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Directed percolation is one of the most prominent universality classes of nonequilibrium phase
transitions and can be found in a large variety of models. Despite its theoretical success, no
experiment is known which clearly reproduces the critical exponents of directed percolation. The
present work compares suggested experiments and discusses possible reasons why the observation
of the critical exponents of directed percolation is obscured or even impossible.

I Introduction

Physical phenomena far from thermal equilibrium are

very common in nature. For example, many systems

are subjected to an external ow of energy or particles

which keeps them away from equilibrium. Similarly,

dynamic systems starting with a nonequilibrium initial

state may need a long time to reach thermal equilib-

rium. Theories of systems out of equilibrium are more

diÆcult than equilibrium statistical mechanics since the

partition sum is no longer given by the Gibbs ensem-

ble. On the other hand, nonequilibrium systems may

exhibit a potentially richer behavior than systems at

thermal equilibrium. Therefore, the study of nonequi-

librium phenomena is a �eld of growing interest, both

theoretically and experimentally.

A particularly interesting topic is the investigation

of phase transitions far from equilibrium [1]. The the-

oretical interest in nonequilibrium phase transitions

mainly stems from the emergence of universal features

of the associated critical behavior. The concept of uni-

versality was originally introduced by experimentalists

in the context of equilibrium systems in order to de-

scribe the observation that order parameters of vari-

ous apparently unrelated systems may display the same

type of singular behavior near the transition. These

singularities are associated with a certain set of critical

exponents which characterizes the universality class of

the transition. The subsequent development of power-

ful theoretical concepts such as scaling, renormalization

group, and conformal invariance supported this hypoth-

esis and established universality as a paradigm of equi-

librium statistical mechanics.

Because of this success, theoretical physicists are

nowadays trying to transfer the idea of universality

to nonequilibrium phase transitions. However, in the

nonequilibrium case the emerging picture remains less

clear. Although universality certainly exists on the level

of simple models, the experimental evidence of univer-

sal behavior under nonequilibrium conditions is still

very poor. Therefore, it is not yet known to what extent

the concept of universality can be applied to nonequi-

librium critical phenomena.

An important example is the universality class of

Directed Percolation (DP) which describes continuous

phase transitions from a spreading (wet) phase into an

absorbing (dry) state [2]. The DP universality class is

extremely robust with respect to the choice of the dy-

namic rules and covers a large variety of models with

applications ranging from catalytic reactions [3] and in-

terface growth [4] to turbulence [5]. The observed ro-

bustness led Janssen and Grassberger [6] to the conjec-

ture that a continuous phase transition from a uctu-

ating active phase into a single absorbing state should

belong to the DP universality class, provided that the

model uses short-range dynamics without special at-

tributes such as additional symmetries or quenched

randomness. In fact, DP is the canonical universality

class for nonequilibrium phase transitions into absorb-

ing states. Thus it may be as important as the Ising

universality class in equilibrium statistical mechanics.

Despite this success in theoretical statistical physics,

the critical behavior of DP, especially the set of critical

exponents, has not yet been con�rmed experimentally.

The lack of experimental evidence is indeed surprising,

especially since a large number of possible experimental
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realizations have been suggested in the past. As Grass-

berger emphasizes in a summary on open problems in

DP [7]:

"...there is still no experiment where the

critical behavior of DP was seen. This is

a very strange situation in view of the vast

and successive theoretical e�orts made to

understand it. Designing and performing

such an experiment has thus top priority in

my list of open problems.".

The aim of the present work is to review the most im-

portant experiments which have been suggested so far

and to discuss their speci�c problems which could ob-

scure the veri�cation of the critical exponents. After a

brief introduction to DP in Sect. II we will �rst discuss

certain catalytic reactions on two-dimensional surfaces

which mimic the dynamic rules of DP. As described in

Sect. IV, DP may also be realized in certain wetting

experiments where the interface between air and liquid

undergoes a depinning transition. Another possible re-

alization may be provided by systems of owing sand

on an inclined plane (see Sect. V). However, in none

of these experiments could the predicted critical expo-

nents be con�rmed convincingly.

What might be the reason for the apparent lack of

experimental evidence? It seems that the basic fea-

tures of DP, which can easily be implemented on a

computer, are quite diÆcult to realize in nature. One

of these theoretical assumptions is the existence of an

absorbing state. In real systems, however, a perfect

non-uctuating state cannot be realized. For example,

a poisoned catalytic surface is not completely frozen, it

will rather always be a�ected by small uctuations. Al-

though these uctuations are strongly suppressed, they

could still be strong enough to `soften' the transition,

making it impossible to quantify the critical exponents.

Another reason might be the inuence of quenched

disorder due to spatial or temporal inhomogeneities.

In most experiments frozen randomness is expected to

play a signi�cant role. For example, a real catalytic

surface is not fully homogeneous but characterized by

certain defects leading to spatially quenched disorder.

As shown in Ref. [8], this type of disorder may a�ect

or even destroy the critical behavior of DP. Technical

details concerning quenched disorder are summarized

in the Appendix.

II Directed Percolation

Directed percolation was introduced by Broadbent and

Hammersley [9] in 1957 as an anisotropic variant of or-

dinary percolation [10]. The aim was to describe the

connectivity of directed random media such as porous

rocks in a gravitational �eld. Assuming that water can

only move downwards, the permeability of a rock will

depend on the average connectivity of its pores. One

of the simplest models is directed bond percolation. As

shown in Fig. 1, neighboring sites (pores) of a diagonal

square lattice are connected by bonds (channels) which

are open with probability p and otherwise closed. Be-

cause of the gravitational �eld, the bonds function as

`valves' wherefore the spreading agent can only perco-

late along the given direction, as indicated by the ar-

rows.

Figure 1. Directed bond percolation on a diagonal square
lattice. Open (closed) bonds are represented as solid
(dashed) lines. The spreading agent, introduced at the site
marked by the circle, ows downwards through open bonds,
generating a certain cluster (bold bonds).

Depending on the actual con�guration of open

bonds, each site generates a certain cluster of connected

sites. A cluster of this kind would correspond to the

maximal spreading range if the water was injected into

a single pore. Below a certain threshold p < pc all

clusters are �nite, i.e., the material is impermeable on

large scales. However, above the critical value a cluster

may become in�nite so that water can percolate over

arbitrarily long distances (cf. Fig. 2).

Figure 2. Typical DP cluster starting from a single seed
below, at, and above criticality.

Regarding the given direction as `time', DP may

be interpreted as a d+1-dimensional dynamic process

describing the spreading of some non-conserved agent.

For example, we may enumerate the sites in Fig. 1 hor-

izontally by a spatial coordinate i and vertically by a

discrete time variable t. Then, for a given state at time

t, we can determine the state at time t+1 by means of

certain stochastic updates [11].
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Interpreting active sites as particles A and inactive

sites as vacancies _, the particles can either destroy

themselves or produce an o�spring. Moreover, if two

particles reach the same site, they coagulate to a single

particle. Therefore, DP may be regarded as a reaction-

di�usion process

di�usion: _+A! A+ _ ;
self-destruction: A! _ ;
o�spring production: A! A+A ;
coagulation: A+A! A :

(1)

Depending on the ratio between o�spring production

and self destruction, the process may either remain ac-

tive or reach the empty state from where it cannot es-

cape. This is the so-called absorbing state of DP sys-

tems. For a special realization of DP, the so-called con-

tact process [12], the existence of a continuous transi-

tion between survival and extinction could be proven

rigorously [13]. Near the transition the stationary den-

sity of active sites vanishes as a power law

�stat � (p� pc)
� ; (2)

where � is the critical exponent associated with the

order parameter �. Moreover, the DP process is char-

acterized by a spatial and a temporal correlation length

diverging at the transition as

�? � jp� pcj��? ; �k � jp� pcj��k : (3)

As already mentioned, a large variety of models show

essentially the same properties at the transition, form-

ing the DP universality class. The DP class corresponds

to a speci�c �eld theory [14] and is characterized by the

three critical exponents �; �?; �k. Despite its simplic-

ity, DP has not yet been solved exactly. However, the

critical exponents can easily be estimated by computer

simulations. The most accurate estimates are summa-

rized in Table I. Notice that in d > 4 spatial dimensions

uctuations become irrelevant so that the exponents are

given by their mean �eld values.

III Catalytic reactions

It is well known that under speci�c conditions certain

catalytic reactions mimic the microscopic rules of DP

models. For example, the Zi�-Gulari-Barshad (ZGB)

model, which was designed in order to describe the cat-

alytic reaction CO + O ! CO2 on a platinum sur-

face [3], displays a DP transition. In the ZGB model a

gas composed of CO and O2 molecules with �xed con-

centrations y and 1 � y, respectively, is brought into

contact with a catalytic material. The catalytic surface

is represented by a square lattice whose sites can either

be vacant (_), occupied by a CO molecule, or occupied

by an O atom. CO molecules �ll any vacant site at

rate y, whereas O2 molecules dissociate on the surface

into two O atoms and �ll pairs of adjacent vacant sites

at rate 1 � y. Finally, neighboring CO molecules and

O atoms recombine instantaneously to CO2 and desorb

from the surface. On the lattice the three processes

correspond to the reaction scheme

_ ! CO at rate y ,

_+ _ ! O+O at rate 1� y , (4)

O + CO! _+ _ at rate 1 .

Therefore, if the whole lattice is entirely covered ei-

ther with CO or O, the system is trapped in a catalyt-

ically inactive state. These `poisoned' states are the

two absorbing con�gurations of the ZGB model. As

shown in Fig. 3, the corresponding phase diagram dis-

plays two absorbing phases. For y < y1 ' 0:389 the

system evolves into the O-poisoned state whereas for

y > y2 ' 0:525 it always reaches the CO-poisoned state.

Between these two values the model is catalytically ac-

tive. The two transitions into the absorbing phases are

di�erent in character, namely discontinuous at y = y2
and continuous at y = y1 (see Fig. 3). Motivated by

the DP conjecture, Grinstein et al. [15] expected the

latter to belong to the DP universality class. In order

to verify this hypothesis, extensive numerical simula-

tions were performed. Initially it was believed that the

critical exponents were di�erent from those of DP [16],

while later the transition at y = y1 was found to belong

to DP [17]. Very precise estimates of the critical ex-

ponents were recently obtained in Ref. [18], con�rming

the DP conjecture. DP exponents were also obtained in

a simpli�ed version of the ZGB model [19]. These the-

oretical models therefore suggest that certain catalytic

reactions could serve as an experimental realization of

DP.

Figure 3. Catalytic reactions in theory (left) and experiment
(right). The schematic graphs show the concentrations of
oxygen (solid line) and carbon monoxide (dashed line) as a
function of the CO adsorption rate.
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exponent d = 1 [20] d = 2 [18] d = 3 [21] d � 4

� 0:276486(8) 0.584(4) 0.81(1) 1
�? 1:096854(4) 0.734(4) 0.581(5) 1=2
�k 1:733847(6) 1.295(6) 1.105(5) 1

Table I. Numerical estimates for the critical exponents of directed percolation in d+1 dimensions.

In real catalytic reactions, however, only the dis-

continuous transition at y = y2 can be observed. The

schematic graph on the right-hand side of Fig. 3 shows

the reaction rates as functions of the CO pressure mea-

sured in a catalytic reaction on a Pt(210) surface [22].

Although the experiment was designed in order to in-

vestigate the technologically interesting regime of high

activity close to the �rst-order phase transition, it

clearly indicates that poisoning with oxygen does not

occur. Instead the reactivity increases almost linearly

with the CO pressure. Similar results were obtained for

Pt(111) and for other catalytic materials. Thus, so far

there is no experimental evidence for the DP transition

predicted by the ZGB model.

One may speculate why the DP transition is ob-

scured or even destroyed under experimental condi-

tions. A possible reason might be the reaction chain be-

ing much more complicated than in the ZGBmodel [23].

Moreover, the O-poisoned system might not be in a per-

fect absorbing state, i.e., the surface can still adsorb CO

molecules although it is satured with carbon monoxide.

Another possibility is thermal (nonreactive) desorption

of oxygen which { in the DP language { would corre-

spond to spontaneous creation of active sites due to an

external �eld [24]. Finally, defects and inhomogeneities

of the catalytic material could lead to an e�ective (spa-

tially quenched) disorder. As shown in the Appendix,

this type of disorder is marginal. It can therefore seri-

ously a�ect the critical behavior and even modify the

values of the exponents.

For a long time microscopic details were diÆcult to

study experimentally. However, novel techniques such

as scanning tunneling microscopy (STM) led to an enor-

mous progress in the understanding of catalytic reac-

tions. They also point at various unexpected subtleties.

For example, recent experiments revealed that the re-

actions preferably take place at the perimeter of oxygen

islands [25]. Furthermore, it was observed that the ad-

sorbed CO molecules on Pt(111) may form three di�er-

ent rotational patterns representing the c(4�2) struc-
ture of CO on platinum, leading to three competing

absorbing states [26]. Moreover, the STM technique

allows one to trace individual molecular reactions and

to determine the corresponding reaction rates. In ad-

dition, the inuence of defects such as terraces on cat-

alytic reactions can be quanti�ed experimentally [27].

We may therefore expect a considerable progress in the

understanding of catalytic reactions in near future.

IV Growing interfaces

Various models for interface growth exhibit a rough-

ening or depinning transition which can be related to

DP. In this Section we discuss three examples, namely

transitions of depinning interfaces in random media,

polynuclear growth processes, and solid-on-solid growth

with evaporation at the edges of plateaus.

IV.1 Depinning transitions

Depinning transitions of driven interfaces provide

a very promising class of experiments which could be

related to DP [28]. In these experiments a liquid is

pumped through a porous medium. If the driving force

F is suÆciently low the liquid cannot move through

the medium since the air/liquid interface is pinned at

certain pores. Above a critical threshold, however, the

interface starts moving through the medium with an av-

erage velocity v. Close to the transition, v is expected

to scale as

v �
�
F � Fc
Fc

��

; (5)

where � is the velocity exponent. Moreover, in the mov-

ing phase F > Fc the interface roughness averaged over

length ` should obey the usual scaling law for roughen-

ing interfaces [29]

w(`; t) � `�f(t=`~z) ; (6)

where � is the so-called roughening exponent. One of

the �rst experiments in 1+1 dimensions was performed

by Buldyrev et al., who studied the wetting of paper

in a basin �lled with suspensions of ink or co�ee [30].

Measuring the interface width they found the rough-

ness exponent � = 0:63(4). In various other exper-

iments the values are scattered between 0:6 and 1:25.

This is surprising since the Kardar-Parisi-Zhang (KPZ)

class [31, 32], the canonical universality class for rough-

ening interfaces, predicts the exponent � = 1=2 which

is smaller than the experimentally observed values.

It is believed that the large values of � are due

to inhomogeneities of the porous medium. Due to

these inhomogeneities, the interface does not propagate
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uniformly by local uctuations as in the KPZ equa-

tion, it rather propagates by avalanches. In the lit-

erature two universality classes for this type of inter-

facial growth have been proposed. In case of linear

growth the interface should be described by a random

�eld Ising model [33], leading to the exponents � = 1,

~z = 4=3, and � = 1=3 in 1+1 dimensions. In the pres-

ence of a KPZ-type nonlinearity, however, the roughen-

ing process should exhibit a depinning transition which

is related to DP [4, 34]. Notice that the underlying

DP mechanism of depinning transitions di�ers signif-

icantly from an ordinary directed percolation process

in a porous medium subjected to a gravitational �eld

(cf. Sect. VI). In the latter case the spreading agent

is restricted to percolate along a given direction, i.e.,

the ow is strictly unidirectional. In depinning experi-

ments, however, water may ow both along the pump-

ing force and { even more easily { in the opposite di-

rection, as will be explained below.

A simple model exhibiting a depinning transition is

shown in Fig. 4. In this model the pores are repre-

sented by cells of a diagonal square lattice. The liquid

can ow to neighboring cells by crossing the edges of

the cell. Depending on the direction of the ow these

edges can either be open or closed. For simplicity we

assume that all edges are permeable in downwards di-

rection, whereas in upwards direction they can only be

crossed with a certain probability p. Thus, by start-

ing with a horizontal row of wet cells at the bottom,

we obtain a compact cluster of wet cells, as illustrated

in Fig. 4. The size of the cluster (and therewith the

penetration depth of the liquid) depends on p. If p is

large enough, the cluster is in�nite, corresponding to a

moving interface. If p is suÆciently small, the cluster is

bound from above, i.e., the interface becomes pinned.

Figure 4. Simple model exhibiting a depinning transition.
The pores are represented by cells on a diagonal square lat-
tice. The permeability across the edges of the cells depends
on the direction of ow: In the downwards direction all
edges are permeable whereas in the upwards direction they
are permeable with probability p and impermeable other-
wise. The right panel of the �gure shows a particular con�g-
uration of open (dashed) and closed (solid) edges. Pumping
in water from below, the interface becomes pinned along a
directed path of solid lines, leading to a �nite cluster of wet
cells (shaded region). The dashed arrow represents an open
path in order to illustrate the ow.

The depinning transition is related to DP as follows.

As can seen in the �gure, a pinned interface may be in-

terpreted as a directed path along impermeable edges

running from one boundary of the system to the other.

Obviously, the interface becomes pinned only if there

exists a directed path of impermeable bonds connect-

ing the boundaries of the system. Hence the depinning

transition is related to an underlying DP process run-

ning perpendicular to the direction of growth. The pin-

ning mechanism is illustrated in Fig. 5, where a super-

critical DP cluster propagates from left to right. The

cluster's backbone, consisting of bonds connecting the

two boundaries, is indicated by bold dots. The shaded

region denotes the resulting cluster of wet cells. As can

be seen, the interface will be pinned at the lowest lying

branch of the DP backbone. Therefore, the roughening

exponent coincides with the meandering exponent

� = �?=�k (7)

of the backbone. Moreover, by analyzing the dynamics

of the moving interface, it can be shown that the dy-

namic critical exponents are given by � = � and ~z = 1.

Thus, depinning transitions in inhomogeneous porous

media may serve as experimental realizations of the DP

universality class.

Figure 5. Pinned interface and the underlying DP process.
The �gure is explained in the text.

Comparing the prediction (7) with the result � =

0:63(4) obtained by Buldyrev et al. [30] we �nd an ex-

cellent coincidence, con�rming the validity of the model

introduced above. Therefore, this experiment can be

regarded as a �rst experimental evidence of DP expo-

nents. However, only one exponent has been veri�ed,

and it is not fully clear how accurate and reproducible

these exponents are. Further experimental e�ort in this

direction would be desirable.

Similar experiments were carried out in 2+1 dimen-

sions with a spongy-like material used by orists, as

well as �ne-grained paper rolls [35]. In this case, how-

ever, the exponent � is not related to 2+1-dimensional

DP, instead it corresponds to the dynamic exponent
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of percolating directed interfaces in 2+1 dimensions.

In experiments as well as in numerical simulations a

roughness exponent � = 0:50(5) was obtained.

In order to perform a depinning experiment which

can easily be reproduced, Dougherty and Carle mea-

sured the dynamical avalanche distribution of an

air/water interface moving through a porous medium

made of glass beads [36]. Assuming an underlying DP

process, the distribution P (s) of avalanche sizes s is pre-

dicted to behave algebraically. In the experiment, how-

ever, a stretched exponential behavior P (s) � s�be�s=L

is observed even for small owing rates. The estimates

for the exponent b are inconclusive; they depend on

the time window of the measurement and vary between

�0:5 and 0:85. Even more recently Albert et al. pro-

posed a method allowing to identify the universality

class by measuring the propagation velocity of locally

tilted parts of the interface [37]. Their results suggest

that interfaces propagating in glass beads are not de-

scribed by a DP depinning process, but to be related

instead to the random-�eld Ising model. From the

theoretical point of view this is surprising since linear

growth of the interface is a special case which requires

�ne-tuning of certain parameters. Further experimen-

tal e�ort would be needed to understand these �ndings.

IV.2 Polynuclear growth

A completely di�erent DP mechanism is responsi-

ble for roughening transitions in so-called polynuclear

growth (PNG) models [38, 39, 40]. A key feature of

PNG models is the use of parallel updates, leading to

a maximal propagation velocity of one monolayer per

time step. For a high adsorption rate the interface is

smooth, propagating at maximal velocity v = 1. De-

creasing the adsorption rate below a certain critical

threshold, PNG models exhibit a roughening transition

to a rough phase with v < 1. In contrast to equilib-

rium roughening transitions, which only exist in d � 2

dimensions, PNG models have a roughening transition

even in one spatial dimension.

Figure 6. Polynuclear growth model. In the �rst half time
step atoms are deposited with probability p. In the second
half time step islands grow deterministically by one step and
coalesce.

Probably the simplest PNG model investigated so

far is de�ned by the following dynamic rules [38]. In

the �rst half time step atoms `nucleate' stochastically

at the surface by

hi(t+ 1=2) =

�
hi(t) + 1 with prob. p ;
hi(t) with prob. 1� p :

(8)

In the second half time step the islands grow determin-

istically in lateral direction by one step. This type of

growth may be expressed by the update rule

hi(t+ 1) = max
j2<i>

�
hi(t+ 1=2); hj(t+ 1=2)

�
; (9)

where j runs over the nearest neighbors of site i.

The relation to DP can be established as follows.

Starting from a at interface hi(0) = 0, let us interpret

sites at maximal height hi(t) = t as active sites of a DP

process. The adsorption process (8) turns active sites

into the inactive state with probability 1� p, while the
process (9) resembles o�spring production. Therefore,

if p is large enough, the interface is smooth and prop-

agates with maximal velocity v = 1. This situation

corresponds to the active phase of DP. Therefore, we

expect the density of sites at maximal height to scale

as
1

N

X
i

Æhi�t � (p� pc)
� ; (10)

where N denotes the system size. Below a critical

threshold, however, the density of active sites at the

maximum height hi(t) = t vanishes; the growth veloc-

ity is smaller than 1 and the interface evolves into a

rough state. Although this mapping to DP is not ex-

act, numerical simulations suggest that it still remains

valid on a qualitative level. More speci�cally, it turns

out that PNG models are related to a unidirectionally

coupled hierarchy of DP processes [41].

A closely related class of models was introduced in

order to describe the growth of colonial organisms such

as fungi and bacteria [42], motivated by recent experi-

ments with the yeast Pichia membranaefaciens on solid-

i�ed agarose �lm [43]. By varying the concentration of

polluting metabolites, di�erent front morphologies were

observed. The model proposed in [42] aims to explain

these morphological transitions on a qualitative level. A

careful analysis of the dynamic rules shows that mod-

els for fungal growth and PNG models are very similar

in character. They both employ parallel dynamics and

exhibit a DP-related roughening transition.

Concerning experimental realizations of PNG mod-

els, one major problem { apart from quenched disorder

{ is the use of parallel updates. The type of update is

crucial; by using random-sequential updates the tran-

sition is lost since in this case there is no maximum

velocity. However, in realistic experiments atoms do

not move synchronously, but the adsorption events are

rather randomly distributed in time. Therefore, ran-

dom sequential updates might be more appropriate to
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describe such experiments. It thus remains an open

question to what extent PNG processes can be realized

in nature. In fact, it would be interesting to see if PNG

can be generalized to random-sequential dynamics.

IV.3 Growth with evaporation at the
edges of plateaus

DP-related roughening transitions can also be ob-

served in certain solid-on-solid growth processes with

random-sequential updates [44, 45]. As a key feature

of these models, atoms may desorb exclusively at the

edges of existing layers, i.e., at sites which have at least

one neighbor at a lower height. By varying the growth

rate, such growth processes display a roughening tran-

sition from a non-moving smooth phase to a moving

rough phase.

A simple solid-on-solid model for this type of growth

is de�ned by the following dynamic rules [44]: For each

update a site i is chosen at random and an atom is

adsorbed

hi ! hi + 1 with probability q (11)

or desorbed at the edge of a plateau

hi ! min(hi; hi+1) with probability (1� q)=2 ;
hi ! min(hi; hi�1) with probability (1� q)=2 :

(12)

Moreover, the growth process is assumed to be re-

stricted, i.e., updates are only carried out if the resulting

con�guration obeys the constraint

jhi � hi�1j � 1 : (13)

The qualitative behavior of this model is illustrated

in Fig. 7. For small q the desorption processes (12)

dominate. If all heights are initially set to the same

value, this level will remain the bottom layer of the in-

terface. Small islands will grow on top of the bottom

layer but will be quickly eliminated by desorption at the

island edges. Thus, the interface is e�ectively anchored

to its bottom layer and a smooth phase is maintained.

The growth velocity v is therefore zero in the thermo-

dynamic limit. As q is increased, more islands on top of

the bottom layer are produced until above qc ' 0:189,

the critical value of q, they merge forming new layers at

a �nite rate, giving rise to a �nite growth velocity. In

an in�nite system the growth velocity scales near the

transition as

v � ��1k � (p� pc)
�k : (14)

Since the propagation velocity uctuates locally, the

interface evolves into a rough state according to the

predictions of the KPZ equation. The same type of

critical behavior is observed in similar models without

the restriction (13).

Figure 7. Restricted solid-on-solid growth model exhibit-
ing a roughening transition from a non-moving smooth
to a moving rough phase. Monomers are randomly de-
posited whereas desorption takes place only at the edges
of plateaus.

At the transition the dynamics of the model is re-

lated to DP as follows. Starting with a at interface at

zero height, let us consider all sites with hi = 0 as par-

ticles A of a DP process. Growth according to Eq. (11)

corresponds to spontaneous annihilation A ! _. Con-
versely, desorption may be considered as a particle cre-

ation process. However, since atoms may only desorb

at the edges of plateaus, particle creation requires a

neighboring active site, corresponding to o�spring pro-

duction A ! 2A. These rules resemble (although not

exactly) the dynamics of a DP process. In contrast to

PNG models, the DP process takes place at the bot-

tom layer of the interface. Moreover, the roughening

transition does not depend on the use of either parallel

or random-sequential updates. However, if composite

particles instead of monomers are deposited on the sur-

face, the universality class may change due to additional

symmetries [46].

With respect to experimental realizations of the dy-

namic rules (11)-(12) we note that atoms are not al-

lowed to di�use on the surface. This assumption is

rather unnatural since in most experiments the rate for

surface di�usion is much higher than the rate for des-

orption back into the gas phase. Therefore, it will be

diÆcult to realize this type of homoepitaxial growth ex-

perimentally. However, in a di�erent setup, the above

model could well be relevant [47]. As illustrated in

Fig. 8, a laterally growing monolayer could resemble the

dynamic rules (11) and (12) by identifying the edge of

the monolayer with the interface of the growth model.

In this case 'surface di�usion', i.e. di�usion of atoms

along the edge of the monolayer, is highly suppressed.

Moreover, in single-step systems (such as fcc(100) sur-

faces) it would also be possible to implement the re-

striction (13).
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Figure 8. Possible experimental realization of the growth
process de�ned in Eqs. (11) and (12) by lateral growth of a
monolayer on a substrate.

V Flowing granular matter

It has been shown recently that simple systems of ow-

ing sand on an inclined plane, e.g. the experiments

performed by Douady and Daerr [48, 49], could serve

as experimental realizations of DP [50]. In the Douady-

Daerr experiment glass beads with a diameter of 250-

425 �m are poured uniformly at the top of an inclined

plane covered by a rough velvet cloth (see Fig. 9). As

the beads ow down, a thin layer settles and remains

immobile. Increasing the angle of inclination � by ��

the layer becomes dynamically unstable, i.e., by lo-

cally perturbing the system at the top of the plane an

avalanche of owing granular matter will be generated.

In the experiment these avalanches have the shape of

a fairly regular triangle with an opening angle �. As

the increment �' decreases, the value of � decreases,

vanishing as

tan � � (�')x (15)

with a certain critical exponent x. The experimental

results suggest the value x = 1 [49].

In order to explain the experimentally observed tri-

angular form of the avalanches, Bouchaud et al. pro-

posed a mean-�eld theory based on deterministic equa-

tions taking the actual local thickness of the owing

avalanche into account [51]. This theory predicts the

exponent x = 1=2. Another explanation assumes that

owing sand may be associated with a nearest-neighbor

spreading process [50]. Considering the avalanche as a

cluster of active sites while identifying the vertical co-

ordinate of the plane with time and the increment of

inclination �' with p�pc the opening angle is expected
to scale as

tan � � �?=�k � (�')�k��? ; (16)

where �k and �? are the scaling exponents of the

spreading process under consideration.

Figure 9. Simpli�ed drawing of the Douady-Daerr exper-
iment. At a given angle � a layer of a certain thickness
settles. Perturbing the layer locally with a stick leads to an
avalanche of owing sand.

To support this scaling argument, a simple lattice

model was introduced which mimics the physics of ow-

ing sand [50]. The model exhibits a transition from an

inactive to an active phase with avalanches whose com-

pact shapes reproduce the experimental observations.

On laboratory scales the model predicts the exponent

x = 1, corresponding to the universality class of com-

pact directed percolation (CDP) which is characterized

by the exponents [52]

�k = 2 ; �? = 1 ; � = 0 : (17)

The CDP behavior, however, is only an initial tran-

sient and crosses over to DP after a very long time.

Thus the Douady-Daerr experiment { performed on suf-

�ciently large scales { may serve as a physical realiza-

tion of DP. Irregularities of the layers thickness may

a�ect the spreading properties of avalanches. However,

such inhomogeneities can be considered as a kind of

spatio-temporally quenched disorder which is irrelevant

on large scales (see Appendix). Thus, in contrast to the

previous examples, the problem of quenched disorder

does not play a major role in this type of experiments.

The crossover from CDP to DP is very slow and

presently not accessible in the experiments. To illus-

trate the crossover, two avalanches are plotted on dif-

ferent scales in Fig. 10. The left one represents a typical

avalanche within the �rst few thousand time steps. As
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can be seen, the cluster appears to be compact. How-

ever, as shown in the right panel of Fig. 10, the cluster

breaks up into several branches after a very long time.

As a precondition for DP behavior, initially compact

avalanches should thus be able to break up into several

branches. Only then is it worthwhile to optimize the ex-

perimental setup and to measure the critical exponents

quantitatively.

Figure 10. Typical clusters generated at criticality on small
and large scales, illustrating the crossover from CDP to DP.

More recent experimental studies [53] con�rm that

for high angles of inclination critical avalanches do split

up into several branches (see Fig. 11). Yet here the

avalanches have no well de�ned front, the propagation

velocity of separate branches rather depends on their

thickness. It is therefore no longer possible to interpret

the vertical axis as a time coordinate. Moreover, it is

not yet known how the spreading process depends on

correlations in the initial state. As shown in Ref. [54],

such long-range correlations may change the values of

certain dynamic critical exponents. However, recent

studies of a single rolling grain on an inclined rough

plane [55] support that there are presumably no long-

range correlations due to a `memory' of rolling grains.

By means of molecular dynamics simulations it was

shown that the motion of a rolling grain consists of

many small bounces on each grain of the supporting

layer. Therefore, the rolling grain quickly dissipates

almost all of the energy gain from the previous step

and thus forgets its history very fast. For this reason

it seems to be unlikely that quenched disorder of the

prepared layer involves long-range correlations. There-

fore, owing granular matter seems to be a promising

candidate for an experimental realization of DP.

Figure 11. Avalanches splitting up into several branches,
observed in recent experiments with high angle of inclina-
tion (reprinted with kind permission from A. Daerr).

VI Other Applications

This section discusses other applications which are less

promising to serve as experimental realizations of DP,

although they are frequently quoted in the literature.

Porous media: One example is percolating water

in a porous medium subjected to an external driving

force. The medium could be a porous rock in a grav-

itational �eld where neighboring pores are connected

by channels with a certain probability. Depending on

this probability, the penetration depth is either �nite or

the water may "percolate" over in�nitely long distances

through the medium. Due to the external driving force,

the ow in the medium is assumed to be strictly uni-

directional, i.e., the water can only ow downwards (in

contrast to the depinning models of Section IV.1). Al-

though this application is quite natural, it is extremely

diÆcult to realize experimentally. For example, by

studying natural sandstone a broad distribution of pore

sizes was observed [56]. Although these experiments are

concerned with isotropic percolation, similar diÆculties

are expected in the directed case.

Epidemics: Another frequently quoted applica-

tions of DP is the spreading of epidemics without im-

munization [12,13,57]. Here infection and recovery re-

semble the reaction-di�usion scheme (1). If the rate

of infection is very low, the infectious disease will dis-

appear after some time. If infections occur more fre-

quently, the disease may spread and survive for a very

long time. However, spreading processes in nature are

usually not homogeneous enough to reproduce the crit-

ical behavior of DP. Moreover, in many realistic spread-

ing processes short-range interactions are no longer ap-
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propriate. This situation emerges, for example, when

an infectious disease is transported by insects. The

motion of the insects is typically not a random walk,

rather occasional ights over long distances may occur

before the next infection takes place. On the level of

theoretical models such long-range interactions may be

described by L�evy ights [60], leading to continuously

varying critical exponents [61].

Forest �res: A closely related problem is the

spreading of forest �res [58]. Tephany et al. studied the

propagation of ame fronts on a random lattice both

under quiescent conditions and in a wind tunnel [59].

The experimental estimates of the critical exponents at

the spreading transition are in rough agreement with

the predictions of isotropic and directed percolation,

respectively. However, the accuracy of these costly ex-

periments remains limited.

Calcium dynamics: DP transitions may also oc-

cur in certain kinetic models for the dynamics of Cal-

cium ions in living cells. Ca2+ ions play an impor-

tant physiological role as second messenger for various

purposes ranging from hormonal release to the activa-

tion of egg cells by fertilization [62, 63]. The cell uses

nonlinear propagation of increasing intracellular Ca2+

concentration, a so-called calcium wave, as a tool to

transmit signals over distances which are much longer

than the di�usion length. For example, propagating

Ca2+ waves can be observed in the immature Xeno-

pus laevis oocyte [64]. So far theoretical work focused

mainly on deterministic reaction-di�usion equations in

the continuum which explain various phenomena such

as solitary and spiral waves [65]. This mean-�eld type

approach, however, ignores the inuence of uctuations.

Yet, near the transition between survival and extinction

of Ca2+, activity uctuations may play an important

role. Recently improved models have been introduced

which take also the stochastic nature of Calcium re-

lease into account [66, 67]. As expected, the transition

in one of these models belongs to the DP universal-

ity class [67]. However, from the experimental point of

view it seems to be impossible to con�rm or disprove

this conjecture. On the one hand, the size of a living

cell is only a few order of magnitude larger than the

di�usion length, leading to strong �nite-size e�ects in

the experiment. On the other hand, inhomogeneities as

well as internal structures of the cell give rise to a com-

pletely unpredictable form of quenched noise which may

be correlated in space and time. Therefore, it seems to

be impossible to identify the universality class of the

transition in actual experiments. It would be rather an

achievement to �nd clear evidence for the very existence

of a phase transition between survival and extinction

of propagating calcium waves. For quantitative experi-

ments, it would be interesting to reproduce the dynam-

ics of Calcium in a well-de�ned environment, e.g., on

an arti�cial membrane [24].

Directed polymers: DP is also related to the

problem of directed polymers [68]. In contrast to DP,

which is de�ned as a local process, the directed polymer

problem selects directed paths in a random medium by

global optimization. Under certain conditions, namely

a bimodal distribution of random numbers, both prob-

lems were shown to be closely related [69]. More specif-

ically, the roughness exponent of the optimal path in

a directed polymer problem is predicted to cross over

from the KPZ value 2/3 to the DP value �k=�? ' 0:63

at the transition point. Directed polymers were used

to describe the propagation of cracks [70]. However, it

is rather unlikely that crack experiments can reproduce

the tiny crossover from KPZ to DP.

Turbulence: Finally, DP has also been considered

as a toy model for turbulence. According to Ref. [5],

the front between turbulent and laminar ow should

exhibit the critical behavior of DP. For example, the

velocity of the front should scale algebraically with a

combination of DP exponents. However, these predic-

tions are based rather on heuristic arguments than on

rigorous results. In fact, in many respects turbulent

phenomena show a much richer behavior than DP.

VII Conclusions

Directed percolation has kept theoretical physicists fas-

cinated for more than forty years. Several reasons make

directed percolation so appealing. First of all, DP is a

very simple model in terms of its dynamic rules. Never-

theless, the DP phase transition turns out to be highly

nontrivial. In fact, DP belongs to the very few criti-

cal phenomena which have not yet been solved exactly

in one spatial dimension. Therefore, the critical expo-

nents are not yet known analytically. High-precision

estimates indicate that they might be given rather by

irrational than by simple fractional values.

Moreover, DP is extremely robust. It stands for a

whole universality class of phase transitions from a uc-

tuating phase into an absorbing state. In fact, a large

variety of models display phase transitions belonging

to the DP universality class. Thus, on the theoretical

level, DP plays the role of a standard universality class

similar to the Ising model in equilibrium statistical me-

chanics.

In spite of its simplicity, no experiment is known

con�rming the values of the critical exponents quanti-

tatively. An exception may be the wetting experiment

performed by Buldrey et al. where the value of the
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roughness exponent � coincides with �?=�k within less

than 10%. However, since the results of similar exper-

iments are scattered over a wide range, further experi-

mental e�ort would be needed in order to con�rm the

existence of DP in this type of systems.

Apart from diÆculties to realize a non-uctuating

absorbing state, a fundamental problem of DP experi-

ments is the emergence of quenched disorder due to cer-

tain inhomogeneities of the system. Depending on the

type of disorder, even weak inhomogeneities might ob-

scure or even destroy the DP transition. Therefore, the

most promising experiments are those where quenched

disorder is irrelevant on large scales. This is the case,

for example, in wetting experiments (Section IV) and

systems of owing granular matter (Section V).

In spite of all these diÆculties, many physicists be-

lieve that DP should have a counterpart in reality,

mostly because of its simplicity and robustness. There-

fore, Grassberger's message remains valid: The experi-

mental realization of DP is an outstanding problem of

top priority.
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Appendix
A. Quenched disorder

On a coarse-grained scale the temporal evolution of

a DP process without quenched disorder is described

by the Langevin equation [6]

@t� = a�� ��2 +Dr2�+
p
�� ; (18)

where �(x; t) denotes an uncorrelated Gaussian noise:

h�(x; t)�(x0 ; t0)i = �Æd(x� x0)Æ(t� t0) : (19)

The noise �(x; t) represents the intrinsic uctuations

of the DP process due to the stochastic nature of the

dynamic rules. The parameter a controls the rate for

o�spring production and can be thought of as a being

measure of the percolation probability p� pc.

Quenched disorder may be introduced by random

variations of the parameter a, i.e., by adding another

noise �eld �:

a! a+ � : (20)

Thus, the resulting Langevin equation reads

@t� = a�� ��2 +Dr2�+
p
�� + �� : (21)

The noise � is quenched in the sense that quantities

like the particle density are averaged over many inde-

pendent realizations of the intrinsic noise � while the

disorder �eld � is kept �xed. In the following we dis-

tinguish three di�erent types of quenched disorder:

A. Spatially quenched disorder �s(x).

B. Temporally quenched disorder �t(t).

C. Spatio-temporally quenched disorder �st(x; t).

These variants of quenched disorder di�er in how far

they a�ect the critical behavior of DP. In the following

we review some of the main results.

A.1 Spatially quenched disorder

For spatially quenched disorder, the noise �eld � is

de�ned through the correlations

�s(x)�s(x0) =  Æd(x� x0) ; (22)

where the bar denotes the average over independent re-

alizations of the disorder �eld (in contrast to averages

h: : :i over the intrinsic noise �). The parameter  is an

amplitude which controls the intensity of disorder. In

order to �nd out whether this type of noise a�ects the

critical behavior of DP, let us consider the properties of

the Langevin equation under the scaling transformation

x! �x ; t! �zt ; �! ���� ; (23)

where � is a dilatation factor while z = �k=�? and

� = �=�? are the critical exponents of DP. In absence

of quenched disorder, the Langevin equation turns out

to be invariant under rescaling if

z = 2 ; � = 2 ; a = 0 ; d = dc ; (24)

where dc = 4 is the upper critical dimension of DP.

These values are consistent with the DP mean �eld ex-

ponents � = 1, �? = 1=2, and �k = 1, which are valid

in d � 4 dimensions. Checking the scaling behavior

of the additional term ��s in Eq. (21) at the critical

dimension, we observe that it scales as

��s ! ��dc=2����s ; (25)

i.e., spatially quenched disorder is a marginal pertur-

bation. Therefore, it may seriously a�ect the critical

behavior at the transition.

The same result is obtained by considering the �eld-

theoretic action. Without quenched noise, DP is de-

scribed by the action of Reggeon �eld theory [72]

S0 =

Z
ddx

Z
dt � 

h
@t � a�Dr2 + g( � � )

i
 (26)

where  (x; t) represents the local particle density while
� (x; t) denotes the Martin-Siggia-Rosen response �eld.
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As shown by Janssen [73], spatially quenched noise can

be taken into account by adding the term

S = S0 + 

Z
ddx

�Z
dt �  

�2
: (27)

By simple power counting we can prove that this addi-

tional term is indeed a marginal perturbation. Janssen

showed by a �eld-theoretic analysis that the stable �xed

point is shifted to an unphysical region, leading to run-

away solutions of the ow equations in the physical

region of interest. Therefore, spatially quenched dis-

order is expected to crucially disturb the critical be-

havior of DP. The �ndings are in agreement with ear-

lier numerical results by Moreira and Dickman [74] who

reported non-universal logarithmic behavior instead of

power laws. Later Ca�ero et al. [75] showed that DP

with spatially quenched randomness can be mapped

onto a non-Markovian spreading process with memory,

in agreement with previous results.

From a more physical point of view, spatially

quenched disorder in 1+1 dimensional systems was

studied by Webman et al. [8]. It turns out that even

very weak randomness drastically modi�es the phase

diagram. Instead of a single critical point one ob-

tains a whole phase of very slow glassy-like dynamics.

The glassy phase is characterized by non-universal ex-

ponents which depend on the percolation probability

and the disorder amplitude. For example, in a super-

critical 1+1 dimensional DP process without quenched

disorder the boundaries of a cluster propagate at con-

stant velocity v. However, in the glassy phase v decays

algebraically with time. The corresponding exponent

turns out to vary continuously with the mean perco-

lation probability. The power-law behavior is due to

`blockages' at certain sites where the local percolation

probability is small. Similarly, in the subcritical edge

of the glassy phase, the spreading agent becomes lo-

calized at sites with high percolation probability. In

d > 1, however, numerical simulations indicate that a

glassy phase does not exist.

A.2 Temporally quenched disorder

Temporally quenched disorder is de�ned by the cor-

relations

�t(t)�t(t0) =  Æ(t� t0) : (28)

In this case the additional term scales as a relevant per-

turbation ��t ! ��z=2����t. Therefore, we expect the

critical behavior and the associated critical exponents

to change entirely. In the �eld-theoretic formulation

this corresponds to adding a term of the form

S = S0 + 

Z
dt

�Z
ddx �  

�2
(29)

The inuence of spatio-temporally quenched disorder

was investigated in detail by I. Jensen [76]. Employ-

ing series expansion techniques he demonstrated that

the three exponents �; �?; �k vary continuously with

the disorder strength. Thus the transition no longer

belongs to the DP universality class. A �eld-theoretic

explanation of these �ndings is still missing.

A.3 Spatio-temporally quenched disorder

For spatio-temporally quenched disorder, the noise

�eld � is uncorrelated in both space and time:

�st(x; t)�st(x0; t0) =  Æd(x� x0)Æ(t� t0) : (30)

In Reggeon �eld theory, this would correspond to the

addition of the term

S = S0 + 

Z
ddxdt

�
�  
�2

(31)

which is an irrelevant perturbation. Spatio-temporally

quenched disorder is expected in systems where each

time step is associated with a new set of spatial degrees

of freedom. Examples include water in porous media

subjected to a gravitational �eld as well as owing sand

on an inclined plane. In these systems the critical be-

havior of DP should remain valid on large scales.
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