toy" model here means that the model
doesn't really represent critical collapse, since the per-
turbations of the corresponding \critical" solution have
more than one unstable mode. However, it does have
all the main features of critical collapse. Since so far, no
any critical solution is known explicitly in a close form,
this toy model still serves as a good illustration to crit-
ical phenomena in gravitational collapse. The paper is
closed by Sec. IV, in which some current investigations
in this fascinating area are given.

II Critical phenomena in gravi-

tational collapse

Starting with spherical spacetimes,

ds2 = ��2(t; r)dt2 + a2(t; r)dr2 + r2d
2; (1)

where d
 � d�2 + sin2 �d'2, and fx�g = ft; r; �; 'g
are the usual spherical coordinates, Choptuik [5] inves-
tigated gravitational collapse of a massless scalar �eld,
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�, which satis�es the Einstein-scalar �eld equations,

R�� = ��;��;� ;

2� = 0; (2)

where R�� denotes the Ricci tensor, � � [8�G=c4] is the
gravitational coupling constant, ( );� = @( )=@x�; 2 �
g��r�r� , and r� denotes the covariant derivative.
Once an initial smooth con�guration of the massless
scalar �eld is given, these equations uniquely determine
the later evolution of the spacetime and the scalar �eld
[3]. Let the initial distribution of the massless scalar
�eld be parameterized smoothly by a parameter p that
characterizes the strength of the initial conditions, such
that the collapse of the scalar �eld with the initial data
p > p� forms a black hole, while the one with p < p�

does not. A simple example is the gaussian distribution
of the massless scalar �eld

�(t0; r) = �0

�
r

r0

�3

exp

�
�
�
r � r0
Æ

�q�
; (3)

where t0 denotes the initial time of the collapse, and
�0; r0; Æ, and q are constants [See Fig. 1].
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Figure 1. The initial con�guration of the massless scalar
�eld at t = t0 given by Eq.(3) in the text. It actually rep-
resents a collapsing spherical shell, made of the massless
scalar �eld, with its thickness Æ and centralizing at the ra-
dius r = r0. �0 represents the amplitude of the wave packet.

In this case, Choptuik found that the parameter p can
be any of the four parameters,

p = f�0; r0; q; Æg; (4)

that is, �xing any three of the four parameters, for ex-
ample, r0; Æ and q, and leaving only �0 change, we shall
obtain a family of initial data, S[�0]. For this family
of initial data Choptuik found that there exists a crit-
ical value ��

0 such that when �0 > ��

0 the collapse al-

ways forms black holes, and when �0 < ��

0 the massless
scalar �eld �rst collapses, then disperses to spacelike
in�nity, and �nally leaves a at spacetime behind with-
out forming any kind of spacetime singularities. When
�0 � ��

0 +��0, where ��0 is very small, after certain
time all the collapses are quite similar and approach to

the critical one (�0 = ��

0). But, at the very end, the
collapse will suddenly runs away from the critical one,
by either forming black holes or dispersing to in�nity,
depending on the signs of ��0. Choptuik found that for
the con�guration of Eq.(3) there are four di�erent fam-
ilies of initial data, S[�0]; S[r0]; S[Æ] and S[q], which
all exhibit the above behaviour.

In addition to these four, Choptuik also studied
many others and found that for all the families that
behave as above, the so-called generic smooth families

of initial data, all the critical solutions are identical,
or in another word, universal. Moreover, the critical
solution is also periodic, that is,

A�(�; �) = A�(�; � +4); (5)

where A� = f��; a�; ��g, and

� = ln

�
t

r0

�
; � = ln

�r
t

�
� �0(�); (6)

with r0 being a dimensionful constant, and �0(�) a pe-
riodic otherwise arbitrary function with period 4. The
constant 4 is a dimensionless constant, which was nu-
merically determined as 4 � 3:447.

Yet, near the critical solution but with p > p�, the
mass of black holes takes the scaling form

MBH = K(p� p�) ; (7)

where K is a family-dependent constant, but  is an-
other dimensionless universal constant, which was nu-
merically determined as  � 0:37.

Universality and echoing of the critical solution and
power-law scaling of the black hole masses have given
rise to the name Critical Phenomena in Gravitational

Collapse.
Choptuik's results were soon con�rmed by several

independent studies both numerical [14] and semi-
analytical [15], and have been extended to other matter
�elds, such as,

� Axisymmetric gravitational waves [16];

� Perfect uids with the equation of state p = k�,
where p denotes the pressure of the uid and �
the energy density, and k is a constant [17, 18];

� Quantum black hole formation in 2-dimensional
spacetimes [19];

� Non-linear �-models in two dimensional target
space [20];

� Massless scalar �eld in Brans-Dicke theory [21];

� SU(2) Yang-Mills �eld [22];

� Einstein-Maxwell-scalar �elds [23];

� Massive scalar �eld [24];



190 Brazilian Journal of Physics, vol. 31, no. 2, June, 2001

� Gravitationally collapsing primordial density uc-
tuations in the radiation dominated phase of the
early Universe [25];

� SU(2) Skyrme �eld [26];

� The collapse of collisionless matter of the
Einstein-Vlasov equations [27, 28];

� Topological domain walls interacting with black
holes [29];

� The gravitational collapse of massless scalar �eld
in higher dimensional spacetimes [30];

� Non-linear �-models in three dimensional target
space [31];

� Gravitational collapse in Tensor-Multi-Scalar and
Non-linear Gravity Theories [32];

� Boson stars [33];

� Massless scalar �eld coupled with the cosmo-
logical constant in (2+1)-dimensional spacetimes
[34].

In review of all these studies, now the following is
clear:

(a) In general the critical solution and the two di-
mensionless constants 4 and  are universal only
with respect to the same matter �eld, and usually
are matter-dependent. For example, for the col-
lapse of the SU(2) Yang-Mills �eld, it was found
[22] that 4 � 0:74 and  � 0:2, while in the
case of massless scalar �eld, Choptuik found that
4 � 3:447 and  � 0:37.

(b) The critical solutions can have discrete self-
similarity (DSS) [35] or continuous self-similarity
(CSS) [36], or none of them, depending on the
matter �elds and regions of the initial data space.
So far, in all the cases where the critical solu-
tion either has DSS or CSS, black holes form al-

ways starting with zero mass, and take the form
of Eq.(7), the so-called Type II collapse, while in
the cases in which the critical solution has neither
DSS nor CSS, the formation always turns on with
a mass gap, the so-called Type I collapse, corre-
sponding, respectively, to the second- and �rst-
order phase transitions in Statistical Mechanics
[37].

(c) The universality of the critical solution and the
exponent  now are well understood in terms of
perturbations of critical solutions [18], while the
one of 4 still remains somewhat of a mystery.
The former is closely related to the fact that the
perturbations of the critical solution has only one
unstable mode. This property now is considered
as the main criterion for a solution to be critical
[13].

To understand the last property better, let us con-
sider the phase space, that is, consider GR as an
in�nite-dimensional dynamic system. If we make a
(3 + 1) split of the spacetime, for example, following
the Arnowitt, Deser, and Misner (ADM) decomposi-
tion, we will �nd that the dynamic quantities will be the
induced spatial three metric, the extrinsic curvature,
and the matter distribution. Then, the phase space
will consist of all the possible three metrics, extrinsic
curvature, and con�gurations of the matter �elds. For
the case of massless scalar �eld, from the no-hair the-
orem of black holes [38], we know that the only stable
black hole solution of the Einstein-scalar �eld equations
is the Schwarzschild black hole with a constant mass-
less scalar �eld. Except for this black hole, another
stable state is the Minkowskian spacetime. Of course,
we also know that the collapse of a massless scalar �eld
can form naked singularities, too, but so far we don't
know if they are stable or not [1]. At this point, we
shall adopt the point of view of the cosmic censorship
conjecture [2], and assume that they are not stable.
Otherwise, there may exist two more critical solutions
that separate, respectively, black holes from naked sin-
gularities, and at spacetimes from naked singularities.
However, this doesn't a�ect our following discussions if
we are restricted only to the boundary between black
holes and at spacetimes, and the analysis can be easily
extended to other boundaries.

 p*
 p > p*

*A

S
 

  

S[p]

 Flat
Space-Times

Black
Holes

Figure 2. The phase space of the dynamic system of the
Einstein-scalar �eld equations. The hypersurface S is the
critical surface of codimension one, which separates the
basin of black holes from the basin of at spacetimes. A
generic smooth family of initial data S[p] always passes the
two basins at the critical point p = p� on the critical hy-
persurface. All the initial data on the hypersurface will
collapse to the critical solution A� that is a �xed point on
the hypersurface when it has CSS and a �xed cycle when
it has DSS. All details of initial data are soon washed out
during the collapsing process, and the collapse with initial
data near the critical point will be very similar to the criti-
cal collapse. This similarity can be last almost to the �xed
point A�, whereby the one unstable mode suddenly draws
the collapse either to form black hole or a at spacetime,
depending on whether p > p� or p < p�.

Then, we can see that the phase space can be divided
into two attractive basins. Inside the dispersion basin,
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the at spacetimes with di�erent constant values of the
scalar �eld, are attractive �xed points, while inside the
basin of black holes, the Schwarzschild black holes with
di�erent masses are the attracting �xed points. The
boundary between the two attractive basins is called
the critical surface, and the critical solution always
lies on it. Since it has only one unstable mode, this
surface must be a hypersurface of codimension one,
that is, one dimension less than the original in�nite-
dimensional phase space. By de�nition, a phase space
trajectory never leaves this hypersurface, if it is initially
on it, but approaches to the critical solution, which is a
�xed point on this hypersurface if the critical solution
is continuous self-similar, or a �xed cycle if the critical
solution is discrete self-similar [13]. Within the com-
plete phase space, the critical solution is an attractor
of codimension one, i.e., it has an in�nite number of
decaying perturbation modes tangential to the critical
hypersurface and a single growing mode perpendicular
to the hypersurface. Any trajectory beginning near the
critical hypersurface, but not necessarily near the criti-
cal point (or cycle in the DSS case), �rst moves parallel
to the hypersurface and goes down almost to the crit-
ical point (or cycle), then is suddenly drawn away by
the single unstable mode in the perpendicular direction,
and �nally ends up at one of the �xed points, by either
forming a black hole or a at spacetime. During the dy-
namic process, all details of the initial data are quickly
washed away, except for the distance from the black
hole threshold. Therefore, for the both super-critical
(p > p�) and sub-critical (p < p�) collapse, there exists
a domain, p� �4p � p � p� +4p, in the phase space,
in which the collapse is very similar to the critical one
during certain period of times [See Fig.2].

III Critical collapse of massless

scalar �eld: an analytic Toy

model

In this section, we shall present a class of analytic solu-
tions of the Einstein-scalar �eld equations, which repre-
sents gravitational collapse of a wave packet consisting
of massless scalar �eld [39]. This class of solutions was
�rst discovered by Roberts [40] and later studied by
several authors in the context of critical collapse [41].
As we shall show below, these solutions possess most of
the features of critical phenomena, although they don't
exactly represent critical collapse, because the solution
that separates the formation of black holes from that of
at spacetimes has more than one unstable mode [42].
It is exactly in this sense, we refer these solutions as
representing a \toy" model of critical collapse.

The Roberts solutions are given by [40]

ds2 = �G(u; v)dudv + r2(u; v)d2
; (8)

where u and v represent two null coordinates, in terms
of which the metric coeÆcients and the corresponding
massless scalar �eld � are given, respectively, by

r(u; v) =
1

2

�
u2 � 2uv + 4b2v

2
�1=2

;

G(u; v) = 1; (9)

�(u; v) = � 1p
2
ln

���� (u� v)� (1� 4b2)
1=2v

(u� v) + (1� 4b2)1=2v

���� ;(10)
where b2 is an arbitrary constant. Note that the no-
tations used here closely follow the ones used in [39]
but slightly di�erent from the ones used in [40]. From
Eq.(9) it can be easily shown that the local mass func-
tion [43] is given by

m(u; v) � r

2

�
1� r;�r;�g

��
�
= � (1� 4b2)uv

8r
; (11)

which is zero on the hypersurface v = 0 and negative
for u; v < 0. Thus, to have a physically reasonable
spacetime we need to restrict the above solutions valid
only in the region u � 0; v � 0. Since the mass is zero
on the hypersurface v = 0, we may join the above solu-
tions across the hypersurface v = 0 with a Minkowskian
spacetime. As shown in [39], this is possible if the met-
ric in the region v � 0 takes the form of Eq.(8) but with
the metric coeÆcients and the massless scalar �eld be-
ing given by

r(u; v) = a(v)� 1

2
u� a(0);

G(u; r) = 2a0(v); � = 0; (v < 0); (12)

where a(v) is an arbitrary function subject to a0(v) > 0
and a0(0) = 1=2, and a prime denotes the ordinary
di�erentiation with respect to the indicated argument.
For such a matching, it can be shown that the hyper-
surface v = 0 is free of any kind of matter and rep-
resents a boundary surface [44]. The region v < 0 is
Minkowskian [See Fig.3].

On the other hand, from Eqs.(9) and (10) it can be
also shown that the spacetime in the region u < 0; v > 0
represents a collapsing massless scalar wave. When
b2 < 0, the scalar wave collapses into a spacetime sin-
gularity on the hypersurface u = �[(1 � 4b2)

1=2 � 1]v,
which is preceded by an apparent horizon at u = 4b2v.
Thus, the corresponding solutions represent the forma-
tion of black holes. When b2 = 0, the singularity co-
incides with the apparent horizon on the null hyper-
surface u = 0. When 0 < b2 < 1=4, it can be shown
that the massless scalar �eld �rst collapses and then
disperses into in�nity, without forming black holes, but
instead, leaves a Minkowskian spacetime behind, which
now is represented by the region, u; v > 0, in which the
metric takes the form of Eq.(8), but with

G(u; v) = 4b
1=2
2 b0(u); r = b

1=2
2 v � b(u) + b(0);
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�(u; v) = � 1p
2
ln

�
1 + (1� 4b2)

1=2

1� (1� 4b2)1=2

�
;

(0 < b2 < 1=4; u; v > 0); (13)

where b(u) is an arbitrary function, subject to b0(u) >

0; b0(0) = 1=(4b
1=2
2 ). One can show that the hypersur-

face u = 0; v > 0 is also free of any kind of matter and
represents a boundary surface.

Vaidya

u v

0

v

φ
M 4

0

Figure 3. The spacetime in the (u; v)-plane. The region
v < 0 is Minkowskian, while the region u � 0; v � 0 repre-
sents gravitational collapse of the massless scalar �eld. (a)
When b2 < 0, the scalar wave collapses into a spacetime
singularity at u = �[(1 � 4b2)

1=2 � 1]v < 0, which is pre-
ceded by an apparent horizon located at u = �4jb2jv < 0.
(b) When b2 = 0, the spacetime singularity coincides with
the apparent horizon on u = 0 which is null. (c) When
0 < b2 < 1=4, the massless scalar �eld �rst collapses and
then disperses into in�nity, and �nally leaves a Minkowskian
spacetime behind in the region u; v > 0.

In the case b2 < 0, where black holes are formed,
Eq.(11) shows that on the apparent horizon u = �4jb2jv
the mass becomes unbounded as v ! +1. In order to
have black holes with �nite mass, we shall follow [39]
�rst to cut the spacetime along the hypersurface v = v0
and then join the region 0 � v � v0 with an asymp-
totically at region. To model the out-going radiation
of the massless scalar �eld, we shall choose the region
v � v0 as described by the Vaidya solution [45],

ds2 = �
�
1� 2m(U)

r

�
dU2 + 2dUdr + r2d2
;

(v � v0); (14)

where U is the Eddington retarded time, which is in
general the function of u appearing in Eq.(8), andm(U)
is the local mass of the out-going Vaidya dust. The cor-
responding energy-momentum tensor is given by

T+
�� = �

2

r2
dm(U)

dU
ÆU� Æ

U
� ; (v � v0): (15)

The hypersurface v = v0 in the coordinates fx�g =
fU; r; �; 'g is given by

dU(r)

dr
= � 2r

r � 2m(U)
; (v � v0): (16)

Then, it can be shown that the junction conditions on
the hypersurface v = v0 require

M(r) � m(U)jv=v0 =
1

r

h
p(4p�2 + r2)1=2 � 2p�2

i
;

v0 =
4p�2

p
; (17)

where p is the integration constant, and

p� � (1� 4b2)
1=2

4
v0: (18)

For the details, we refer readers to [39]. Since for the
above matching, the hypersurface v = v0 is free of mat-
ter, the function M(r) represents the total mass of the
collapsing wave packet �lled in the region 0 � v � v0.
At the past null in�nity, Eq.(17) shows that

M(r ! +1) = p; (19)

that is, the parameter p in the present case represents
the total initial mass of the massless scalar wave packet
with which it starts to collapse.

As r ! 0+, from Eq.(17) we can see that M(r)
behaves as

M(r)!
(
+1; p > p�,
0; p = p�,
�1; p < p�.

(20)

M (r)

(a) f = r/2

(b)

(c)0

p

r rAH

*

Figure 4. The mass M(r) of collapsing spherical shell.
The line (a) corresponds to the case where p > p�, in
which a black hole is formed, and its mass is given by
MBH = M(rAH). The line (b) corresponds to the case
where p = p�, while the line (c) corresponds to the case
where p < p�.

On the other hand, it is well-known that the ap-
parent horizon at r = 2M(r) of the out-going Vaidya
solution always coincides with its future event horizon.
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Thus, by comparing the mass M(r) with r=2 we can
tell whether the collapse forms a black hole or not,

M(r)� r

2
=

(
4p�

2

+ r2

4r2[p+ (4p�2 + r2)]

)1=2

�
h
4(p2 � p�

2

)� r2
i
: (21)

Clearly, only when p > p�, the scalar �eld and the null
shell will collapse inside the event horizon at

rAH = 2(p2 � p�
2

)1=2: (22)

r = 0

A H
EH

φ
Vaid.

M 0

v0

4

(a)

M
0

v

r = 0 

Vaid.

4

0φ

(b)

M

M

0

v
4

0

4

Vaid.0

φ

(c)

Figure 5. The corresponding Penrose diagrams. (a) The
case where p > p�, in which a black hole is formed, and its
mass is given by MBH = M(rAH). (b) It corresponds to
the case where p = p�, in which the spacetime singularity
becomes null and coincides with the apparent horizon. (c)
It corresponds to the case where p < p�, in which no space-
time singularity is formed, instead, when the wave packet of
the massless scalar �eld collapses to the hypersurface u = 0,
all of its mass has been radiated away and nothing is left to
collapse, so the spacetime in the region u; v � 0 becomes
Minkowskian.

When p = p�,M(r) = r=2 is possible only at the origin,
r = 0, where a zero-mass singularity is formed. Thus,
the solution with p = p� represents the \critical" solu-
tion that separates the supercritical solutions (p > p�)
from the subcritical ones (p < p�). In the subcritical
case, M(r) is always less than r=2, and the collapse
never forms a black hole [cf. Fig.4].

In the subcritical case, the region u; v > 0 should
be replaced by the Minkowskian solution (13). As
shown above, the matching across the hypersurface
u = 0; 0 � v � v0 is smooth, i.e., no matter appears on
it. To show that it is also the case on the hypersurface
u = 0; v � v0, which separates the Vaidya solution (14)
from the Minkowskian one (13), we �rst make the co-
ordinate transformation U = U(u), and then write the
metric (14) in terms of u. Using the results obtained in
[46], one can show that to have a smooth matching we
have to impose the condition

U 0(0) =
1

(4b2)1=2
; (23)

M(r) ju=0 = 0 : (24)
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Clearly, by properly choosing the function-dependence
of U(u), the �rst condition (23) can be always satis-
�ed. On the other hand, from Eqs.(9) and (17) one can
show that the last condition is also satis�ed identically.
Therefore, the matching of the Vaidya solution to the
Minkowskian one across the hypersurface u = 0; v � v0
is always possible for p < p�. The corresponding Pen-
rose diagram for each of the three cases are shown in
Fig. 5.

On the apparent horizon r = rAH , the total mass of
the scalar wave packet is given by

MBH =
1

2
rAH = K(p� p�)1=2; (25)

where K � (p + p�)1=2. The above expression shows
that the black hole mass takes a power-law form with
its exponent  = 0:5, which is di�erent from the DSS
case, where Choptuik found  � 0:37. As we men-
tioned previously, the above solutions don't really rep-
resent critical collapse, because the \critical" solution
given above has more than one unstable modes [42].
Therefore, the di�erent value of  obtained here does
not means any contridiction to Choptuik's numerical
results.

IV Current Investigations

As Critical Phenomena in gravitational collapse is a
rather new area in GR, there are many open problems.
In the following we shall mention some of them.

A. The e�ects of angular momentum in critical

collapse

As we know, the angular momentum plays a very
signi�cant role in black hole physics, and all the realis-
tic bodies, such as, neutron stars, have non-zero angular
momentum. Thus, it is very important to study the ef-
fects of angular momentum on critical collapse. So far,
all the studies of critical phenomena in gravitational
collapse have been restricted to spherical case, except
for the works of Abrahams and Evans [16] and Alcu-
bierre et al. [47]. In [16] the authors studied the col-
lapse of axisymmetric purely gravitational waves, and
found the type II critical collapse. However, in this
study the total angular momentum is still zero. In [47]
the collapse of pure Brill type gravitational waves in 3D
Numerical Relativity was studied and the critical am-
plitude for black hole formation was determined. How-
ever, due to the complexity of the problem, no suÆcient
evidence for critical collapse was observed.

In addition to the above, Gundlach and his co-
workers [48] studied the problem using non-spherical
perturbations, and in particular found that all the
modes of non-spherical perturbations of the massless
scalar �eld studied initially by Chpotuik are stable,
and, as a result, Chpotuik's critical solution found in

the spherical case may remain critical even in non-
spherical case. He also found that small angular mo-
mentum also takes a scaling form near the critical point
but with a di�erent exponent. Besides, Rein, Rendall
and Schae�er [27] studied the spherical collapse of col-
lisionless matter that consists of counter-rotating parti-
cles, and found that only Type I critical collapse. This
result was further con�rmed by Olabarrieta quite re-
cently [28].

Moving from spherically symmetric case to axisym-
metric one, the problem becomes much mathematically
involved, and very sophisticated (numerical) meth-
ods are needed. Choptuik, Hirschmann and Liebling,
among others, have been working on this problem re-
cently [49], and are expected to report their results
soon.

B. The quantum e�ects on critical collapse

Critical phenomena are actually phenomena in the
strong gravitational �eld regime, and Quantum e�ects
should be very important for the formation of black
holes with very small mass. Chiba and Siino [50] stud-
ied this problem and showed that the Quantum e�ects
may destroy the type II critical phenomena, while Ayal
and Piran [51] showed that they don't, but rather shift
the critical value p�. However, since in both of the two
cases the Quantum e�ective energy-momentum tensor
(EMT) was taken from two-dimensional toy model, the
consistence of such an EMT with the four-dimensional
gravitational collapse is still an open question. Re-
cently, Brady and Ottewill [52] calculated the e�ective
EMT of a conformally coupled scalar �eld on the �xed
background of the critical solutions of the perfect uid
with the equation of state p = k� in four-dimensional
spherical spacetimes, and found that when k < 0:53,
the Quantum e�ects destroy the type II critical phe-
nomena, while when k > 0:53 their calculations break
down, and a de�nitive conclusion is still absent.

C. The application of renormalization group the-

ory to critical collapse

The Renormalization Group Theory has achieved
great success in the studies of critical phenomena in
Statistical Mechanics [37], and several authors, includ-
ing Argyres [53], and Koike, Hara and Adachi [18], have
pointed out that the time evolution near the critical so-
lution in gravitational collapse may also be considered
as a renormalization group ow on the phase space of
initial data. As a matter of fact, the analysis of the
phase space given in the Introduction exactly followed
this idea. However, this analysis is valid only in self-
similar spacetimes. In order to obtain a full renormal-
ization group, one needs to generalize them to arbi-
trary spacetimes, which is turned out not trivial, as in
GR the choice of coordinate systems is completely ar-
bitrary. Gar�nkle and Gundlach [54] have taken some
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initial steps to this direction, but a successful applica-
tion of the Renormalization Group Theory to critical
collapse still remains as an open question.

Besides the above mentioned problems many oth-
ers are also under the current investigations, such as,
�nding more matter �elds that exhibit critical collapse,
including universal classes; applying the analysis of per-
turbations of black holes to critical solutions; under-
standing its physical origin of the constant4 [55]; �nd-
ing some possible astrophysical observations of critical
phenomena, and so on. In particular, it was known for
a long time that the collapse of neutron stars exhibits
the type I critical phenomena [56]. An important ques-
tion is that: Does this type I critical collapse have any
observational consequence?

For further references of critical phenomena in grav-
itational collapse, we would like to refer the readers to
the review articles [6, 7, 8, 9, 10, 11, 12, 13].
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