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The �eld equations of a proposed nonsymmetric theory of gravitation are derived when electro-
magnetic �elds are present, by adopting a nonminimal coupling which ensures the validity of the
equivalence principle. The static and spherically symmetric solution of the �eld of a charged point
particle is obtained.

I Introduction

In a previous work [1] a theory of gravitation based

on a nonsymmetric metric was formulated (pure grav-

itation with no association of the antisymmetric part

of the metric to the electromagnetic �eld strength).

The sources of the metric �eld are the matter energy-

momentum tensor T�� and the matter fermionic par-

ticle number current density S�. This is a conserved

current with particle number fermionic charge F =R p�gS0d4x, a constant which measures the coupling

of the current to the geeometry. The theory was shown

to be free of non-physical radiative negative-energy

modes even when it is expanded about a Riemannian

background, being outside of the class of ill-behaved

nonsymmetric theories analyzed by Damour, Deser and

McCarthy [2]. Only the symmetric part of the connec-

tion is present in the �eld equations, making the theory

as close as possible to general relativity. A solution of

the �eld equations for a spherically neutral point parti-

cle has been obtained [3], together with its implications

for the motion of light and test particles. The theory

is shown [3] to be consistent with all four general rel-

ativity solar tests. In the following we shall study the

�eld equations when electromagnetic �elds are present.

The electromagnetic �eld Lagrangian that we shall use

is the one given by Mann, Palmer and Mo�at [4], which

rescues the validity of the weak equivalence principle,

which Will [5] showed to be violated if only a mini-

mal electromagnetic coupling (same form as in general

relativity) were adopted. This is because with such

a minimal coupling the gravitational acceleration a of

an electrically neutral body of total mass m composed

of charged particles turns out to depend on its inter-

nal electrostatic energy Ee. Spedi�cally, the accelara-

tion is related to the one of gravity g by [6] a =g

(1+�Ee=mc2), where � depends on the metric coe�c-

cients. Will then shows that in the case of a nonsym-

metric theory with a minimal electromagnetic coupling

� is not zero. With the coupling proposed by Mann

et al, as written in Eq. (1) below, � turns out to be

null, ensuring then the equivalence principle. The �eld

equations contain one free parameter, Z. However, the

solution of the �eld equations for a static and spher-

ically symmetric �eld turns out to be independent of

Z.

In Sec. II we establish the expression of the gravita-

tionally modi�ed Maxwell inhomogeneous equation and

of the electromagnetic energy-momentum-stress tensor.

In Sec. III we display the �eld equations of the theory

when the electromagnetic �eld is present and in Sec. IV

we determine the solution of the coupled �eld equations

for the case of a static and spherically symmetric point

particle. We draw our conclusions in Sec. V.

II The electromagnetic �eld

equations

Mann et al [4] write the electromagnetic Lagrangian

density Lem =
p�gLem with



Lem =
�1
16�

fg��g�� [ZF��F�� + (1� Z) (F��F�� + F��F��)] ; (1)

where, as usual, F�� = A�;� �A�;� is the electromagnetic �eld strength tensor and

f =

p�gp�gs : (2)

The matrix g�� is the inverse of the nonsymmetric gravitational �eld g�� de�ned by

g��g�� = g��g�� = Æ�� ; (3)

g = detg�� and gs = detg(��). The minimal coupling would correspond to have f and Z both equal to one. Equation
(2) can also be written as

Lem = � 1

16�
fF��F��

h
g(��)g(��) + (2Z � 1)g[��]g[��] + (1� Z)g[��]g[��]

i
; (4)

where round (square) brackets stand for symmetric (antisymmetric) part.
Varying the Lagrangian density with respect with respect to A� of the �eld plus the interaction Lagrangian density,
Lem = �p�gJ�A�, we get, using Eq. (4)

@�

hp�gf �g(��)g(��) + (2Z � 1)g[��]g[��] + (1� Z)g[��]g[��]
�
F��

i
= �4�p�gJ�; (5)

which is the inhomogeneous Maxwell equation in the presence of the nonsymmetric �eld. Next we consider the
variation with respect to g�� . We get

ÆLem =
1

2

p�gÆg��E�� (6)

where

E�� =
1

4�

�
1

4

�
fg�� � 2

@f

@g��

�
g��g�� (ZF��F�� + (1� Z)(F��F�� + F��F��))

� fg�� (ZF��F�� + (1� Z)(F��F�� + F��F��))
�

(7)

d

is the energy-momentum tensor of the electromagnetic
�eld. This is a traceless tensor, g��E�� = 0, because
we have the relation

g��
@f

@g��
= 0: (8)

This can be proved by direct calculation from the
relations g�1 = "��Æg

0�g1�g2g3Æ and g�1
s =

"��Æg
(0�)g(1�)g(2)g(3Æ), or from the relations g =

"��Æg0�g1�g2g3Æ and gs = "��Æg(0�)g(1�)g(2)g(3Æ)
together with g�� (@g��=@g

��) = �g�� (to obtain this
last relation just write its right hand side as ag�� and
then contract with g�� to obtain a = �1).

III The gravitational �eld equa-

tions

When the electromagnetic �eld is present, the gravita-
tional �eld equations of the theory [1] become

U(��) +�g(��) = 8�(T
0

(��) +E(��)); (9)

�(g[��];� + c:p:) = 8�(E[��];� + T
0

[��];� + c:p); (10)

where T
0

�� = T�� � (1=2)g��T with T = g��T��; c.p.
stand for the cyclic permutation of the indices �; � and
�, � is the cosmological constant and

U�� = ��(��);����(��);�+��(��)�
�
(��)���(��)�

�
(��); (11)

involving only the symmetric part of the connection, is
the analogue of the Riemannian Ricci tensor, and�p�gg[��]�

;�
= 4�

p�gS�: (12)

Since at in�nity the �eld of localized matter tends to
that of at space-time, g[��] as well as g[��] must satisfy
the boundary condition of vanishing at in�nity.

We also have the relation

��(��) =
1

2
g(��) (s��;� + s��;� � s��;�)

+
1

4

�
ln

s

g

�
;�

�
g(��)s�� � Æ��Æ

�
� � Æ�� Æ

�
�

�
;(13)



where s�� , symmetric and with determinant s, is the
inverse of g(��), de�ned by g(��)s�� = Æ��.

It is to be noted that T�� , de�ned [1] by ÆLm =
(
p�g=2)Æg��T�� where Lm is the matter Lagrangian
density, is related to the contravariant matter tensor
T�� , de�ned by Lm = �(p�g)=2)Æg��T�� as in gen-
eral relativity, by[1]

T�� = g��g��T
��: (14)

This follows from the relation Æg�� = �Æg��g��g�� , re-
sulting from the variation of Eq. (3). Therefore, T��
will have a symmetric and an antisymetric part even
for a symmetric T��.

IV The �eld of a charged point

particle

The static and spherically symmetric metric tensor in
spherical polar coordinates is of the form

g00 = (r); g11 = ��(r);
g22 = �r2; g33 = �r2 sin2 �;
g01 = �!(r) = �g10; (15)

and all other components equal to zero. The non-zero
elements components of the inverse matrix are

g00 =
�

(� � !2)
; g11 = � 

(� � !2)
;

g22 = � 1

r2
; g33 = � 1

r2 sin2�
;

g01 =
!

� � !2
= �g10: (16)

Outside the source, in vacuum, the solution of Eq. (12)

is [3], for � = 0, !r2(� � !2)�
1

2 = F , where F is the
conserved number fermionic charge . Then,

!2 = �
F 2

F 2 + r4
: (17)

As g = (!2 � �)r4 sin2� and gs = ��r4 sin2�, we
get from Eq. (2),

f =

s
1� !2

�
=

s
1� g01g10

g00g11
: (18)

The second way of writing the value of f makes it easier
the calculation of its g��-derivatives. The electric �eld

is E(r) = F01. Now, outside the source Eq. (5) yields,
for � = 0,

@r

�
r2Ep
�

�
= 0; (19)

independently of Z. Upon integration we get

E =
Q

r2
p
�; (20)

where the constant of integration has been put equal
to the charge Q of the particle to reproduce the usual
Reissner-Nordstr�om (RN) result when F = 0; which
implies, from Eq. (27) below, � = 1. From Eqs. (7),
(18) and (20) we obtain the following non-zero compo-
nents of E�� :

4�E00 =
1

2

Q2

r4
q

1� !2

�

�
1 +

!2

�

�
; (21)

E11 = ��


E00; (22)

4�E22 =
Q2

2r2
1q

1� !2

�

; (23)

E33 = sin2� E22; (24)

4�E01 =
Q2

r4
!q

1� !2

�

= �4�E10: (25)

We see that the energy-momentum tensor is indepen-
dent of Z and, therefore, the same will occur for the
gravitational �eld equations.

From now on the calculation proceeds as in Ref. [3].
From Eqs. (15) and (25) we see that Eq. (10) is iden-
tically satis�ed. From Eqs. (9) and (22) we obtain
�U00 + U11 = 0; as in Ref. [3]. It then follows the
same relation

�
0

�
+


0


=

2

r

F 2

F 2 + r4
; (26)

derived in [3], which integrates to

� =

�
1 +

F 2

r4

�
�1=2

: (27)

Recalling Eq. (17) we then obtain

! = � Fr

(F 2 + r4)
3=4

: (28)

From now one we shall neglected the small contribu-
tion of the cosmological constant in Eq. (9). The U22

equation gives, after using Eqs. (23) and (17),



(
r

�
)
0 � 1 +

r

2�

 
�

0

�
+


0


+

4F 2

r (F 2 + r4)

!
= �Q2

r4
�
F 2 + r4

�1=2
: (29)

Using Eq. (26) we get

(
r

�
)
0 � 1 +

1

�

3F 2

(F 2 + r4)
= �Q2

r4
�
F 2 + r4

�1=2
: (30)

Choosing the constant of integration in such a way that the RN result is obtained when F = 0, we get

1

�
=

�
1 +

F 2

r4

�
�
�
1 +

F 2

r4

�3=4 �
2m

r
+

Q2

r
f(r)

�
; (31)

where m is the mass of the charged particle and

f(r) =

Z
dr

r (F 2 + r4)
1=4

; (32)

which goes to �r�1 when F vanishes. Then, from Eq. (27) we obtain

 =

�
1 +

F 2

r4

�1=2

�
�
1 +

F 2

r4

�1=4 �
2m

r
+

Q2

r
f(r)

�
: (33)

Equation (32) can be put in closed form:

f(r) =
1

2jF j1=2

2
64tan�1

�
1 +

r4

F 2

�1=4

+
1

2
ln

0
B@
�
1 + r4

F 2

�1=4
� 1�

1 + r4

F 2

�1=4
+ 1

1
CA� �

2

3
75 ; (34)

with the term ��=2 to give the right limit, �r�1; when F vanishes.

d

The electric �eld is, from Eqs. (20) and (27),

E(r) =
Q

r2

�
1 +

F 2

r4

�
�1=4

: (35)

At large distances, r >> j F j 12 ; E(r) goes into the RN
Coulomb �eld but for small values of r, it behaves as
r�1.

V Conclusions

By adopting a nonminimal coupling that ensures the va-
lidity of the equivalence principle we have derived the
�eld equations of a proposed nonsymmetric theory of
gravitation [1] when electromagnetic �elds are present.
The nonminimal coupling contains one free parame-
ter, Z. However, it is shown that for a static spher-
ically symmetric �eld the electromagnetic �eld equa-
tions and the energy-momentum-stress tensor are in-
dependent of Z. Therefore, from this last fact, it fol-
lows that the same will occur for the gravitational �eld

equations. The solution of the �eld equations for the
case of charged point particle is obtained. Apart from
de strong deviation of the metric tensor from the usual
Reissner-Nordstr�om (RN) solution, the electric �eld de-
parts strongly from the Coulomb �eld value obtained in
the RN case, to which it approaches only at large dis-
tances. At small distances it behaves as r�1:
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