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The phenomenon of phase transitions in one-dimensional systems is discussed. Equilibrium systems
are reviewed and some properties of an energy function which may allow phase transitions and phase
ordering in one dimension are identi�ed. We then give an overview of the one-dimensional phase
transitions which have been studied in nonequilibrium systems. A particularly simple model, the
zero-range process, for which the steady state is known exactly as a product measure, is discussed in
some detail. Generalisations of the model, for which a product measure still holds, are also discussed.
We analyse in detail a condensation phase transition in the model and show how conditions under
which it may occur may be related to the existence of an e�ective long-range energy function. It is
also shown that even when the conditions for condensation are not ful�lled one can still observe very
sharp crossover behaviour and apparent condensation in a �nite system. Although the zero-range
process is not well known within the physics community, several nonequilibrium models have been
proposed that are examples of a zero-range process, or closely related to it, and we review these
applications here.

I Introduction

In recent years the study of nonequilibrium systems has
come to the fore in statistical mechanics. Basically,
one can consider two types of nonequilibrium systems:
those relaxing towards thermal equilibrium and those
held far from thermal equilibrium e.g. by the system
being driven by some external �eld. In the present arti-
cle we will be mainly concerned with the latter scenario.

To be more speci�c we de�ne our nonequilibrium
systems as those evolving through a local stochastic
dynamics which a priori does not obey detailed bal-
ance, at least not with respect to any `reasonable' en-
ergy function. The question of what is a reasonable
energy function is a moot point. One might propose
that the energy contains only local interactions, or is
extensive, or is written down according to some physi-
cal principles; but any answer to the question is subjec-
tive. However, the basic point is that the nonequilib-
rium system is de�ned by its dynamics without regard
to any concept of energy and it is the dynamics which
should seem reasonable or `physical'. This is distinct
from an equilibrium system where the energy function
should be `physical' and the dynamics is usually de�ned
in an ad hoc way simply to guarantee that one obtains
the Gibbs-Boltzmann weight with the speci�ed energy.
The easiest way to do this is to use the detailed balance
condition.

A natural way to construct a nonequilibrium steady
state is to drive the system by forcing a current of
some conserved quantity, for example energy or mass,
through the system. Such systems are known as driven
di�usive systems (DDS). The archetypal model was in-
troduced Katz, Lebowitz and Spohn [1]. Basically it
comprises a two dimensional Ising-like lattice gas evolv-
ing under conservative Kawasaki dynamics (spin ex-
change) and with a drive direction imposed. It has
been shown that a continuous phase transition exists in
the driven system, as is also the case in the undriven
(Ising) system, but, most interestingly, one sees generic
long range (power-law decay) correlations as opposed
to the undriven systems where long-range correlations
are only seen at criticality. Although exact results are
not available for this system[2], it is often thought that
generic power-law correlations are related to the ex-
istence of an e�ective long-range Hamiltonian for the
system (see e.g. [3, 4]).

More recently it has been realised that DDS in one
dimension exhibit non-trivial behaviour. The interest
has been from a fundamental viewpoint but also in
the context of applications such as interface growth
[5] and tra�c 
ow modelling [6]. Also it turns out
that problems of transport with a single-�le constraint
have long been of interest in biological contexts such as
transport across membranes [7, 8] and the kinetics of
biopolymerisation[9].
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One intriguing feature of one-dimensional systems
is the possibility of phase ordering and phase transi-
tions. In recent years this possibility has begun to be
explored and some examples are by now well studied.
To appreciate the signi�cance one should recall the gen-
eral dictum that in one-dimensional equilibrium sys-
tems phase ordering and phase transitions do not oc-
cur (except in the limit of zero-temperature, or with
long range interaction|see Section II). In the one-
dimensional nonequilibrium systems studied so far it
appears that the presence of conserved quantities and
an imposed drive are important in allowing ordering
and phase transitions. However there still does not ex-
ist a general theoretical framework within which to un-
derstand the phenomena.

The purpose of this article is twofold. Firstly I
wish to give a broad overview of phase transitions and
phase ordering in one dimension|this is carried out
in Section II. In particular, in Section II.1 we discuss
the conditions under which ordering and phase transi-
tions may occur in equilibrium systems i.e. the req-
uisite properties of the energy function to allow such
phenomena. Then in Section II.2 we catalogue some
nonequilibrium, one dimensional systems which exhibit
non-trivial phase behaviour

The second purpose is to discuss a very simple class
of microscopic models, the zero-range processes [10, 11],
which are presented in Section III.1. For these models
the steady state can be calculated exactly since it fac-
torises into a product measure. There is some irony in
the fact that the system has found widespread applica-
tion in the modelling of nonequilibriumphenomena (see
Section VI), although the zero-range process was orig-
inally introduced by Spitzer[10] as a dynamics which
could lead to Gibbs measures. In Section IV we dis-
cuss generalisations of the basic model which also have
a product measure steady state. We show in Section V
how the model can exhibit a phase transition, that we
shall refer to as a condensation transition, which is anal-
ysed in some detail. We also discuss an interesting
sharp crossover phenomenon whereby models, although
not ful�lling the conditions for strict condensation and
phase ordering, may often appear to be in a condensed
phase on a �nite system. The simplicity of the system
allows us to explore the roles of a conserved quantity,
the presence of a drive and e�ective long-range energy
functions. Conclusions are drawn in Section VII.

II Phase transitions in one

dimension

II.1 One-dimensional equilibrium
systems

As mentioned above, it is received wisdom that in
one-dimensional equilibrium systems phase transitions
do not occur. In fact any careful statement of this re-
quires a few caveats and, indeed, a general rigorous

statement is hard to formulate (see [12] for a discus-
sion).

Perhaps the best known argument is that of Landau
and Lifshitz [13]. For simplicity, consider a one dimen-
sional lattice of L sites with two possible states, say A
and B, for each site variable. Let us assume the ordered
phases, where all sites take state A or all sites take state
B, have the lowest energy, and assume a domain wall
(a bond on the lattice which divides a region of A phase
from that of B) costs a �nite amount of energy �. Then
n domain walls will cost energy n� but the entropic
contribution to the free energy due to the number or
ways of placing n walls on L sites ' nT [ln(n=L)� 1]
for 1 � n � L. Thus for any �nite temperature a
balance between energy and entropy ensures that the
number of domain walls grows until it scales as L, that
is, until the typical ordered domain size is �nite.

Note that this argument relies on a �nite energy
cost for domain walls, and short range interactions so
that one may ignore the interaction energy of domain
walls. Indeed, the Ising model with long-range interac-
tions decaying with distance as J(r) � r�1�� has been
well studied [14] and it has been demonstrated that the
one-dimensional system orders at low temperatures for
� � 1 [15]. Also, of course we require non-zero tem-
perature so that entropy comes into play, otherwise the
two fully ordered states (ground states) would domi-
nate the partition sum and the system would be frozen
into them.

Another even simpler way of thinking of this is from
a dynamical perspective. For a disordered state to or-
der, domain walls must annihilate each other. However
in one dimension no energy is gained by the two domain
walls at opposite ends of a domain moving closer to one
another; a domain always has two domain walls costing
energy 2� no matter what its size is. Therefore there is
no e�ective force to eliminate domains and the system
is disordered. Again, this argument requires a short
range interaction so that one can ignore the energy of
interaction of domain walls above some �nite distance.

A more mathematical way of addressing the ques-
tion of phase transition in 1d is to use the transfer ma-
trix technique [16]. For example, on a periodic one-
dimensional homogeneous system of N sites, the parti-
tion sum can be written as the trace of a product of N
transfer matrices T :

Z = Trace
�
TN

�
=
X
�

�N (1)

where � are the eigenvalues of the transfer matrix. Now,
since the transfer matrix is �nite and the entries are all
positive the Perron-Frobenius theorem [17] tells us that
the largest eigenvalue �max is non-degenerate. Thus,
there can be no crossing of the largest eigenvalue as
we vary some control parameter. Consequently the free
energy F / limN!1(lnZ)=N = �max is analytic and
we have no phase transitions (which would be signalled
by some non-analyticity of the free energy).

Again, there are exceptions to this reasoning i.e.

when the Perron-Frobenius theorem no longer applies.
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This can occur when the transfer matrix becomes in�-
nite due, for example, either to long range interactions
or when the local degree of freedom at each lattice site is
not restricted to a �nite number of states e.g. [18]. (An
extreme instance of the latter case is when we are ac-
tually considering a two dimensional system!) Another
case when the Perron-Frobenius theorem does not ap-
ply is when the transfer matrix becomes reducible i.e.
when there exist components of TN that are zero for
all values of N . This can occur at zero temperature
or when some interaction strengths are set to in�nity,
an example being the �rst order transition in the KDP
model discussed in [19].

In this section we have discussed three arguments,
presented here at di�erent (low) levels of rigour, which
all point to phase transitions in equilibrium one-
dimensional systems only being possible in the case of
long-range interactions, zero-temperature limit or in�-
nite interaction energies, or unbounded local variable
at a site. As we shall see the situation for nonequilib-
rium systems is less restrictive although some parallels
can be drawn.

II.2 One-dimensional nonequilibrium
systems

Here we give an overview of one-dimensional sys-
tems where phase transitions and phase ordering may
occur. We focus our attention on hopping particle mod-
els that, despite their simplicity, o�er a wide range of
non-trivial behaviour.

A simple one-dimensional model of a driven di�u-
sive system is the asymmetric simple exclusion process
(ASEP). Here particles hop in a preferred direction on
a one-dimensional lattice with hard-core exclusion (at
most one particle can be at any given site). Indicating
the presence of a particle by a 1 and an empty site (hole)
by 0 the dynamics comprises the following exchanges at
nearest neighbour sites

1 0 ! 0 1 with rate 1

0 1 ! 1 0 with rate q (2)

The open system was studied by Krug[20] and
boundary induced phase transitions shown to be possi-
ble. Speci�cally one considers a lattice of N sites where
at the left boundary site (site 1) a particle is introduced
with rate � if that site is empty, and at the right bound-
ary site (site N ) any particle present is removed with
rate �. Thus the dynamical processes at the boundaries
are

at site 1 0 ! 1 with rate �

at site N 1 ! 0 with rate � : (3)

These boundary conditions force a steady state current
of particles J through the system. Phase transitions
occur when limN!1 J exhibits non-analyticities. The
steady state of this system was solved exactly for the to-
tally asymmetric case [21, 22] and more recently for the

general q case [23, 24]. When q < 1 the phase diagram
comprises three phases: a high-density phase where the
current is limited by a low exit rate � and takes the ex-
pression J = �(1� q � �)=(1� q); a low-density phase
where the current is limited by a low injection rate �
and takes the expression J = �(1 � q � �)=(1 � q); a
maximal-current phase where both �; � > (1�q)=2 and
the current is J = (1 � q)=4. In the maximal current
phase generic long-range correlations exist, an example
being the decay of particle density from the left bound-
ary to the bulk value 1=2 which is a power law � 1=x1=2

where x is distance from the left boundary.

Clearly the presence of a conserved quantity and
a drive, leading to non-zero current J is crucial to the
phase transition. Indeed, the qualitative phase diagram
appears robust for stochastic one-dimensional driven
systems [25]. For the case of no bulk drive q = 1 [26, 27],
or `reverse bias' q > 1 [24] the current vanishes with in-
creasing system size and there are no boundary-induced
phase transitions.

The model has been generalised to two oppositely
moving species of particle: one species is injected at the
left, moves rightwards and exits at the right; the other
species is injected at the right, moves leftwards and ex-
its at the left [28]. Spontaneous symmetry breaking has
been shown to occur, whereby for low exit rates (�) the
lattice is dominated by one of the species at any given
time. In the low � limit the mean 
ip time between
the two symmetry-related states has been calculated
analytically and shown to diverge exponentially with
system size [29].

In these models the open boundaries can be thought
of as inhomogeneities where the order parameter (par-
ticle density) is not conserved. Inhomogeneities which
conserve the order parameter can be considered on a pe-
riodic system. Indeed a single defect bond on the lattice
(through which particles hop more slowly) is su�cient
to cause the system to separate into two macroscopic
regions of di�erent densities [30]: a high density region
which can be thought of as a tra�c jam behind the
defect and a low density region in front of the defect.
Here the presence of the drive appears necessary for the
defect to induce the phase separation.

Moving defects (i.e. particles with dynamics di�er-
ent from that of the others) have also been considered
and exact solutions obtained [31, 32, 33, 34, 35]. In
the model studied in [33, 34, 35], varying the rate at
which the defect particle hops forward, denoted �, and
the rate at which it is overtaken and exchanges places
with normal particles, denoted �, produces a phase di-
agram closely related to the open boundary problem.
Moreover for low � and high � there is a phase where
the defect particle induces phase separation between a
high density region behind it and a low density region
in front of it.

For some of the examples discussed so far the steady
state has been solved exactly by constructing a matrix
product which is reviewed in [36]. This reveals that the
steady state weights are very complicated functions of
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the particle number and positions. It does not appear
easy to relate this to any concept of an energy function.
Indeed, it has been shown that a matrix product state
is non-Gibbsian [37].

A natural question to ask is whether systems related
to the hopping particle models described so far, but
without inhomogeneities, can exhibit phase ordering.
A very simple model was introduced in [38] comprising
three species of conserved particles, amongst which all
possible exchanges are allowed. However a key feature
is that the dynamics has a cyclic symmetry. To be spe-
ci�c let each site of a one-dimensional periodic lattice
be occupied either by an A;B or C particle (there are
no holes in this model). The dynamical exchanges are

A B ! B A with rate q

B A ! A B with rate 1

B C ! C B with rate q

C B ! B C with rate 1

C A ! A C with rate q

A C ! C A with rate 1 (4)

and we will take q < 1. For example, the hopping of an
A particle is biased to the right when it is an environ-
ment of Cs and it is biased to the left when it is in an
environment of Bs.

The phase separation observed in the model is
rather easy to understand: if the system has separated
into a domain of As, followed by a domain of Bs, fol-
lowed by a domain of Cs (in that order), then the do-
main walls that are present AB, BC, CA are all stable
objects. This is clear from (4) since, for example, any A
particles which penetrate the B domain will be driven
backwards by the dynamics. On the other hand BA,
CB or AC walls are all unstable objects and would be
quickly eliminated by the dynamics.

In the special case of exactly equal numbers of A;B
and C particles it was shown that the model actually
obeys detailed balance with respect to a long range
asymmetric, energy function. In fact the energy is non-
extensive in the sense that most con�gurations have
energies of order N2[38]. The partition sum was calcu-
lated in the large N limit (with q �xed) and shown to
depend linearly on N . This re
ects the fact that the
phase separation is into three pure domains and the
partition sum is dominated by the N equivalent trans-
lations of the structure comprising three pure domains.
When the numbers of particles are not identical, de-
tailed balance does not hold but the phase separation
into pure domains remains. Similar behaviour has been
found in other related models with conserving dynamics
[39, 40]. Another interesting model is where phase sepa-
ration occurs on a quasi-one-dimensional system (2�N
sites) but not on a strictly one-dimensional system [41].
It should also be mentioned that systems with a cyclic
symmetry but with non-conserving dynamics have been
studied and shown to order into a frozen state [42].

Any discussion of nonequilibrium phase transitions
is not complete without mentioning the most well

known class, that of directed percolation. Various mod-
els are reviewed elsewhere in this volume[43] so here I
just sketch the basic behaviour by referring to a partic-
ular model, the contact process [44, 45]. Each site of a
lattice is either empty or contains a particle. Particles
are annihilated with rate 1 and particles are created at
empty sites with rate n�=2 where n is the number of
occupied nearest neighbours of the site (n = 0; 1; 2).
Note that the `inactive state' where all sites are empty
is an absorbing state. Above a critical value of � there
is a �nite probability that starting from a single parti-
cle on an in�nite lattice, the system will remain active
as t!1. This phase transition has well-studied asso-
ciated critical exponents and scaling behaviour. More-
over it appears to be a universality class in the sense
that the same exponents are found in all systems, with
the same symmetry and conservation laws, exhibiting
a phase transition from an absorbing inactive state to
an active state[45].

However as described so far the contact process is
distinct from the other hopping particle models dis-
cussed in that on any �nite lattice the absorbing state is
reached in a �nite time and is therefore the steady state.
The active state only becomes available as a steady
state on an in�nite system. We mention brie
y that
it is in fact possible to de�ne hopping particle models,
similar in spirit to the nonequilibriummodels discussed
in previous paragraphs, that exhibit phase transitions
connected with directed percolation. These models can
have non-conserved order parameter [46] or conserved
order parameter [47]. Although there are no absorbing
states in these models, they have the common feature
of certain microscopic processes being forbidden.

A �nal class of transitions in one-dimensional hop-
ping particle models is that involving spatial conden-
sation, whereby a �nite fraction of the particles con-
denses onto the same site. Examples include the ap-
pearance of a large aggregate in models of aggregation
and fragmentation[48] and the emergence of a single

ock in dynamical models of 
ocking [49, 50]. In Sec-
tion V we shall examine a very simple example of a
condensation transition which occurs in the zero-range
process and see how it is related to a defect induced
transition.

III The zero-range process

The zero-range process was �rst introduced into the
mathematical literature as an example of interacting
Markov processes [10]. Since then the mathematical
achievements have been to prove existence theorems,
invariant measures and hydrodynamic limits [44, 51].

It is not widely appreciated that the zero-range pro-
cess has many physical applications; moreover it has
often appeared incognito in a wide range of di�erent
contexts. Examples include the repton model of poly-
mer dynamics with periodic boundary conditions [52];
a model of sandpile dynamics [53]; the backgammon
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model [54] for glassy dynamics due to entropic barri-
ers; the drop-push model for the dynamics of a 
uid
moving through backbends in a porous medium [55];
microscopic models of step 
ow growth [56, 57] and a
bosonic lattice gas [58]. We shall discuss some of these
in the sequel. The zero-range process is also closely re-
lated to the more widely known asymmetric exclusion
process [10, 44] as we shall describe below.

III.1 Model de�nition

In general one can consider the zero-range process
on a lattice of arbitrary dimension, and of a (countably)
in�nite or �nite number of sites. Initially Spitzer [10]
considered a �nite number of sites. However, subse-
quently most mathematical works tackle the invariant
measure on an in�nite system [11]. For our purposes,
it is most convenient to consider a �nite system, com-
pute the steady state and only then take the limit of
an in�nite system. Note that the steady state t ! 1
and the in�nite volume limit do not necessarily com-
mute e.g. on an in�nite system the invariant measure
(steady state) is not necessarily unique.

We consider a one-dimensional �nite lattice of M
sites with sites labelled � = 1 : : :M and periodic bound-
ary conditions. Each site can hold an integer number
of indistinguishable particles. The con�guration of the
system is speci�ed by the occupation numbers n� of
each site �. The total number of particles is denoted
by L and is conserved under the dynamics. The dy-
namics of the system is given by the rates at which a
particle leaves a site � (one can think of it as the top-
most particle|see Fig. 1a). As our �rst example we
assume it moves to the left nearest neighbour site ��1.
The hopping rates u(n) are a function of n the number
of particles at the site of departure. Some particular
cases are: if u(n) = n then the dynamics of each parti-
cle is independent of the others; if u(n) = const for
n > 0 then the rate at which a particle leaves a site
is una�ected by the number of particles at the site (as
long as it is greater than zero). It is helpful to think of

performing a Monte-Carlo simulation: in the u(n) = n
case at each update a particle would be picked at ran-
dom and moved to its nearest neighbour site; in the
u(n) = constant case a site would be picked at random
and a single particle moved to the nearest neighbour
site.

A possible source of confusion in the de�nition of
the model is that in [10] and some other papers the
hop rates u(n) are de�ned as the hop rate per particle
at a site; thus u(n) in those works are 1=n of the u(n)
de�ned here.

The important attribute of the zero-range process
is that it yields a steady state described by a product
measure. By this it is meant that the steady state prob-
ability P (fn�g) of �nding the system in con�guration
fn1; n2 : : :nMg is given by a product of factors f(n�)
often referred to as marginals

P (fn�g) =
1

Z(M;L)

MY
�=1

f(n�) : (5)

Here the normalisation Z(M;L) is introduced so that
the sum of the probabilities for all con�gurations, with
the correct number of particles L, is one. We shall
explore later in Section V the interesting possibilities
a�orded by the form (5).

In the basic model described above, f(n) is given by

f(n) =
nY

m=1

1

u(m)
for n � 1

= 1 for n = 0 (6)

Note that f(n) is de�ned only up to a multiplicative
constant and we could have included a factor zn in (6).
Later this factor reappears as a fugacity in Section V.

The proof of (5,6) is, happily, straightforward. One
simply considers the stationarity condition on the prob-
ability of a con�guration (probability current out of the
con�guration due to hops is equal to probability current
into the con�guration due to hops):

c

X
�

�(n�)u(n�)P (n1 : : :n� : : :nL) =
X
�

�(n�)u(n�+1+1)P (n1 : : :n��1; n�+1+1 : : :nL) : (7)

We have included the Heaviside function to highlight that it is the sites with n > 1 that allow exit from the
con�guration (lhs of (7)) but also allow entry to the con�guration (rhs of (7)). Equating the terms � with � > 1
and cancelling common factors assuming (5), results (for n� � 1) in

u(n�)f(n��1)f(n�) = u(n�+1 + 1)f(n� � 1)f(n�+1 + 1) (8)

This equality can be recast as

u(n�)
f(n�)

f(n� � 1)
= u(n�+1 + 1)

f(n�+1 + 1)

f(n�+1)
= constant (9)
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Setting the constant equal to unity implies

f(n�) =
f(n� � 1)

u(n�)
(10)

and iterating (10) leads to (6) where we have chosen
f(0) = 1.

Figure 1. Equivalence of zero range process and asymmetric
exclusion process.

III.2 Relation to the asymmetric
exclusion process

There exists an exact mapping from a zero-range
process to an asymmetric exclusion process. This is il-
lustrated in Fig. 1. The idea is to consider the particles
of the zero-range process as the holes (empty sites) of
the exclusion process. Then the sites of the zero-range
process become the moving particles of the exclusion
process. This is possible because of the preservation
of the order of particles under the simple exclusion dy-
namics. Note that in the exclusion process we have M
particles hopping on a lattice of M + L sites

An interesting feature of the mapping is that it con-
verts a model where the local degree of freedom can
take unbounded values (particle number in the zero-
range process) to a model where the local site variable
is restricted to two values. On the other hand, a hop-
ping rate u(m) which is dependent on m corresponds to
a hopping rate in the exclusion process which depends
on the gap to the particle in front. So in principle the
particles can feel each other's presence and it is possible
to have a long-range interaction.

IV Generalizations

We now show how the totally asymmetric, homoge-
neous zero-range process we have considered so far may
be generalised yet retain steady states of a similar form
to (5,6).

IV.1 Inhomogeneous system

First we consider an inhomogeneous system by
which we mean the hopping rates are site dependent:
the hopping rate out of site � when it contains n� par-
ticles is u�(n�). It is easy to check that the steady state
is simply modi�ed to

P (fn�g) =
1

Z(M;L)

LY
�=1

f�(n�) : (11)

where f� are given by

f�(n) =
nY

m=1

1

u�(m)
for n � 1

= 1 for n = 0 (12)

The proof is identical to that given above for the ho-
mogeneous case, with the trivial replacement of u(n�)
by u�(n�)

IV.2 Discrete Time Dynamics

A further generalisation is to the case of discrete
time dynamics. This has been studied in [59] in the
context of a disordered asymmetric exclusion process.
Here we translate the results into the zero-range pro-
cess. Rather than processes occurring with a rate, time
is counted in discrete steps and at each time step events
occur with certain probabilities.

In the case of Parallel Dynamics, at each time-step
all sites are updated. One particle from each site � is
moved to the left, each with probability p�(n�) where
n� is the number of particles at the site before the up-
date. Note that the particles move simultaneously and
particles do not move more than one site.

It turns out that the steady state again has the form
(11). It was shown in [59] that

f�(n) = 1� p�(1) for n = 0

=
1� p�(1)

1� p�(n)

nY
m=1

1� p�(m)

p�(m)
for n > 0 :

(13)

To recover the continuous time dynamics we can call
the interval between time steps dt and let p�(n�) =
u�(n�)dt. Then continuous time dynamics is given by
the limit dt ! 0 and, to within a constant factor dtn,
(13) recovers (12). In this way one can interpolate be-
tween discrete time, parallel dynamics and continuous
time dynamics.

In [59] ordered sequential updating schemes were
also considered. These are discrete time updating
schemes were one site is updated at a time, but the sites
are updated in a �xed order. The steady states for the
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forwards and backwards updating sequences were de-
rived and it turns out they too have the form (11) with
f� taking an expression related to the parallel case (13).

IV.3 Arbitrary Network

In the original paper paper of Spitzer[10] some more
general versions of the zero range process were consid-
ered. Here we discuss one interesting case which serves
to generalise the (totally asymmetric) zero range pro-
cess de�ned above to a process on a more general lattice
or for any �nite collection of points with a prescribed
transition matrix for the dynamics of a single particle
[11].

In this case the rate of hopping of a particle at site
� containing n� particles is equal to u�(n�) and the
probability that a particle leaving site � will move to
site � is denoted W (�!�). Thus the probability that
in time dt a particle at � moves to � is

u�(n�)W (�!�) dt : (14)

Note that the probabilitiesW (�!�) de�ne a stochastic
matrix for a single particle moving on a �nite collection
of M sites and we takeX

�

W (�!�) = 1 : (15)

so that probability is conserved. We refer to the collec-
tion of points together with the prescribed transition
matrix W (�!�) as the network.

We assume that the transition matrix is irreducible
(i.e. the particle can pass from any given point to any
other after su�cient time and the system is ergodic) so
that we have a unique steady state probability for the
single particle problem:

s� =
X
�

s�W (�!�) : (16)

We now show that the steady state for the many-
particle problem de�ned above is given by (11) where
now f�(n) is given by

f�(n) =
nY

m=1

�
s�

u�(m)

�
for n � 1

= 1 for n = 0 (17)

The proof is again a straightforward generalisation of
that of Section III. Equation (7) is modi�ed to

c

X
�

�(n�)u�(n�)P (n1 : : :nL) =
X
�

X
� 6=�

�(n�)p(�!�)u�(n�+1)P (n1 : : :n�+1 : : :n��1 : : :nL) : (18)

Equating the terms � on each side of (18), assuming (11) and cancelling common factors yields

�(n�)u�(n�)f�(n�) = �(n�)
X
� 6=�

W (�!�)u�(n�+1)f�(n��1)
f�(n�+1)

f�(n�)
: (19)

d

Inserting (17) leads to the condition

s� =
X
� 6=�

s�W (�!�) (20)

which is the same as the single particle steady state
condition (16).

A simple case considered by Spitzer is when
W (�!�) is a doubly stochastic matrix which is de�ned
by the propertyX

�

W (�!�) =
X
�

W (�!�) = 1 : (21)

Equations (21) and (16) then imply that the single par-
ticle problem has a homogeneous steady state s� = con-
stant.

Let us also discuss an example where the single par-
ticle problem has an inhomogeneous steady state. We

consider a one-dimensional lattice where hops to the left
and right neighbours are allowed but with probabilities
that depend on the site. Thus, we may write

W (�!�) = q� for � = �+ 1 (22)

= 1� q� for � = � � 1 (23)

= 0 otherwise : (24)

The steady state of the single particle problem (random
walker on a disordered one dimensional lattice [60])

s� = (1� q�+1)s�+1 + q��1s��1 (25)

can be solved and one obtains

s� =

"
M�1X
i=0

1

q��i

iY
�=0

q���
1� q���

#
: (26)

This network is relevant to the disordered one-
dimensional exclusion process studied in [61, 62, 63].
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The sites in the present model correspond to the parti-
cles in the exclusion process which each have their own
forward and backward hopping rates. Another, par-
ticular instance of this network occurs in [52], where

a repton model of gel electrophoresis is studied in the
case of periodic boundary conditions (see Section VI).

In special cases of the zero-range process detailed
balance may hold. The condition for this is

c

u�(n�)W (�!�)P (n1 : : :nL) = u�(n� + 1)W (�!�)P (n1 : : : n�+1 : : :n��1 : : :nL) : (27)

Substituting the form (11,17) leads to the condition

d

s�W (�!�) = s�W (�!�) (28)

which is just the detailed balance condition for the sin-
gle particle problem.

An interesting consequence of the form of the steady
state (17) is that it allows one to relate an arbitrary
zero-range process to a model obeying detailed balance.
The idea is that if detailed balance doesn't hold, we can
always de�ne a new zero-range process (to be denoted
by a prime) with the same steady state, but with a dif-
ferent dynamics obeying detailed balance. To do this,
we solve the single particle problem (16) for the original
model to obtain s�. For any collection of points we can
always de�ne a new single particle transition matrix
W 0(�!�) that satis�es detailed balance with respect
to a homogeneous steady state (s0� = constant). The
new model is de�ned by a new set of hopping rates
u0�(m) = u�(m)s0�=s� together with the new transition
matrixW 0(�!�). It is easy to check from (17) that the
new model has the same steady state as the original.

Thus, within the realm of zero-range processes, to
the steady state of any nonequilibrium model we can
always identify a model satisfying detailed balance and
therefore an energy function. Of course, although the
steady states are the same, there is no reason for the
dynamical behaviour of the two systems to be related.
To clarify this point we will discuss a simple example

in Section .
The marginals (17) have the interesting structure of

being a product of a term (s�)n that depends on the
nature of the network and a term involving the product
of u�(m) which re
ects the interactions at the site. The
network can represent an arbitrary dimensional lattice
or the e�ects of disorder, the only di�culty to surmount
in obtaining the steady state is the solution of the single
particle problem.

V Condensation Transitions

We now proceed to analyse the steady states of form
(11) and the condensation transition that may occur.
The important quantity to consider is the normalisa-
tion Z(M;L) as it plays the role of the partition sum.
The normalisation is de�ned through the condition

Z(M;L) =
X

n1;n2:::nM

�(
X
�

n��L)
MY
�=1

f�(n�) (29)

where the � function enforces the constraint of L parti-
cles. The normalisation may be considered as the ana-
logue of a canonical partition function of a thermody-
namic system.

We de�ne the `speed' v as the average hopping rate
out of a site

c

v =
1

Z(M;L)

X
n1;n2:::nM

�(
X
�

n��L)u(n1)
MY
�=1

f�(n�)

=
Z(M;L�1)

Z(M;L)
(30)

d

where we have used (11,12). Note that (30) tells us
that the speed is independent of site and thus may be
considered a conserved quantity in the steady state of
the system. In the totally asymmetric system consid-
ered in Section III.1 the speed is equal to the current

of particles 
owing between neighbouring sites and is
clearly a conserved quantity in the steady state. More
generally, however, the speed is not equal to the current
and the fact that the speed is a conserved quantity is
not a priori obvious. For example, in a system obey-
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ing detailed balance the (net) current is zero, but the
speed as de�ned above remains �nite. The speed is a
ratio of partition functions of di�erent system sizes (30)

and corresponds to a fugacity, as we shall see below.
We will consider also the probability distribution of

the number of particles at a site, taken here to be site 1

c

P1(n1 = x) =
1

Z(M;L)

X
n2:::nM

�(x + n2 + : : : nM�L)f1(x)
MY
�=2

f�(n�)

= f1(x)
Z(M�1; L�x)

Z(M;L)
(31)

d

(where Z(M�1; L�x) is the partition function for a
system with site 1 removed). In general the probability
distribution is site dependent but for a homogeneous
system (f� independent of �) it will be the same for all
sites.

We now use the integral representation of the delta
function to write the partition function as

Z(M;L) =

I
dz

2�i
z�(L+1)

MY
�=1

F�(z) ; (32)

where

F�(z) =
1X
m=0

zm f�(m) : (33)

For large M;L (32) is dominated by the saddle point
of the integral and the value of z at the saddle point is
the fugacity. The equation for the saddle point reduces
to

L

M
=

z

M

MX
�=1

@

@z
lnF�(z) (34)

which, de�ning � = L=M , can be written as

� =
z

M

MX
�=1

F 0�(z)

F�(z)
: (35)

In the thermodynamic limit,

M !1 with L = �M ; (36)

where the density � is held �xed, the question is
whether a valid saddle point value of z can be found
from (35). We expect that for low � the saddle point
is valid but, as we shall discuss, there exists a maxi-
mum value of z and if at this maximum value the rhs
of (35) is �nite, then for large � (35) cannot be satis-
�ed. We now consider separately, and in more detail,
how condensation may occur in the inhomogeneous and
the homogeneous case.

V.1 Inhomogeneous case

In general, the inhomogeneous case i.e. where F�(z)
depends on the site � through (17), is di�cult to anal-
yse. Here we would just like to give an idea of how a
condensation transition may occur by discussing a sim-
ple example. We then go on to analyse perhaps the
simplest example of a condensation transition: a single
inhomogeneous site [62].

First we take the general model discussed in Sec-
tion IV.3 and set u�(m) = u� for m > 0 i.e. the
hopping rate does not depend on the number of parti-
cles at a site. We consider doubly stochastic transition
matrices W (�!�) (see Eq. 21) so that we may take
s(�) = constant and without loss of generality we set
the constant equal to one. For the moment we do not
specify further the transition matrix; later we will dis-
cuss two speci�c examples one obeying detailed balance
and one not. Under these conditions f� is given by

f�(n) =

�
1

u�

�n�
(37)

and the probability of occupancies fn1; n2; : : : ; nMg is

P (fn1; n2; : : : ; nMg) =
1

Z(M;L)

MY
�=1

�
1

u�

�n�
: (38)

The mapping to an ideal Bose gas is evident: the L
particles of the zero-range process are viewed as Bosons
which may reside in M states with energies E� deter-
mined by the site hopping rates: exp(��E�) = 1=u�.
Thus the ground state corresponds to the site with
the lowest hopping rate. The normalisation Z(M;L)
is equivalent to the canonical partition function of the
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Bose gas. We can sum the geometric series (33) to ob-
tain F� and F 0� then taking the large M limit allows
the sum over � to be written as an integral

� =

Z 1

umin

duP(u)
z

u� z
(39)

where P(u) is the probability distribution of site hop-
ping rates with umin the lowest possible site hopping
rate. Interpreting P(u) as a density of states, equation
(39) corresponds to the condition that in the grand
canonical ensemble of an ideal Bose gas the number
Bosons per state is �. The theory of Bose condensation
[64] tells us that when certain conditions on the density
of low energy states pertain we can have a condensa-
tion transition. Then (35) can no longer be satis�ed
and we have a condensation of particles into the ground
state, which is here the site with the slowest hopping
rate. This case is discussed further, in the context of
an asymmetric exclusion process on an in�nite system,
by J. Krug in this volume [65].

We now turn to the simplest case of an inhomoge-
neous system: site 1 has u1 = p while the other M � 1
particles have hopping rates u� = 1 when � > 1. It is
easy to see that (11) simpli�es to

P (fn�g) =
1

Z(M;L)

1

pn1
(40)

In this case the normalisation Z(M;L) is easy to cal-
culate combinatorially:

Z(M;L) =
X

n1;n2:::nM

�(
X
�

n��L)p
�n1

=
LX

n1=0

�
L+M�n1�2

M�2

�
p�n1 ; (41)

yielding an exact expression for the speed through (30).
In the thermodynamic limit the sum (41) is dominated
by n1 � O(1) for � < p=(1 � p) and n1 � O(L) for
� > p=(1� p) and it can be shown that

c

for � <
p

1� p
Z(M;L) '

�
L+M
M

�
1

1+�
p

p��(1�p) and v ! 1� � (42)

for � >
p

1� p
Z(M;L) ' p�L (1� p)�(M�1) and v ! �=(1 + �) (43)

d

In the high density phase, de�ned by (43) we have a
condensate since the average number of particles at site
1 is hn1i=L = � � p=(1 � p). In the low density phase
(42) the particles are evenly spread between all sites
and we will refer to it as the homogeneous phase.

We now discuss two models which both have this
steady state: a driven system and a system obeying de-
tailed balance. This provides an illustration of the idea
discussed in Section IV.3 whereby a zero range process
not obeying detailed can be related to one obeying de-
tailed balance.

First we take the totally asymmetric model so that
particles move to the site to the left: the transition
matrix is

W (�!�) = ��;��1 :

So this model is similar to that discussed in Sec-
tion III.1, and a mapping to a totally asymmetric ex-
clusion process can be made in the same way as Sec-
tion III.2. The equivalent exclusion process is illus-
trated in Fig. 2. We see that the equivalent exclusion
process is system of hard-core particles hopping to the
right, one particle being slower than the rest. The in-
terpretation of the two phases within the context of the
exclusion process is that in the condensed phase (for the
exclusion process a low density of particles) a `tra�c

jam' forms behind the slow particle and the slow par-
ticle has a �nite fraction of the lattice as `empty road'
ahead. Whereas in the homogeneous phase (a high den-
sity of particle for the exclusion process) the particles
are roughly evenly spaced.

Figure 2. A totally asymmetric exclusion model (upper)
and a model with zero current (lower) that have equivalent
steady states leading to (41).

On the other hand one may consider the case where
the one particle problem is a symmetric random walk so
that the system obeys detailed balance. The transition
matrix is given by

W (�!�) =
1

2
��;��1 +

1

2
��;�+1 :
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When we map this system to a simple exclusion pro-
cess we see from Fig. 2 that we have a system of parti-
cles, the bulk of which perform a symmetric exclusion
dynamics but with two adjacent asymmetric particles:
the left one biased to the left and the right one biased
to the right. In the condensed phase the gap between
these particles diverges. Previously a single asymmetric
particle in a sea of symmetric particles has been studied
[66] but in that case there is no phase transition. At �rst
it seems that we have found a counterexample to the
received wisdom that no phase transition should occur
in an equilibrium system, since we have a condensation
transition in a model with local dynamics obeying de-
tailed balance. Inferring an energy function from the
steady state (40) through the following equation

exp [�(�E)] = exp [�(x2 � x1) lnp]

reveals that our e�ective energy increases linearly with
distance x2�x1 between the two asymmetric particles.
Therefore the energy is `unphysical' in that it has very
long range interactions. Thus the phase transition can
be rationalised within the categories of exceptions dis-
cussed in Section II.1.

We have seen that this simplest example of a con-
densation transition (a single inhomogeneous site in the
zero range process) is exhibited both in a driven model
and also in a model obeying detailed balance but with
long-range energy function. Again it should be stressed
that although the steady states of these two models
are equivalent, the dynamical properties should be very
di�erent. For example in the homogeneous phase of
the driven model we expect asymmetric exclusion like
behaviour and the dynamic exponent should be 3=2
implying relaxation times of M3=2 on a �nite system.
However in the homogeneous phase of the model obey-
ing detailed balance we expect symmetric exclusion like
behaviour and the dynamic exponent to be 2 implying
relaxation times of M2 [67].

V.2 Homogeneous case

We now consider the homogeneous zero-range pro-
cess where in (14) the hopping rates are site indepen-
dent and the single particle problem (16) has a homoge-
neous steady state s� = 1 [68]. A similar analysis has
been carried out in the context of balls-in-boxes and
branched polymer models [69].

In the present case, (33) is independent of � and
reads

F (z) =
1X
n=0

nY
m=1

�
z

u(m)

�
(44)

The fugacity z must be chosen so that F converges or
else we could not have performed (33). Therefore z is
restricted to z � � where we de�ne � to be the radius
of convergence of F (z). From (44) we see that � is the
limiting value value of the u(m) i.e. the limiting value
of the hopping rate out of a site for a large number of

particles at a site. We interpret (35) as giving a rela-
tion between the density of holes (number of holes per
site) and the fugacity z. The saddle point condition
(35) becomes

� =
zF 0(z)

F (z)
(45)

Given that the rhs of (45) is a monotonically increasing
function of z (which is not di�cult to prove) we deduce
that density of particle increases with fugacity. How-
ever if at z = �, the maximum allowed value of z, the
rhs of (45) is still �nite then one can no longer solve
for the density and one must have a condensation tran-
sition. Physically, the condensation would correspond
to a spontaneous symmetry breaking where one of the
sites is spontaneously selected to hold a �nite fraction
of the particles.

Thus, for condensation to occur (i.e. when � is large
enough for (45) not to have a solution for the allowed
values of z) we require

lim
z!�

F 0(z)

F (z)
<1 : (46)

We now assume that u(n) decreases uniformly to � in
the large n limit as

u(n) = �(1 + �(n)) (47)

where �(n) is a monotonically decreasing function.
Analysis of the series

F (�) =
1X
n=0

exp

(
�

nX
m=1

ln [1 + �(m)]

)

F 0(�) =
1X
n=0

n exp

(
�

nX
m=1

ln [1 + �(m)]

)
(48)

reveals that the condition for condensation is simply
that F 0(�) is �nite and this occurs if u(n) decays to �
more slowly than �(1 + 2=n). (This is easiest to see by
expanding ln [1 + �] and approximating the sum over m
by an integral in (48).)

In order to �t this result into the picture of Section
Section II.1 one can argue that since the condensate has
an extensive number of particles at a site, the local site
variable is unbounded. Therefore the `no phase tran-
sition rule' does not apply. One also gains insight by
translating the results into the language of the simple
exclusion process. In this context we can have conden-
sation if the hop rate of a particle into a gap of size n
decays as �(1+2=n) therefore there is an e�ective long
range interaction.

V.3 Sharp crossover phenomena

Having discussed the case where a true phase tran-
sition occurs we now consider a homogeneous example
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where, although there is no strict condensation transi-
tion, some interesting crossover phenomena occur [68].

Consider

u(n) = 1 for n < r (49)

u(n) = � for n � r : (50)

One can interpret these hop rates as meaning that a
site only distinguishes whether it contains greater than
r particles. When we use the mapping of Section III.2
to a totally asymmetric exclusion process r becomes the

range of the interaction in the sense that it is the num-
ber of sites ahead up to which a particle in the exclusion
process distinguishes.

When these hopping rates are inserted in (44) one
obtains

F (z) =
r�1X
n=0

zn +
1X
n=r

zn�r�n�1 : (51)

Performing the geometric series readily yields

c

F (z) =
1� zr

1� z
+

zr

� � z
(52)

zF 0(z) = z

�
1� zr

(1 � z)2
�
rzr�1

1� z
+

zr

(� � z)2
+

rzr�1

(� � z)

�
: (53)

Then we �nd the condition (45) can be written after a little algebra as

(� � z)2 [�� z(1 + �)] = zr(1� �) [(1+��2z)z � �(1�z)(��z)]

+rzr(1� z)(� � z)(1 � �) (54)

Therefore for large r we �nd the solutions

for � <
�

1� �
z ' �

1+� � r
�

�
1+�

�r
1��

(1+�) (���(1+�)) (55)

for � =
�

1� �
z ' � � �(1+r)=3(1� �) (56)

for � >
�

1� �
z ' � � �(1+r)=2 1��

(���(1+�))1=2
(57)

d

Figure 3. Solutions to (54) for � = 0:5 and r = 10; 20; 30
(increasing in sharpness of curve).

Thus we see as r!1 we have two phases: a high den-
sity phase � > �=(1 � �) where the speed is � and
a low density phase where the speed is �=(1 + �). In

fact these phases correspond exactly to those of the sin-
gle defect problem discussed in the previous subsection
(42, 43) with � playing the role of p. For �nite r, z
is actually a smoothly increasing function of � but we
see from (55,57) that the curve sharpens as r increases.
This is illustrated in Fig. 3 where the numerical solu-
tion to (54) is plotted is plotted for r = 10; 20; 30. One
sees a dramatic sharpening as r increases leading to a
sharp crossover between a low density and high density
regime.

In order to see the e�ects of this sharp crossover it is
interesting to consider the particle number probability
distribution (31) which for this system is site indepen-
dent and given by

P (x) � zx for x < r (58)

� (z=�)x for x � r : (59)

One can think of this as a sum of two distributions, one
for poorly occupied sites x < r and one for well occu-
pied sites x � r. When � > �=(1 � �) the probability
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distribution for large x > r goes as

P (x) � exp

�
�x�(1+r)=2

1� �

(�� �(1 + �))1=2

�
(60)

so that the typical occupancy of well-occupied sites goes
as ��r=2. Taking, for example � = 0:1 and r = 10 leads
to a typical occupancy of � 105. Therefore to simulate
the model one requires a number of particles very much
larger than this! If care is not taken to do this, and the
total number of particles in the system is comparable
to the typical occupancy, one would have an apparent
condensate on a �nite system.

An example of this phenomenon was studied re-
cently within the context of a `bus route model' [70].
There the underlying motivation was to consider how a
non-conserved quantity could mediate an e�ective long-
range interaction amongst a conserved quantity in a
driven system with a strictly local dynamical rule. The
model considered was de�ned on a 1d lattice. Each
site (bus-stop) is either empty, contains a bus (a con-
served particle) or contains a passenger (non-conserved
quantity). The dynamical processes are that passengers
arrive at an empty site with rate �; a bus moves for-
ward to the next stop with rate 1 if that stop is empty;
if the next stop contains passengers the bus moves for-
ward with rate � and removes the passengers. Since the
buses are conserved, there is a well de�ned steady state
average speed v. This fact can be used to integrate
out the non-conserved quantity (passengers) within a
mean-�eld approximation. The idea is that a bus stop,
next to bus 1 say, will last have been visited by a bus
(bus 2) a mean time ago of n=v where n = x2 � x1
is the distance between bus 2 and bus 1. Therefore
the mean-�eld probability that the site next to bus 1 is
not occupied by a passenger is exp(��n=v). From this
probability an e�ective hopping rate for a bus into a
gap of size n is obtained by averaging the two possible
hop rates 1; �:

u(n) = � + (1� �) exp(��n=v) : (61)

We can now see that this mean-�eld approximation
to the bus-route model is equivalent to a homoge-
neous zero-range process as discussed earlier in this
section. Since u(n) decays exponentially, with decay
length r = v=�, the condition for a strict phase tran-
sition is not met. It is reasonable to believe that the
system behaves in a similar way to the system with a
�nite `range' r discussed in Section V.3. Since r can be
made arbitrarily large as �!0, on any �nite system an
apparent condensation will be seen. In the bus route
problem this corresponds to the universally irritating
situation of all the buses on the route arriving at once.

VI Some further applications

As mentioned earlier the zero-range process and related
models have appeared several times in the modelling of

nonequilibrium phenomena. Here we brie
y discuss a
few of these instances to illustrate the ubiquity of the
basic model.

In [53] models of sandpile dynamics are considered.
A zero range process is used to model the toppling of
sand on a one-dimensional lattice; speci�cally the sys-
tem is homogeneous and the occupation number of a
site becomes the height of sand (h) at that site. The
hopping rates are set as u(1) = 1 and u(h) = � for
h > 1, with the transition matrix a symmetric ran-
dom walk, and the limit of large � considered. This
limit means that a particle (grain of sand) keeps mov-
ing until it �nds an unoccupied site, thus a hopping
event may play the role of an avalanche. (Although
in terms of sandpiles and self-organised criticality this
model is rather trivial, it did serve to investigate the
idea of a diverging di�usion constant.) Note that a
slightly di�erent � ! 1 limit (where the direction of
the initial move of the particle is maintained until it
�nds an unoccupied site) was also considered but the
product measure is still retained.

In a di�erent context Barma and Ramaswamy [55]
introduced the `drop-push' model of activated 
ow in-
volving transport through a series of traps. Each trap
can only hold a �nite number of particles. For the trap
depth set equal to one this model is essentially the same
as the sandpile model of [53] discussed above (i.e. it is a
zero-range process with some in�nite rates). In fact the
version studied in [71] is precisely the limit of u(n)!1
for n > 1 of the totally asymmetric zero-range process
described in Section III.1. A generalisation to inhomo-
geneous traps, and partially asymmetric hopping rates
dependent on the occupancy of the trap was made in
[72] and a steady state similar to (11,17) demonstrated.

The zero-range process is also relevant in the con-
text of 1+1 dimensional interface growth by the step

ow mechanism. The interface can be visualised as an
ascending staircase of terraces. Adatoms land on the
terraces and di�use until they bind to the ascending
step. If the ratio of deposition rates over di�usion rates
tends to zero then the resulting dynamics is that a ter-
race shrinks by one unit (and the adjacent higher ter-
race grows by one unit) with a rate proportional to the
size of the terrace. Thus the terrace lengths are equiva-
lent to the site occupancies of an asymmetric zero-range
process that was discussed in Section III.1. The equiv-
alence of zero range processes to a general class of step

ow models is discussed in [57].

Finally we note that the repton model of gel-
electrophoresis [73] studied in the case of periodic
boundary conditions by [52] is equivalent to an inhomo-
geneous zero-range process. In this case, the particles
of the zero-range process represent the excess stored
length of a polymer which di�uses along the tube of
the polymer. The sites in the zero-range process repre-
sent the segments of the polymer tube and the inhomo-
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geneities in site hopping rates re
ect the shape of the
polymer tube.

VII Conclusion

In this work the aims were to give an overview of
the area of phase transitions and ordering in one-
dimensional systems and also to analyse in some detail
a particularly simple model, the zero-range process. In
Section II several features were identi�ed which could
lead to the anomalous behaviour of ordering and phase
transitions in equilibrium systems: long-range interac-
tions; zero temperature; unbounded local variable. For
nonequilibrium systems some concepts which may be
important emerged: conserved order parameter; drive;
forbidden microscopic transitions.

The simplicity of the zero-range process allowed us
to analyse the steady state of the model in detail. First
we derived the steady state for a general class of zero-
range processes in Sections III and IV. We then anal-
ysed the condensation transitions that can occur. On
an inhomogeneous system the condensation is very rem-
iniscent of Bose-Einstein condensation. For it to oc-
cur requires certain conditions to hold on the distribu-
tion of hopping rates. In the homogeneous system the
condensation corresponds to a spontaneous symmetry
breaking, since an arbitrary site is selected to hold the
condensate. The condition for it to occur is that the
hopping rate dependence on the site occupancy decays
su�ciently slowly. It was also shown that when the
condition for condensation does not hold, one can still
observe very sharp crossover behaviour and apparent
condensation on a �nite system

An interesting possibility that was explored was
that of the existence of an e�ective energy function.
We saw that any steady state of the form (11,17) can
be obtained from a process obeying detailed balance.
However when the e�ective energy is inferred for cases
where phase transition occurs (as was carried out for
an explicit example in Section V.3) we �nd that it con-
tains long-range interactions. Thus the condensation
transition can be rationalised within the equilibrium
framework.

Moreover in the zero-range process the existence of
a drive or preferred direction, producing a conserved
particle current, is not essential for the occurrence of
a condensation transition. What does appear neces-
sary, however, is the conservation of particles. The �xed
number of particles implies implies the introduction of
a fugacity z through (32), which in turn controls the
condensation transition. As we saw the fugacity gives
the hopping rate out of a site (referred to as speed in
Section V) which is a conserved quantity.

On the other hand, for other models the presence of
a preferred direction and conserved current does seem
crucial for the existence of phase transitions. For exam-

ple, the asymmetric exclusion process de�ned in Sec-
tion II.2 has non-trivial phase behaviour but the un-
driven version (symmetric exclusion) does not.

In summary, although a general theoretical frame-
work for the description of phase transitions in one di-
mensional systems is not yet available, we hope that
the issues and models discussed in the present paper
serve to show that our understanding is developing.
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