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The dynamics of high partonic density QCD is presented considering, in the double logarithm ap-
proximation, the parton recombination mechanism built in the AGL formalism, developed including
unitarity corrections for the nucleon as well for nucleus. It is shown that these corrections are un-
der theoretical control. The resulting non linear evolution equation is solved in the asymptotic
regime, and a comprehensive phenomenology concerning Deep Inelastic Scattering like F2, FL, F

c
2 .

@F2=@ lnQ
2, @FA

2 =@ lnQ
2, etc, is presented. The connection of our formalism with the DGLAP and

BFKL dynamics, and with other perurbative (K) and non perturbative (MV-JKLW) approaches is
analised in detail. The phenomena of saturation due to shadowing corrections and the relevance of
this e�ect in ion physics and heavy quark production is emphasized. The implications to e-RHIC,
HERA-A, and LHC physics and some open questions are mentioned.

I Introduction

The dynamics of the high density Quantum Chromody-
namics (hdQCD) is one of the present most challeging
open questions in high energy physics. The intense the-
oretical and experimental activity towards the under-
standing of small x (small fraction of proton momentum
carried by the struck parton) QCD takes place from
Deep Inelastic Scattering (DIS) at HERA [1] to heavy
ions collisions (HIC) at RHIC [2]. This kinematical
regime will also be tested at LHC in a near future [3].

Important contribution to the interest of the �eld
is due to the puzzling result obtained by HERA at
small-x (x � 10�2) [4] for the proton structure func-
tion F2(x;Q

2). This function was observed to increase
dramatically as x gets smaller (Fig. 1). In the re-
gion of moderate Bjorken x (x � 10�2) the Opera-
tor Product Expansion (OPE) methods as well as the
Renormalization Group Equations (RGE) have been
applied successfully [5]. The evolution of quark and
gluon distribution functions given by the DGLAP equa-
tions [6] is based on the summing of the leading powers
of �s lnQ

2 � 1, �s ln(1=x) << 1, �s << 1, where �s is
the strong coupling constant. The leading ln(1=x) con-
tributions is the case for the BFKL equation [7]. The
procedure known as the double leading logarithmic ap-
proximation (DLA) corresponds in axial gauges to gen-
erate the logarithms by ladder diagrams, whose emitted
gluons have strongly ordered transverse and longitudi-
nal momenta, summing the logs �s lnQ

2 ln(1=x). It
was shown that the DLA is a common limit between
the linear dynamics [8].

The increasing of the parton densities requires a for-
mulation of the QCD at high partonic density, where
unitarity corrections (UC), not considered in the pre-
vious dynamics already mentioned, are properly taken
into account. In this sense, the small x region, where
the gluon distribution sets the behavior of the main ob-
servables, provides the interface between perturbative
and non perturbative QCD, or in other words, between
hard and soft physics. Clearly, both experimentalists
and theoreticians are challenged to desentangle, mea-
sure and formulate the dynamical collective e�ects that
are subjacent to the observed result of increasing F2 and
the cross section �tot at DIS, as x gets smaller [4]. Both
evolution equations, DGLAP (evolution in lnQ2) and
BFKL (evolution in ln(1=x)) as representatives of lin-
ear dynamics, need control in order to restore unitarity,
since the Froissart limit requires �tot � Cte ln2 s [9].

A comprehensive treatment should envolve both lin-
ear and non linear regimes. The main attempts to
develop a formalism for hdQCD are the approaches
of Mc.Lerran and collaborators (MV JKLW ) [10], by
Kovchegov (K) [11] and by Ayala, Gay Ducati and
Levin (AGL) [12, 13]. Derived independently, the three
methods obtain non linear evolution equations for the
gluon distribution, at the small x region, describing the
onset of hdQCD, although considering di�erent degrees
of freedom.

In what follows I will present an introductory review
of the subject of hdQCD, the main aspects of the formu-
lations to the subject, the connections among them in
the asymptotic region (x! 0), present the state of art
of the phenomenology of small x physics and address

�E-mail:gay@if.ufrgs.br



1
1
6

M
.B
.
G
a
y
D
u
ca
ti

so
m
e
o
p
en

q
u
estio

n
s.

I
I

T
h
e
E
v
o
lu
tio

n
E
q
u
a
tio

n
s

It
w
ill

b
e
b
rie


y
p
resen

ted
th
e
D
G
L
A
P
a
n
d
B
F
K
L
d
y
-

n
a
m
ics

a
n
d
th
eir

p
red

ictio
n
s
fo
r
th
e
sm

a
ll
x
reg

im
e
a
t

D
IS
.
T
h
e
D
IS

is
th
e
p
ro
cess

o
f
in
tera

ctio
n
o
f
a
lep

to
n

a
n
d
a
n
u
cleo

n
ex
ch
a
n
g
in
g
a
n
electrow

ea
k
b
o
so
n
p
ro
d
u
c-

in
g
m
a
n
y
p
a
rticles

a
t
th
e
�
n
a
l
sta

te,
w
h
ich

is
a
h
a
d
ro
n
ic

sta
te
X
.
T
h
e
p
ro
cess

is

l(k
)
N
(p
)
!

l
0(k

0)
X

;
(1
)

w
h
ere

k
,
k
0,
p
a
n
d
p
0
a
re

th
e
fo
u
rm

o
m
en
ta

o
f
th
e
in
itia

l
a
n
d
�
n
a
l
lep

to
n
,
in
cid

en
t
n
u
cleo

n
a
n
d
�
n
a
l
h
a
d
ro
n
ic

sy
stem

,
resp

ectiv
ely.

T
h
e
m
a
in

va
ria

b
les

fo
r
th
is
p
ro
-

cess
a
re

Q
2
=
�
q
2
=
�
(k
�
k
0)
2,

w
h
ich

is
th
e
sq
u
a
re

o
f
th
e
tra

n
sfered

m
o
m
en
tu
m
,
s
=
(k

+
p
)
2,
th
e
sq
u
a
re

o
f
th
e
cen

ter
o
f
m
a
ss

en
erg

y,
W

2
=

(q
+
p
)
2
=

(p
0)
2,

th
e
sq
u
a
re

o
f
th
e
cen

ter
o
f
m
a
ss

en
erg

y
o
f
th
e
v
irtu

a
l

b
o
so
n
-n
u
cleo

n
sy
stem

.
T
h
e
h
a
rd

sca
le

is
g
iv
en

b
y
q
2

(<
0
),

co
rresp

o
n
d
in
g
to

th
e
p
ro
cess

reso
lu
tio

n
,
a
n
d

x
=

Q
2=
2
p
:q,

m
ea
n
in
g
th
e
v
irtu

a
l
b
o
so
n
reso

lv
es

th
e

h
a
d
ro
n
ic
stru

ctu
re,

o
r
th
e
p
a
rto

n
s,
sin

ce
�
x
�
1
= p

Q
2

.
A
re

a
lso

u
sefu

l
th
e
va
ria

b
les

y
=
q:p

=
k
:p
,
m
ea
su
rin

g
th
e
p
ro
cess

in
ela

sticity
a
n
d
�
=
q:p

=
m
N
,
th
e
en
erg

y
o
f

th
e
v
irtu

a
l
b
o
so
n
o
n
ce

ta
k
en

in
th
e
ta
rg
et

rest
fra

m
e.

In
term

s
o
f
th
e
p
a
rto

n
ic
co
n
ten

t
o
f
th
e
n
u
cleo

n
th
e

stru
ctu

re
fu
n
ctio

n
,
w
h
ich

re

ets

its
ov
era

ll
d
istrib

u
tio

n
,

is
g
iv
en

b
yF
2 (x

;Q
2)

= X
f

e
2f
[q
f
(x
;Q

2)
];

(2
)

w
h
ere

th
e
su
m

is
ov
er



av
o
u
rs
w
eig

h
ted

b
y
th
e
resp

ec-
tiv

e
sq
u
a
red

ch
a
rg
es

(e
2f
).
It
is
th
is
fu
n
ctio

n
th
a
t
is
o
b
-

ject
o
f
m
a
in

ex
p
erim

en
ta
l
stu

d
ies,

sp
ecia

lly
a
t
H
E
R
A
,

a
t
th
e
sm

a
ll
lo
n
g
itu

d
in
a
l
n
u
cleo

n
fra

ctio
n
o
f
m
o
m
en
-

tu
m
,
o
r
sm

a
ll
x
(see

F
ig
.
1
)
[1
4].

0

0.5 1

1.5 2

2.5 3

3.5 4

10
-3

10
-2

10
-1

1x

F2(x,Q2)

0

0.5 1

1.5 2

2.5 3

3.5 4

10
-3

10
-2

10
-1

1x

F2(x,Q2)

F
ig
u
re

1

T
h
e
q
u
a
rk

d
istrib

u
tio

n
fu
n
ctio

n
ca
n
b
e
sh
ow

n
to

ev
o
lv
e
a
s

@
q
f
(x
;Q

2)

@
ln
Q
2

=
�
s

2
� Z

d
x
1

x
1
P
q
q (

xx
1
)
q
f
(x
;Q

2)
;

(3
)

w
h
ere

P
q
q
=

C
F
1
+
z
2

1
�
z
j+

(w
ith

self-en
erg

y
co
rrectio

n
s

ov
er

th
e
k
p
ro
p
a
g
a
to
r)
is
o
n
e
o
f
th
e
sp
littin

g
fu
n
ctio

n
s

P
ij
(
P
g
q
=
C
F
1
+
(1
�
z
)
2

z
,
etc),

d
escrib

in
g
th
e
tra

n
sitio

n
b
etw

een
th
e
q
u
a
rk

sta
te

i
to

th
e
q
u
a
rk

sta
te

j,
fro

m
fra

ctio
n
o
f
m
o
m
en
tu
m

x
1
to

x
.
T
h
e
a
b
ov
e
ev
o
lu
tio

n
refers

to
th
e
n
o
n
sin

g
let

q
u
a
rk
s
d
istrib

u
tio

n
w
h
ere

sea
q
u
a
rk
s
a
n
d
g
lu
o
n
d
istrib

u
tio

n
a
re

u
n
co
u
p
led

q
N
S
(x
;Q

2)
�
q
i (x

;Q
2)
�
q
j (x

;q
2)

:
(4
)

T
h
e
sin

g
let

q
u
a
rk

d
istrib

u
tio

n
is
g
iv
en

b
y

q
S
(x
;q

2)
� X

f �
q
f
(x
;Q

2)
+
�q
f
(x
;Q

2) �
;

(5
)

w
h
ere

th
e
g
lu
o
n
d
istrib

u
tio

n
is

co
u
p
led

to
th
e
q
u
a
rk

o
n
e.N

ow
th
e
ev
o
lu
tio

n
eq
u
a
tio

n
s,
in

th
e
lin
ea
r
reg

im
e,

rea
d
fo
r
th
e
q
u
a
rk
s

@
q
S
(x
;Q

2)

@
ln
Q
2

=
�
s (Q

2)

2
�

�Z
1

x �
P
q
q (

xx
1
)q
s (x

1 ;Q
2)

+
P
q
g (

xx
1
)g
(x
;Q

2) ��
;

(6
)

a
n
d
fo
r
th
e
g
lu
o
n
d
istrib

u
tio

n

@
g
(x
;Q

2)

@
ln
Q
2

=
�
s (Q

2)

2
�

�Z
1

x �
P
g
q (

xx
1
)q
s (x

1 ;Q
2)

+
P
g
g (

xx
1
)g
(x
;Q

2) ��
:

(7
)

T
h
e
E
q
s.
(6
)
a
n
d
(7
)
w
ere

in
d
ep
en
d
en
tly

d
eriv

ed
b
y

D
o
k
sh
itzer,

G
rib

ov
a
n
d
L
ip
a
tov

,
a
n
d
b
y
A
lta

relli
a
n
d

P
a
risi,

k
n
ow

n
a
s
D
G
L
A
P

eq
u
a
tio

n
s
in

lea
d
in
g
o
rd
er.

T
h
e
p
ertu

rb
a
tiv

e
Q
C
D

ev
o
lu
tio

n
,
in

th
e
lin
ea
r
secto

r
is
g
ov
ern

ed
b
y
D
G
L
A
P
eq
u
a
tio

n
s,
m
o
reov

er
a
su
ita

b
le

n
o
n
p
ertu

rb
a
tiv

e
in
icia

l
co
n
d
itio

n
,
ex
tra

cted
fro

m
th
e

ex
p
erim

en
t
fo
r
a
g
iv
en

b
o
so
n
v
irtu

a
lity.

It
ca
n

b
e

sh
ow

n
b
y

su
cessiv

e
d
eriva

tio
n
s
th
a
t

q
N
S
(x
;")

� P
n
(�

s ")
n
,
"
=

ln
Q
2,

w
h
ich

co
rresp

o
n
d
s

to
th
e
em

issio
n
o
f
n
g
lu
o
n
s,
sh
ow

in
g
th
a
t
th
e
D
G
L
A
P

eq
u
a
tio

n
s
resu

m
th
e
lea

d
in
g
ln
Q
2.

T
h
is

ca
n
b
e
u
n
-

d
ersto

o
d
a
s
la
d
d
er

d
ia
g
ra
m
s
w
ith

a
stro

n
g
o
rd
erin

g
in

tra
n
sv
erse

m
o
m
en
ta

k
?
,
i.e.,

Q
20
<
<

k
21
<
<

:::
<
<

k
2n
<
<
Q
2.

T
h
e
sca

le
Q
20
is
th
e
cu
t,
o
r
tra

n
sitio

n
va
lu
e

b
etw

een
p
ertu

rb
a
tiv

e
a
n
d
n
o
n
p
ertu

rb
a
tiv

e
p
h
y
sics.

It
w
a
s
sh
ow

n
b
y
G
rib

ov
[1
5]

th
a
t
th
is
resu

lt
is
g
a
u
g
e
in
-

d
ep
en
d
en
t
o
n
ce

o
n
e
co
n
sid

ers
th
e
lea

d
in
g
lo
g
a
rith

m
a
p
-

p
rox

im
a
tio

n
.



Brazilian Journal of Physics, vol. 31, no. 2, June, 2001 117

At small-x the gluons dominate, since P
(0)
gg (z) �

2Nc

z , and the parton distributions have the general be-
havior xpi(x;Q

2) � x��, � > 0. More likely for ini-
tial condition xpi(x;Q

2
0) � Const and xpi(x;Q

2) �
exp

p
ln(lnQ2) ln 1=x, known as double leading loga-

rithm approximation (DLA). From that is clear that
DGLAP predicts the increase of the gluon distribution
function, and of the structure function F2 with the de-
creasing of x, whose relation in this kinematical regime
is given by

@F2(x;Q
2)

@ lnQ2
=

�s(Q
2)

2�

X
f

e2fxg(x;Q
2) (8)

being equal to 2�s
9� xg(x;Q

2) for nf = 3.
The DLA implies strong ordering in x and kT , i.

e., x1 >> x2 >> :::: >> xi�1 >> xi >> x and
kT1 << kT2 << :::kTi�1 << kTi << Q2, the resum
of logs of �s ln(1=x) lnQ

2, having as region of validity
�s << 1, �s ln(1=x) << 1 and �s ln(1=x) lnQ

2 � 1.
The resum of all leading logarithms of Bjorken x,

or the energy, is characteristic of the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) equation. For very low x val-
ues the ln s becomes large and �s ln 1=x � 1 and the
DLA is not valid. The BFKL evolution equation is
proposed for an unintegrated gluon distribution func-
tion in the transverse momentum variable. Its solution
grows as a power of the center of mass energy s with
the consequent violation of the unitarity bound [9] at
very high energies. The cure for this problem was not
reached in the next to leading order calculation [16],
and is still under research for instance, through the re-
summing of all BFKL Pomeron exchanges [17], for the
cross section as well as for the structure function.

The amplitude for the scattering quark-quark with
one gluon exchange in the t channel at lowest order
is given by A0(s; t) � s=t, and for the next order
in �s the leading terms are given by ln s, resulting
A1(s; t) � A0(s; t) ln s. Once one goes to higher or-
ders the number of contributing diagrams increases and
the calculation gains enormously in complexity [18],
and the usual procedure is to introduce an e�ective
vertex (Lipatov vertex). It results that the general
term is An(s; t) � A0(s; t)�

n(t) lnn(s)=n, where �(t) is a
suitable function to take care of infrared divergencies,
docile under regularization, for instance, dimensional
regularization.

Clearly the BFKL evolution is summing the terms
�ns ln

n(s), where lower order logarithms are neglected.
The result for the amplitude is

A(s; t) = A0(s; t)

1X
n=0

�n(t) lnn(s)

n!
� s�(t) ; (9)

with �(t) = 1 + �(t). In this case, there is still the �(t)
infrared divergencies to be cured.

When just the singlet contribution in the t-channel
is considered in the BFKL formalism, meaning that

only Pomeron exchange diagrams are taken into ac-
count, the amplitude is given by

ImA(s; t)

s
=

G

2�2

Z
d2k1d

2k2 �A(k1; q)

�
F (y; k1; k2; q)

k22(k � q)2
�B(k2; q) ; (10)

where G is the color factor for the process and q is the
transfered momentum in the t-channel; the functions
�i are the impact factors setting the coupling of F to
the external particles and �nally the function F is the
perturbative gluon ladder. At leading order it consists
into the exchange of two gluons but the sum of all terms
implies an integral equation for F , that is infrared �nite
for a reggeized gluon ladder. This behavior of the ker-
nel of the BFKL equation is connected with the QCD
Pomeron and it is the resum of the leading logarithms
ln s.

The solution of the BFKL equation predicts the
steep growth of the gluon distribution with decreasing
x as well as the di�usion of the transverse momenta. As
well as DGLAP equations, the BFKL equation predicts
the growing of the cross section in the small-x regime
since the dynamics of this observable is related with the
gluon distribution function.

From this very brief discussion on the main issues
of the linear formalisms for the dynamics of the parton
distributions, it gets clear the need of formal improving
in order to include the unitarity corrections preserving
the Froissart limit.

This important aspect of high energy physics was
pointed out many years ago by Gribov, Levin and
Ryskin (GLR) in Ref. [19]. I will present in the fol-
lowing the main attempts developed in the recent years
towards a non linear dynamics for high density QCD,
as well as the high energy phenomenology provided.

III The Question

The main question that is addressed once treating
hdQCD is how to analytically separate small and large
distance contributions to high energy amplitudes in a
properly gauge invariant formalism. This corresponds
to establish the hard and soft scales for the process of
interest and develop the physical meaningful method to
introduce the unitary corrections (UC) into the parton
dynamics.

Once the theoretical need for UC is established we
should look for their signatures analysing di�erent ob-
servables. Besides comparing the predictions of the dis-
tinct formalisms it is required a common limit between
them, probably to be set by a saturation scale, Q2

S.
There exists mainly two non linear perturbative ap-
proaches [11, 12, 13] and a non perturbative one [10].
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Although some progress has been made towards their
connection there is no common analytic solution for the
gluon distribution g(x;Q2) for all kinematical range.

The physics of hdQCD shakes the parton model and
the cherished concept of incoherence that is behind the
standard calculations. It seems that in order to control
the increasing of the gluon function some gluon recom-
bination mechanism has to take place as the energy gets
higher and higher.

This is a good point to remind that the analysis of
the structure functions has already given us some sur-
prises, and the previous important one was the EMC
e�ect [20], that has as a main result FA

2 =AF
n
2 6= 1. This

di�erence is not predicted if one requires complete in-
coherence of the partons, and reveals the presence of
nuclear e�ects in the structure functions where they
were not expected. A large literature is devoted to this
phenomena, but it is interesting to point out that the
shadowing behavior noticed in J=	 production could
be nicely described [21], as well as the comparison with
Drell-Yan processes [22], for the �rst data at small-x,
considering the recombination approach developed by
Mueller and Qiu [23] which is based on the GLR pro-
posals.

Two main aspects are in order, the control of the
increasing of the gluon distribution function as an uni-
tarity imperative and the appearance of nuclear e�ects
in high energy processes. If this aspect is relevant for
�xed target quarkonia production, it is strongly impor-
tant for physics of HERA-A, RHIC and LHC with nu-
clei.

IV The High Density QCD Ap-

proaches

The leading logarithm approximation DLA (related to
DGLAP) and LL(1/x) (related to BFKL) result both
into linear evolution equations for the gluon distribu-
tion function. The e�ect of summing large logs in high
energy regime implies the increase of the gluon distribu-
tion function g(x;Q2) as well as the cross section once
x decreases. However, this result violates the unitarity
of the scattering matrix, a main theorem of relativis-
tic Quantum Field Theory, the Froissart theorem [9],
which states the cross section cannot grow faster than
ln2 s. Translated to the DIS, this implies increasing re-
strictions to the structure function and/or total cross
section, say lower than ln2(1=x) and provides a limita-
tion in the x range to the application of linear evolutions
in order to get suitable results.

Intuitively we can associate xg(x;Q2) to the num-
ber of gluons into the nucleon, ng, per rapidity unity,
y = ln(1=x), with transverse size of order 1=Q. In
the hadron-nucleon interaction it is the virtual gluon
that probes the nucleon structure, in analogy with the
eletroweak boson in DIS. The virtual gluon-nucleon

cross section is

�G�N (x;Q
2) = �0 xg(x;Q

2) ; (11)

where �0 = �G�g!X = Cte �s(Q
2)

Q2 , is the total cross

section of the virtual gluon, with virtuality Q2, and nu-
cleon gluon interaction. Assuming �0 = �R2

HAD , then
�0xg(x;Q

2) corresponds to the area occupied by the
gluons in a nucleon. As x! 0, this transverse area may
be comparable, or even bigger, than �R2

HAD , following
DGLAP or BFKL predictions for small x or small Q2.
Approaching this regime the gluons may begin to su-
perpose spatially in the transverse direction and to in-
teract, behaving not anymore as free partons. These
interactions should slower, or even stop, the intense
growing of the cross section, �xing the limit �R2

HAD

in the small x regime.

Introducing the function �, with probabilistic inter-
pretation

� = �0
xg(x;Q2)

�R2
; (12)

it is possible to estimate in which kinematical region one
can expect modi�cations in the usual evolution equa-
tions. So to say, for � << 1 the system stays at x
and Q2 where the usual evolution equations (linear) are
applicable, governed by individual partonic cascades,
without interactions among the cascades.

As � � �s, partons from distinct cascades begin to
interact due to spatial superposition. This speci�c kine-
matical regime or the onset of the recombination mech-
anism was �rst studied by Gribov, Levin and Ryskin
[19] almost twenty years ago, proposing the introduc-
tion of non linear terms into the evolution equation.

The region of � ! 1 was addressed more recently
[12, 13] (see Fig. 2) and experienced considerable de-
velopment on the theoretical side [10, 11], also moti-
vated by HERA results and the great interest on RHIC
and LHC future data. This is the kinematical regime
that requires the QCD dynamics for high partons den-
sity. Although the coupling constant �s is still small,
allowing in principle the use of perturbative methods,
the system is so dense that manifestation of non-linear
e�ects are expected, and they are required to be con-
sidered in a complete formalism.

The region of � ! 1 corresponds to partons in a
non-equilibrium state and new methods are in order to
treat the collective phenomena.



Brazilian Journal of Physics, vol. 31, no. 2, June, 2001 119

-1.0 0.0 1.0 2.0 3.0 4.0
0.0

5.0

10.0

15.0

20.0

Contour for κ = cte for Nucleon
R

2
 = 5 GeV

-2

κ  = 0.6
    = 0.8
    = 1.0
    = 1.2
    = 1.4
HERA 96

ln(1/x)

ln(Q
2
/GeV

2
)

HERA

Figure 2

IVI The GLR Formulation

Gribov, Levin and Ryskin [19] introduced the mecha-
nism of parton recombination in perturbative QCD for
high density systems, expressing this as unitarity cor-
rections included in a new evolution equation known
as GLR equation. In terms of diagrams it considers
the dominant non-ladder contributions, or multi-ladder
graphs, also denoted fan diagrams.

The standard QCD evolution is represented by a
cascade of partonic decays in the nucleon. The photon
interacts with a parton with fraction of momentum x
and virtuality Q2, which is the last one of a chain where
the partons get slower and with bigger virtuality. The
scale Q0 sets the initial virtuality and at the same time,
the limit for perturbative QCD applicability, and Q2 is
the higher virtuality of the chain. In the transverse
plane the partons with low fraction of momentum stay
in the lower part of the ladder and have large transverse
size; those with bigger virtuality are on the upper part
of the ladder and transversally smaller.

Following DGLAP, the number of partons of low
fraction of momentum increases very rapidly, which pic-
torically corresponds to bigger density of individuals
in the same allowed area, in contrast with a more di-
luted system at intermediate values of x, far away from
the possibility of superposition. The transition between
these regimes should be characterized by a critical value
x = xCRIT . The same can be argued through BFKL
formalism, with the di�erence that in this case the in-
creasing of the partonic distributions, takes place at a
�xed transverse scale, although the evolution presents
the 
uctuations in the transverse plane due to the char-
acteristic di�usion in BFKL.

It is important to emphasize that in both linear dy-
namics only the decay processes are considered in the
partonic evolution, however we expect that the anihila-
tion mechanism should contribute in the low x regime,
providing some control of the increasing of the partons

distribution function. In the linear approach we con-
sider one incident and two emergent partons to con-
struct the splitting functions for the decay processes.
Now it is the case to consider two incident partons and
one emergent one, and to express the recombination
mechanism it is needed a formulation in terms of the
probability to recombine two incident partons.

As a �rst approximation one considers the anihila-
tion probability as proportional to the square of the
probability to �nd one incident parton, introducing a
non-linear behavior.

Taking � = xg(x;Q2)
�R2 as the gluon density in the

transverse plane, one has the general behavior: for split-
ting 1 ! 2, the probability is proportional to �s �, for
anihilation 2 ! 1, the probability is proportional to
�2s�

2=Q2; where 1=Q2 stands for the size of the pro-
duced parton. For x ! 0, � increases and the anihi-
lation process becomes relevant. Considering a cell of
volume � lnQ2� ln(1=x) in the phase space allows one
to write the modi�cation of the partonic density as

@2�

@ lnQ2@ ln 1=x
=

�sNc

�
��

�2s
�

Q2
�2 ; (13)

where the coupling in the process is given by 
. Ex-
pressing in terms of the gluon distribution the above
equation is

@2xg(x;Q2)

@ lnQ2@ ln 1=x
=

�sNc

�
xg �

�2s


Q2R2
[xg]2 : (14)

This equation is the GLR equation [19]. The al-
ready mentioned work of Mueller and Qiu [23] gives

 = 81=16 for Nc = 3.

The non-linear corrections correspond to a class of
QCD Feynman diagrams, called fan diagrams, formed
by a gluon ladder with subsequent subdivisions in gluon
ladders, where the three ladders vertex is associated
with the decay and consists of a sum of several non pla-
nar diagrams. The overall result carries a minus sign,
which is important in order to control the growing of
the parton distribution once the fan diagrams become
relevant, i.e., at low x. The lowest part of the diagrams
couples to the nucleon and the Eq. (14) resums all class
of the diagrams represented in Fig. 3.

As is clear from Eq. (14), the non-linear term re-
duces the growing of xg(x;Q2) at low x, in comparison
with the linear equations. It is also predicted for the
asymptotic region x ! 0 the saturation of the gluon
distribution, with a critical line between the perturba-
tive region and saturation region, setting its region of
validity (meaning independence of the gluon function
with the energy). The subject of saturation is very
appealing and there are several attempts in the litera-
ture today with distinct phenomenological approaches
addressing this question [24].
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In the asymptotic limit one obtains
xg(x;Q2)

��GLR
SAT = 16

27��s
Q2R2. Since the GLR only

includes the �rst non-linear term, although it predicts
saturation in the asymptotic regime its region of valid-
ity does not extend to very high density where higher
order terms should contribute signi�cantly.

IVII The AGL Formulation

This approach developed by Ayala, Gay Ducati and
Levin (AGL) [12, 13], intents to extend the perturba-
tive treatment of QCD up to the onset of high density
partons regime, through the calculation of the gluon
distribution which is the solution of a non-linear equa-
tion that resums the multiple exchange of gluon ladders,
in double leading logarithm approximation (DLA).

It is based on the development of the Glauber for-
malism for perturbative QCD [25], considering the in-
teraction of the fastest partons of the ladders with the
target, nucleon or nucleus, since one of the main goals
is to obtain the nuclear gluon distribution xgA(x;Q2).
We considered a virtual probe G� that interacts with
the target in the rest frame, through multiple rescat-
terings with the nucleons. In this reference frame the
virtual probe can be interpreted following the decom-
position of the Fock states, and its interaction with the
target occours by the decay of the component gg, as
represented in Fig. (4).

For small-x this pair has a lifetime much bigger than
the nucleus (nucleon) radius and the pair is separated
by the �xed transverse separation rt during the interac-
tion, which is represented by the exchange of a ladder
of gluons strongly ordered in transverse momentum.

The cross section for this process is given by

�G
�A =

Z 1

0

dz

Z
d2rt
�

j	G�

t (Q2; rt; x; z)j
2 �gg+A ; (15)

where G� is a colorless virtual probe with virtuality
Q2; z is the probe fraction of energy carried by the
gluon and 	G�

t is the wave function of the transversely
polarized gluon in the probe, �gg+A(z; r2t ) is the cross

section of the pair with the target, which was proven
for perturbative QCD by Mueller in Ref. [25, 26]

The lower limit estimation of UC is obtained
through the incoherent rescatterings of the gluon pair,
with the constraint that only the fastest partons of the
ladders interact with the target. Introducing the trans-
verse impact parameter bt and a pro�le function for the
nucleus S(bt) we get

�G
�A =

Z 1

0

dz

Z 1

0

d2rt
�

Z
d2bt
�
j	G�

t (Q2; rt; z)j
2

2[1� e
1
2
�gg
N
(x0;4=r2t )S(bt)] ; (16)

where x0 = x=(zrtQ
2), S(bt) may be taken as

A
�R2

A

e�bt=R
2
A for a gaussian pro�le, �ggN = CA

CF
�q�qN , where

�q�qN = CF
CA

( 34�s(4=r
2
t ))�

2r2t xg(x; 4=r
2
t ), and 4=r2t is a

cut for the nonperturbative region. For the virtual
probe with virtuality Q2 the relation �G

�A(x;Q2) =

( 4�
2�s
Q2 )xgA(x;Q

2) is valid.

In this approach the gluon pair emission is de-
scribed in DLA of perturbative QCD and from the
Feynman diagrams of order �ns , it should be extracted
only the terms that contribute with a factor of order
(�s ln 1=x lnQ

2=Q2
0)
n. The interaction of the gluon pair

with the target operates through the exchange of a lad-
der which satis�es the DGLAP evolution equation in
the DLA limit.

It is a working hypothesis that in high energy the
successive rescatterings can be taken as independent al-
lowing the employ of Glauber formalism, in such a way
using the eikonal procedure for a relativistic particle
propagating in the target.

Our master equation for the interaction of the gg
pair with the target is known as the Glauber-Mueller
formula and is

xgA(x;Q
2) =

4

�2

Z 1

x

dx0

x0

Z 1

4=Q2

d2rt
�r4t

Z
d2bt
�

2[1� �ggN (x0; 4=r2t )S(bt)] : (17)

The pictorial representation of the space-time evo-
lution of this formula is given in Fig. (4).

Figure 4
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Once we perform the impact parameter integration
using a gaussian pro�le function we obtain

xgA(x;Q
2) =

2R2
A

�2

Z 1

x

dx0

x0

Z 1=Q2
0

1=Q2

d2rt
�r4t�

C + ln(�G(x
0; r2t )) +E1(�G(x

0; r2t ))
�
; (18)

where C is the Euler constant, E1 is the exponential
function and where the �G function was introduced as

�G(x; r
2
t ) =

3�s
2R2

A

�r2t xg(x; 1=r
2
t ) : (19)

The expansion of Eq. (18) in terms of �G gives
as the Born term the DGLAP equation in the small
x region, the higher order terms corresponding to the
unitarity corrections naturally implemented in this for-
malism.

The estimation of the shadowing e�ect due to gluon
recombination can be immediately obtained studing the
ratio R1 = xgA(x;Q

2)=AxgGRVN (x;Q2) presented in
Fig. (5), where we calculate for Ca and Au, and anal-
ysed the behavior of this function in terms of ln(1=x),
A1=3 and lnQ2. We used the GRV parametrization [27]
and adapted the calculation in order to have a larger
domain of validity in x using

xg(x;Q2) = xgA[Eq:(18)] +AxgGRV (x;Q2)

�A
�sNc

�

Z 1

x

Z Q2

Q2
0

dx1
x1

dQ0 2

Q0 2
x0g(x0; Q2) ; (20)

where AxgGRV (x;Q2
0) is the initial condition. The

same procedure could be applied for another global
parametrization based on DGLAP.

As expected the UC increase with A, and get smaller
as Q2 increases and it is evident the importance of the
e�ect as x goes to small values. This allows us to say
that the UC should be included in the calculations re-
lated with the nuclear gluon distribution function, and
the obtained function xgA(x;Q

2) may be used to set
the initial conditions for future experiments. For in-
stance in HERA-A, in processes e�A [28] the function
xgA could be obtained indirectly and employed as an
initial condition for the hadronic high energy processes
at RHIC and LHC.

The quarks and gluons distribution were also anal-
ysed for the nucleon in this formulation [13], as well as
the structure function F2 [29]. The motivation for this
generalization is the availability of HERA data.
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Figure 5

The free interpretation of the Froissart theorem for
hadronic processes requires a limit for the increasing
of the cross section �
�N and F2 with the energy so
unitarity is not violated. Concentrating the discus-
sion on the � value, � = xg(x;Q2)�gg=(Q2�R2) =
3��sxg(x;Q

2)=2Q2R2, which is the probability of glu-
ons interactions inside the partonic cascade, and R is
the radius of the nucleon area occupied by the gluons,
we were able to obtain R2 = 5 GeV�2, and that �
reaches 1 at HERA, meaning the e�ects of shadowing
should be considered in the analysis [12, 13, 30]. In
the nucleon case, following the same steps as before we
obtain

xg(x;Q2) =
4

�2

Z 1

x

dx0

x0

Z 1

4=Q2

d2rt
�r4t

Z 1

0

d2bt
�

2 [1� e�
1
2
�gg
N
(x0;4=r2t )S(bt)] ; (21)

and requiring the recovering of DGLAP at DLA we
have

�ggN (x; 4=r2t ) =
3�2�s
4

r2t xg(x; 4=r
2
t ) : (22)

For the quarks, considering the scattering of a vir-
tual photon that decays into a quark-antiquark pair,
which interacts with the nucleon through the exchange
of a ladder we get

�(
�) =

Z 1

0

dz

Z
d2rtj	(z; rt)j

2 �q�q+Ntot ; (23)

where 	 is the wavefunction of the q�q in the virtual
photon [26]. We obtain

�tot =

Z
d2bt [1� e�

1
2

q�q(x;rt;bt)] : (24)
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Here 
q�q is the opacity function that in the
Glauber (or eikonal) approach is equivalent to 
 =
4�2�s(Q

2)
3Q2 xg(x;Q2)S(bt). In doing so we are able to

reproduce DGLAP evolution for 
 < 1, and guarantee
the validity of the formulation also for the kinematical
region where 
 > 1.

Taking 
 ! 1 and factorizing the bt dependence
we obtain the unitarity limit for the structure function,
having for the lnQ2 derivative of F2 , @F2=@ lnQ

2 <
Q2R2=3�2. Using GRV, the unitarity limit for HERA
is reached for Q2 = Q2

0 = 1� 2 GeV2 (y = ln 1=x � 9).
Similarly, for gluons it is Q2 = 1�2 GeV2 (y = ln 1=x �
7) for HERA [30].

With the aim to obtain a non-linear evolution equa-
tion containing the unitarity corrections through the in-
clusion of all the interactions besides the fastest parton
from the ladder, we di�erentiate our master equation
for the gluon in y = ln 1=x and " = lnQ2, obtaining

@2xg(y; ")

@y@"
=

2Q2R2

�
[C + ln(�G) +E1(�G)] ; (25)

where �DGLAPG (x;Q2) = Nc�s�
2Q2R2 xg

DGLAP (x;Q2) for
calculations.

In terms of �G the main evolution equation is

@2�(y; ")

@y@"
+
@�(y; ")

@y
=

Nc�s
�

[C + ln(�G) +E1(�G)] : (26)

It should be mentioned that large distance e�ects are
absorved in the initial condition for the evolution, and
situating in a conveninet region of Q2 only short dis-
tance e�ects are present, meaning a perturbative calcu-
lation is reliable.

Equations (25) and (26) were derived in Ref. [12,
13], and refered for simplicity as AGL equation. The
main properties of this formulation are:

� all contributions from the diagrams of order
(�sy")

2 are resummed;

� in the limit �! 0 the DGLAP evolution in DLA
is fully recovered;

� for � < 1, and not large, the GLR equation is
recovered;

� for �sy" � 1 the equation is equivalent to the
Glauber formalism.

The UC are described for the di�erent kinematical
regions of � from strictly perturbative QCD up to the
onset of hdQCD. Non-perturbative e�ects are not ex-
plicitly described and this is the object of a distinct
formalism MV � JLKM [10] that we will brie
y com-
ment in a next subsection. In Fig. (6) the compari-
son between the solutions of the equations AGL, GLR,
DGLAP and Glauber-Mueller (MOD MF) formula is
presented, where the control of the growing of the gluon
distribution once UC are considered is very evident.

It was also obtained the asymptotic solution � > 1
of the AGL equation for �xed �s [12, 13] as well as for
running �s [31]. For high partonic density and y >> y0
we obtain

�asymp
G (y) =

�sNc

�
y ln y �

�sNc

�
y : (27)
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This solution is a good approximation for very small
values of x (O(10�8)), related with THERA physics
[28], region of a very dense parton system. In terms of
the gluon function the asymptotic behavior is

xg(x;Q2) =
2NcQ

2R2

3�2
ln(1=x) ; (28)

presenting a behavior softer than predicted by DGLAP,
meaning a partial saturation.

For the running �s the result is [31]

xg(x;Q2) =
"

1 + "

2NcQ
2R2

3�2
ln(1=x) : (29)

where " = lnQ2=�2
QCD. The partial saturation is not

modi�ed, and the main di�erence from the previous
result occours for small values of ". This con�rms the
expectation that the UC are already relevant before the
corrections to leading order [30, 32].

IVIII The Kovchegov Formulation

The unitarization problem in QCD was addressed as
an extension of the dipoles formalism for the BFKL
equation by Kovchegov [11]. This work proposes a non
linear generalization of BFKL equation, also addressed
previously in Ref. [33] by the use of OPE to QCD
obtaining the evolution of Wilson line operators. The
scattering of a dipole (onium - q�q) with the nucleon is
described by a cascade evolution corresponding to the
successive subdivision of dipoles from the father dipole.
Each dipole has multiple scatterings with the nucleons
of the target, implying multiple ladders exchange to be
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resummed in order to obtain the cross section of the in-
teraction of the dipole with the nucleus. As a result it
is derived the evolution equation having the unitarized
BFKL Pomeron as solution, in the LL(1=x) approxima-
tion.

The scattering of the onium q�q (dipole) with the
nucleus in the rest frame, takes place through a cas-
cade of soft gluons, which once taken in the Nc ! 1
limit is simpli�ed by the suppression of non-planar di-
agrams. The gluons are replaced by q�q pairs and the
dipole Mueller's technique for the perturbative cascade
can be employed [34].

The Kovchegov formulation, as the AGL, is a per-
turbative QCD calculation and the considered dipoles
from the cascade interact independently with the nu-
cleus. The onium-onium frontal scattering has the cross
section � = �2 ImA, where the amplitude

A = �i

Z
d2x

Z 1

0

dz

Z
d2x1

Z 1

0

dz1�(~x; z)F �( ~x1; z1) ;

where �(~x; z) is the square of the onium wave function,
~x is the transverse separation of the q�q pair, and z is the
longitudinal fraction of momentum of the quark. For
the exchange of only two gluons, without gluon ladder
evolution the function F is [26]

F (0)(~x; ~x1) = �
��2s(N

2
c � 1)

N2
c

x2< (1 + ln(
x>
x<

)) ; (30)

where x>(x<) is the biggest (smaller) between j~xj and
j ~x1j. The two gluons approximation is energy indepen-
dent, but for high energy the contributions of order
(�sY )

n should be included (Y = ln s=M2 is the rapid-
ity and M is the onium mass), since they generate the
perturbative cascade evolution. The dipole approxima-
tion introduces an arbitrary number of soft gluons in
the square of the onia wave function �, and keeping F
as an exchange of two gluons avoids to deal with the
reggeization of the gluons and the e�ective vertex. The
transverse coordinates of the quark and antiquark of an
ultrarelativistic onium state in + direction are ~x0 = 0
and ~x, and successively in the evolution the next emit-
ted gluon should be softer. We have p � k and k, as

the momenta for the pair, and z1 =
k+
1

p+ (in light-cone

variables [35]), having as wave function

	(0)(x01; z1) =

Z
d2k1
(2�)2

ei
~k1 ~x01	(0)(k1; z1) ; (31)

where ~x01 = ~x1 � ~x0, and �(0) = j	(0)j2, keeping fac-
torization in this procedure. This allows to obtain the
dipole density, n, considering x02 > �; x12 > �, where �
is an ultraviolet cut also implied by C in the expression
below

c

n (x01; x; Y ) = xÆ(x� x01) exp

�
�
2�sNc

�
Y ln(

x01
�
)

�

+
�sNc

�2

Z
C

x201 d
2x2

x202 x
2
12

Z Y

0

dy exp

�
�
2�sNc

�
(Y � y) ln(

x01
�
)

�
� n(x12; x; y) ; (32)

for Y = ln s=M2, which is represented in Fig. (7).
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The next step is to obtain an evolution equation for the dipole density assuming the propagation of the dipoles
in the target is represented by the function 
1(~x;~b), where b is the impact parameter, and which should be added to

the density n2, equally convoluted with 
2( ~x1; ~b1; ~x2; ~b2), etc. Assuming no correlation among the dipoles 
n(:::) =


1( ~x1; ~b1):::
1( ~xn; ~bn), the cross section for the interaction onium nucleus N( ~x01; ~b0; Y ) is then given by [11]

�N( ~x01; ~b0; Y ) =

1X
i

Z
ni(x01; Y; ~b1; ~x1; :::; ~bi; ~xi)

�

�

( ~x1; ~b1)

d2x1
2�x21

d2b1

�
:::

�

(~xi; ~bi)

d2xi
2�x2i

d2bi

�
(33)
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Finally, omitting some steps of the calculation [11] the evolution equation for N( ~x01; ~b0; Y ) is

N( ~x01; ~b0; Y ) = �
( ~x01; ~b0) exp

�
�
4�sCF

�
ln(

x01
�
)Y

�
+

�sCF
�2

Z Y

0

dy exp

�
�
4�sCF
�

ln(
x01
�
)(Y � y)

�
�

�

Z
�

d2x2
x201

x202x
2
12

�
2N( ~x02; ~b0 +

1

2
~x12; y) �

� N( ~x02; ~b0 +
1

2
~x12; y)N( ~x12; ~b0 �

1

2
~x20; y)

�
; (34)

d

where xij = xi � xj , the size of the dipole whose
quark has transverse coordinate xi, and the antiquark
xj , 
( ~x01; ~b0) is the propagator of the pair q�q through
the nucleus, describing the multiple rescattering of the
dipole with the nucleons within the nucleus. We denote
this equation as the K equation.

The physical representation is comparable with the
approach Glauber-Mueller since the incident photon
generates a q�q that subsequently emits a gluon cascade
further interacting with the nucleus. At large Nc limit
the gluon can be represented by a q�q pair, and we can
expect in this limit and DLA that the gluon cascade
could be interpreted as a dipole cascade. Although be-
guinning the formulations with distinct degrees of free-
dom both K and AGL resum the multiple rescatterings
in their respectives degrees of freedom, which allows
to consider they should coincide in a suitable common
kinematical limit, which we will show later on.

In DLA, where the photon scale of momentum Q2

is bigger than �2
QCD, the K equation simpli�es to

@N( ~x01; ~b0; Y )

@Y
=

�sCF
�

x201

Z 1=�2QCD

x2
01

d2x02
(x202)

2

�
h
2N( ~x02; ~b0; Y )�N( ~x02; ~b0; Y )N( ~x02; ~b0; Y )

i
; (35)

which is the evolution in transverse size of the
dipoles from x01 up to 1=�QCD. Now deriving in
ln(1=x201 �

2
QCD) results

@2N( ~x01; ~b0; Y )

@Y @ ln(1=x201 �
2
QCD)

=
�sCF
�

h
2�N( ~x01; ~b0; Y )

i
�N( ~x01; ~b0; Y ) : (36)

setting that the successive emission of dipoles generates
larger transverse size for each higher generation.

The linear term reproduces BFKL at low density,
and the quadratic term introduces UC unitaryzing the
BFKL Pomeron and the equation reproduces GLR once
we assume N directly related to the gluon distribution
function.

IVIV The MV-JKWL Formulation

In the MV-JKWL formulation [10, 36] a very dense sys-
tem is treated in the light-cone and considering the
light-cone gauge (A+ � 0), x � q+Gluon=Q

+
Nucleon. In

Ref. [10] the gluons distribution for small x is proposed
for a large nucleus where the degrees of freedom are vir-
tual quanta from a classical �eld generated by the color
charge of the valence partons (static sources). The ap-
proach is originally non-perturbative and the nucleus
is considered in the in�nite momentum frame, trans-
fering the scale of the problem to � = 1=�R2 dN=dy,
where N is the density of gluons. For small x and a
large nucleus �s(�) is small allowing some perturba-
tive calculation in this e�ective lagrangian formulation
for gluons condensates.

The density of gluons in momentum space is ob-
tained in terms of the correlation of the gluons �elds,
in the light cone gauge. The intrinsic quantum 
uctu-
ations are replaced by a classical average on the color
charge ensemble. The gluons distributions at a given
virtuality Q2 and x is obtained from the density of glu-
ons in the momenta space dN=dq+q2~q, which is a func-

tion of the gluon condensate < Aa
i (x

�; ~x)A(x0; ~x0) >,
being

xg(x;Q2) �

Z Q2

d2~q x
dN

dxq2~q
: (37)

The gluons distributions, in this framework where
a large number of color charges generates a QCD vec-
tor potential, is obtained in lowest order by solving the
classical Yang-Mills equations, D� F

�� = j� .

Introducing a regulator in the valence partons cur-
rent singularity by considering the color density � a
function of rapidity, it was obtained [39] an analytical
solution for the classical correlations, with the property
that for high transverse momentum the classical glu-
ons distribution obeys the Weizsacker-Williams form,
and has its behavior softened as ln(k2t =�(y; k

2
t )). Here
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� =
R1
y

�2(y;Q2) is the squared color charge per unity
of area for rapidity bigger than y.

In the classical MV the non-linear e�ects are in-
cluded in the charge density � solution of Y-M equa-
tions. The quantum corrections are to be considered,
and from Ref. [37] the perturbative result for the gluons
distribution up to second order in �s is given by

1

�R2

dN

dxd2kt
= �s�

1

xk2t

�
1 +

2�sNc

�
ln(

kt
�s�

) ln(
1

x
)

�
; (38)

where � =
�2(N2

c�1)
�2 and �2 is the square of the color

charge average density (per unity of area). The addi-
tional e�ect of including the hard gluon was treated in
Ref. [38], resulting in the low density limit the BFKL
equation, and for high virtualities the DGLAP equa-
tion. For high density a complete solution was not yet
obtained. In Ref. [40] JKLW analysed their evolution
equation in DLA obtaining a generalization of GLR.

As a summary of the formulations for hdQCD at
present, the Fig. (8) presents their di�erent regions
of applicability as fas as � in concerned in the ln(1=x)
versus Q2 plane.

Figure 8

The main questions at this point can be:

� which is the most suitable form to introduce the

UC ?

� can we relate the distinct formulations in a com-

mon limit analytically ?

� what do we look at the observables as a signature
for the UC ?

The last two questions, I will brie
y address in the
rest of this presentation following our personal contri-

butions to this investigation.

V Connection Among the For-

mulations

The AGL equation was originally obtained from the
Glauber-Mueller approach, but it can be also derived

from the dipole representation [41]. We obtained the

cross section for the virtual probe G� with the nu-

cleus �G
�A =

R 1
0 dz

R
d2rt
� j	G�

t j2�gg+A, that can be
expressed by means of the dipoles q�q once we remind

�gg+A = (CA=CF )�
q�q+A. Now in order to estimate

the UC the rescatterings of the q�q pair into the nu-

cleus should be considered, having in mind that [30]

�q�qN = CF
CA

(3�s(4=r
2
t )=4)�

2r2t xgN (x; 4=r
2
t ), where xgN

is the nucleon gluon distribution. The wave func-

tion 	G� calculated in [26, 30] is such that j	G�

t j2 =
1

z(1�z) [(�
2K0(�tt) � �K1(�rt)=rt)

2 + 1=rt(�K1(�rt))
2],

where �2 = Q2z(1 � z), and the Ki are the modi�ed

Bessel functions. For small z and �rt << 1 we obtain

xgA(x;Q
2) =

4

�

CA
CF

Z 1

x

dx0

x0

Z 1

4=Q2

d2rt
�r4t

� 2
h
1� e�

1
2
�q�q
N
S(bt)

i
: (39)

From this equation we can obtain the AGL equa-

tion in the dipole representation by di�erentiating in
y = ln 1=x and lnQ2=�2

QCD having

@2xg(x;Q2)

@y @ lnQ2=�2
QCD

= C 0Q2

Z
d2bt
�

h
1� e�

1
2
�q�q
N
S(bt)

i
; (40)

valid in DLA, considering each gluon of the cascade as

a q�q in the high Nc limit, and where C 0 = 2CA=�
2CF .

For a central collision and S? = �R2, and S(0) =
A=�R2

@2xg(x;Q2)

@y @ lnQ2=�2
QCD

= DQ2

�
1� e

�
2�s�

2

NcS?Q
2 xgA

�
; (41)

for Nc = 3, CF = Nc=2 at high Nc, and where

D = NcCFS?
�3 .

The GLR for a cylindrical nucleus is immediately

obtained from Eq. (41) by its expansion up to sec-

ond order in xgA. Again, for small UC only the �rst

term contributes which reproduces DGLAP in the DLA
limit. Those results are in Ref. [41]

Now, the Eq. (34) is the K equation that in DLA,

where the scale of momentum of the photonQ2 is higher

than the scale of momentum of the nucleus �2
QCD, sim-

pli�es as

@N( ~x01; ~b0; Y )

@Y
=

�sCF
�

x201

Z 1=�2QCD

x2
01

dx202
(x202)

2

�
h
2N( ~x02; ~b0; Y )�N2( ~x02; ~b0; Y )

i
: (42)
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This equation considers the evolution of the dipoles

from x01 up to 1=�QCD in the transverse direction.

Now deriving Eq. (42) in ln(1=(x201�
2
QCD)) we get

@2N( ~x01; ~b0; Y )

@Y @ ln(1=x201�
2
QCD)

=
�sCF
�

[ 2�N ]N : (43)

We should relate now the function N(~x01; ~b0; Y )

with the gluon distribution function. For that we con-

sider the structure function F2 for the nucleus as ob-
tained in [11], following [25], and analized in [29] for

bt = 0, which is

FA
2 (x;Q

2) =
Q2

4�2�em
R2

Z
dz

Z
d2rt
�
j	j2

�2

"
1� e

�
�sCF �

2

N2
c S?

r2tAxg(x;1=r
2
t )

#
: (44)

This estimates the UC for the nuclear structure

function, for central collisions in the DLA limit in the

Glauber-Mueller approach.
Considering the unitarity corrections due to the

multiple rescattering of the q�q pairs with the distinct

nucleons into the nucleus, from the just obtained ex-

pression for FA
2 , it results the relation

N( ~x01; ~b0 = 0; Y ) = 2

"
1� e

�2�sCF �
2

N2
cS?

x201Axg(x;1=x
2
01)

#
; (45)

where x01 = x0 � x1 = rt, Y = ln(s=Q2) = ln(1=x)

establishing a connection between the cross-section of
the q�q pair and the gluon structure function in DLA

limit.

We are in good terms to verify the connection

among the K and AGL formulations since we already
obtained the AGL equation in the dipole formulation,

Eq. (40), the K equation in the DLA limit, Eq. (42),

the cross section of the pair through the dipole density

from K and the nuclear gluon distribution function, Eq.

(45).
Having Eq. (45) in Eq. (41) and for x01 � 2=Q, as

in [10], we obtain

@2xgA(x;Q
2)

@y@ ln(Q2=�2
QCD)

= DQ2

�
1� e

�
2�s�

2

Ncs?Q
2
xga

�
; (46)

result already obtained, and that gives GLR as a limit.

Our comparison has physical meaning for dipoles

with small transverse sizes and for the above connec-

tion among N and xgA [Eq. (45)].
In Refs. [38, 39] it was applied the Wilson renor-

malization group to the model of McLerran and Venu-

gopalan. The non-linear evolution equation then ob-

tained deals with the weight function of the color charge
densities, valid at leading order �s and for densities up

to 1=�s. The complete analytical solution is not yet

obtained but some limits are discussed. At low densi-

ties BFKL is recovered, and then at DLA at large Q2

DGLAP is recovered. In the work [40] is proposed the

equation

@2xg(x;Q2; bt)

@y@"
= � Q2

�
1�

1

x
exp(1=�)E1(1=�)

�
; (47)

where � = Nc(Nc�1)=2 and �(x;Q2; bt) = 2�s=�(Nc�

1)Q2xg(x;Q2; bt).
For large �, a factorized bt dependence and consid-

ering a central collision we obtain for this equation

@2xg(x;Q2)

@y@"
= �R2Q2 ; (48)

which solution is

xg(x;Q2) = ��R2Q2 ln(1=x) ; (49)

presenting the same Q2 and x behavior as the asymp-

totic solution for AGL. The main point is the partial
saturation of the gluon distribution presented in both

formulations in the asymptotic region. A connection

among those two formulations in a more broad kine-

matical region is still an open question.
The asymptotic behavior of the structure function

also required our attention. Considering the relation of

�q�q and xg(x;Q2) we can write [29]

F2(x;Q
2) =

2�s
9�

Z Q2

Q2
0

dQ2

Q2
xg(x;Q2) (50)

which is a leading twist equation, with limited applica-

tion for high densities, due to higher twist terms related

with the UC.

Using the solution of AGL in the asymptotic regime
as input in the above equation we obtain F2(x;Q

2) '
�s
�3R

2Q2 ln(1=x), which again presents partial satura-

tion, meaning the Froissart limit is not violated [44].

Analogous result was obtained by Kovchegov [42] em-

ploying the solution of the K equation [11]. We ob-
tained that the asymptotic behavior of F2 is a general

characteristic that appears to be independent from the

approach that is used [31].

Assuming the asymptotic behavior of the gluon
function is xg(x;Q2) = 2Q2R2=3��s, it implies satu-

ration for F2 (� R2Q2) for very small x. However this

result should be taken with caution since it is valid in

a kinematical region where higher order in the partonic

density are not signi�cative. The subject of saturation
is a tricky one and it seems we are far from establishing

its features in a solid theoretical basis [24]. Important

contributions to these challenging aspects of hdQCD

are to be found in Mueller [24] for the theoretical dis-
cussion and Golec-Biernat and W�ustho� [24] for a phe-

nomenological application.
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In [43, 44] we were able to show that

F2(x;Q
2) =

R2

2�2

X
i

e2i

Z 1=Q2
0

1=Q2

d2rt
�r4t

[C

+ ln�q +E1(�q)] ; (51)

where �q = 4=9�g. From that we can estimate the UC

for F2 in the DLA limit. For large �q, and using the
asymptotic solution of AGL, we obtained [31]

F2(x;Q
2) '

R2Q2

3�2
ln[

4�s
3

ln(1=x)] ; (52)

when higher twist terms are considered in F2. This is

a softer behavior, but in both cases there is no viola-

tion of the Froissart limit. This above equation was not
studied in K or MV-JKLW approaches.

From the already obtained results it follows the
identity [45]

@F2(x;Q
2)

@ lnQ2
= F2(x;Q

2) ; (53)

as an important signature of the asymptotic regime

of QCD for dense systems. It is relevant to mention

that for the same center of mass energy this regime is
reached for nucleus for smaller partonic densities than

in the nucleon case, since �A = A1=3�N .

VI Phenomenology

From the Glauber-Mueller formalism for high dense

partonic systems was demonstrated the AGL equation

and its asymptotic behavior. It was also obtained the

nucleon and the nuclear gluon distribution function as

well as the respective structure functions and deriva-
tives. This formulation incorporates the UC required

by the Froissart bound, through a non linear dynamics.

In this section the behavior of the main observables

obtained in ep collisions, and relevant for eA collisions,

will be analysed with the goal to shed some light in the

subject of UC.

For ep we studied the behavior of the proton struc-

ture function F2, its derivative @F2
@ lnQ2 , the charmed

component of the structure function F c
2 , and the longi-

tudinal distribution function, FL [43].

There is a large amount of data from HERA to mo-
tivate a detailed study of these observables directly con-

nected with the gluon distribution function. As previ-

ously demonstrated the gluon distribution is modi�ed

in a unitarity corrected formulation, meaning those ob-
servables should be a�ected.

We were lucky to show that the @F2
@ lnQ2 , the F

c
2 are

clearly modi�ed. Also, the eA analysis provides strick-

ing results for the nuclear structure function FA
2 and

its derivative, as an important signature of the UC cor-

rections. These results are important since they are a

prediction both for HERA-A and for e-RHIC, in which

a high dense parton system should be formed.

The increasing of F2 in HERA in the small x region

(10�2 > x > 10�5) is observed even for small virtuali-

ties (Q2 � 1 GeV2). Taking F2 � x��, for small x data
is compatible with � = 0:15 (Q2 = 0:85 GeV2) up to

� = 0:4 (Q2 = 20 GeV2). This is described by DGLAP

with suitable input initial condition for Q2 and distri-

butions by di�erent groups [27, 47]. It will conduct to

the idea UC are not observable in the HERA kinemati-
cal range. We have shown that the structure function is

too inclusive in the gluon function to clearly explicitate

the UC.

We arrived at a di�erent conclusion applying AGL

to @F2
@ lnQ2 , FL and F c

2 , all observables directly associated

with the gluon function.

The derivative of F2 is

@F2
@ lnQ2

=
R2Q2

2�2

X
i

e2i [C + ln(�q) +E1(�q) ] ; (54)

that we solved using the same procedure as Eq. (20).

The usual parametrizations [27, 47] do not include the

UC for the gluons explicitly. We use Eq. (20) for A = 1
as input, and we obtain the corrections from both sec-

tors quark and gluons. The last one gains in impor-

tance as Q2 increases. In Fig. (9) the results for @F2
@ lnQ2

are presented for R2 = 5 GeV2. For the complete dis-

cussion we refer to [48]. The UC for both sectors are
able to describe properly the data including the turn-

over. Our conclusions is this is a good observable to

evidentiate the presence of the UC. This question was

addressed also in [49] calculating the suppression fac-
tors separately.

We believe that the UC should be extracted from

data related to observables that are directly dependent

of the gluon function. The longitudinal structure func-
tion FL is a diÆcult measurement requiring distinct

values of the center of mass energy, meaning di�erent

energy beams. An alternative is to consider the radia-

tion of a hard photon from the incident electron, reduc-
ing the center of mass energy. If this should be done

we can study FL(x;Q
2) in the small x region [43].
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Expressed considering the quarks transverse mo-
menta due to gluon radiation, the longitudinal struc-
ture function reads

FL(x;Q
2) =

�s(Q
2)

2�
x2

Z 1

x

dy

y3

�
8

3
F2(y;Q

2)

+ 4
X
f

e2f (1�
x

y
)yg(y;Q2)

3
5 ; (55)

where y = Q2=sx and the dependence on the gluon dis-
tribution is explicit, meaning this function should be
sensitive to unitarity corrections in HERA kinemati-
cal region. Our results for small x region are in Fig.
(10) [43] compared with the H1 data [50]. Although it
seems to be a good observable to evidentiate the UC
the available data do not allow any de�nite conclusion
for now.
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A problably more promissing observable is the rate
RF = F c

2 (x;Q
2)=F2(x;Q

2), where F c
2 is the charmed

component of the structure function. Considering the
approach of boson-gluon in order to create the c�c pair
we obtained in the Glauber-Mueller formalism the ratio
RF .

This ratio is presented in Fig. (11) [43] as a func-
tion of ln(1=x). There is strong modi�cation of the ratio
once UC are included in the calculation. We urge data
in this observable. The suppression is much stronger
than in the F2 case, and we expect a lower production
of quark charm for small x, and this is related with the
production of J=	 which is proportional to the square
of the gluon function.
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Finally, one of our most stricking results concerns
eA physics, and is related with the high dense partonic
system in the nuclear medium. The nuclear shadow-
ing is a challenge for hdQCD and mainly important
for HERA-A, RHIC and LHC physics. We estimated
how the nuclear structure function and its derivative
are modi�ed by the e�ects of high partonic densitiy.

The shadowing corrections to FA
2 are associated to

the rescatterings of the q�q in the nucleons into the nu-
cleus, being dependent on the nucleon gluon distribu-
tion function. Here also we separate the two cases:
quark sector, where the gluon distribution is not mod-
i�ed by UC, and quark + gluon sector, where now the
gluon distribution is modi�ed a la Glauber-Mueller.
The results are presented in Fig. (12) [51] as a ratio
R1 = FA

2 =AF
N
2 , showing that for small x the gluon

sector contribution should be included, and promote
saturation.

We obtain that the suppression due to the shad-
owing in FA

2 is proportionally smaller than in xgA in
a perturbative framework, in a di�erent result that in
[19] where soft physics is the main issue. As a new re-
sult the saturation of the ratio is attained at HERA-A
region when the gluon sector is included. The presence
of saturation in the perturbative region (Q2 > 1 GeV2)
denotes the large shadowing corrections in the gluon
sector.
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The analysis was extended to the derivative of the
nuclear structure function

@FA
2

@ logQ2

R2
AQ

2

2�2

X
i

e2i [C + ln(�q) +E1(�q)] ; (56)

considering the contributions of the quark and the
gluon sectors to the UC. for HERA-A s = 9:104 GeV2.

The predictions are in Fig. (13) [52] compared with
a DGLAP calculation with GRV without nuclear e�ect.
The expected turn-over is present in the orthodox cal-
culation but it is A independent. The behavior of the
derivative is di�erent once UC are considered since the
maximum is A dependent and runs to higher values of
x and Q2 as A increases. We conclude this is the best
quantity to look for unitarity corrections, evidentiating
the same partonic density is reached as A increases for
higher values of x and higher values of Q2, corroborat-
ing a perturbative calculation.

This is a strong motivation to develop this calcu-
lation for heavy ion physics, and try to connect this
formulation with the research in AA physics where the
quark-gluon plasma is expected to be produced.
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VII Outlook

Several aspects of the formulations for hdQCD and in
our approach to the subject as well require further in-
vestigation. I understand the formulation of high dense
partonic system should incorporate the methods of non-
perturbative physics and non-linear dynamics in order
to present a comprehensive formulation for a large kine-
matical regime in x and Q2, besides incorporating the
A dependence. However signi�cative progress in the de-
scription of hdQCD has been made in the recent years
towards a uni�ed theoretical framework. Particular-
lly relevant is the role of initial conditions for UC for
the perturbative treatments and the determination of
saturation region, Q2

s, still to be obtained analytically.
Also a complete solution of the generalized evolution
equation (Eq. (26)) for �s(Q

2) outside the asymptotic
region is not available. Reaching these goals will allow
us to have a more complete dynamical description of
the non-linear phenomena of transition between large
distance and short distance physics promoting QCD to
a more understandable and applicable theory.
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