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On the Classical Energy Equipartition Theorem
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A general proof of the energy equipartition theorem is given. Our derivation holds for any distribu-
tion function depending on the phase space variables only through the Hamiltonian of the system.
This approach generalizes the standard theorem in two main directions. On the one hand, it con-
siders the contribution to the total mean energy of homogeneous functions having a more general
type than the ones usually discussed in the literature. On the other hand, our proof does not rely
on the assumption of a Boltzmann-Gibbs exponential distribution.

The classical energy equipartition theorem consti-
tutes an important result in thermodynamics, statisti-
cal mechanics and kinetic theory, which has been ex-
tensively discussed in the literature [1-9]. Its simplest
version deals with the contribution to the mean energy
of a system in thermal equilibrium at temperature T
due to quadratic terms in the Hamiltonian. More pre-
cisely, it attests that any canonical variable x entering
the Hamiltonian through an additive term proportional
to x2 has a thermal mean energy equal to kT

2 , where k
is the Boltzmann constant. The most familiar example
is provided by a three dimensional classical ideal gas
with Hamiltonian

P
i p

2
i=2m. The mean value of the

kinetic energy associated with the x-component of the
velocity of each particle is (ensemble average is denoted
by hi),

D1
2
m _x2

E
=

D 1

2m
p2x

E
=

1

2
kT: (1)

Some time ago, the derivation of the equipartition
theorem was generalized by Turner[7] in order to in-
clude the presence of nonquadratic terms. More pre-
cisely, assuming that the Hamiltonian H(qi; pi); i =
1; 2; :::f; may be additively separated in the form

H = g(x) + h; (2)

where x denotes one of the 2f coordinates or momenta,
g is an homogeneous function of degree r, and the func-
tion h is independent of x, he shown that the mean

value of g is given by

hgi =
1

r
kT: (3)

We emphasize that the proof furnished by Turner is
valid only for one homogeneous degree of freedom and
makes explicit use of the exponential Boltzmann-Gibbs
distribution. In brief, the main goal of the present work
is just to relax these two hypotheses. We believe that
the analysis of the basic conditions needed for the valid-
ity of the equipartition theorem will contribute to the
understanding of its physical meaning and to the clari�-
cation of its relationship with other physical principles
and theorems. As it appears, the version of equipar-
tition theorem presented here have at least two inter-
esting virtues. The �rst one is to extend the scope of
the theorem so as to incorporate the case of an homo-
geneous component of the Hamiltonian depending on
many canonical variables. The second one is to demon-
strate that the theorem is not an exclusive property
of the exponential Boltzmann-Gibbs distribution func-
tion. We shall see that the theorem holds true essen-
tially for any distribution function that depends on the
canonical variables only through the system's Hamil-
tonian. As it is well known, this set of distribution
functions constitutes a family of legitimate stationary
solutions to Liouville's equation [3]. That is to say,
they are fully consistent with the general principles of
dynamics. As we point out below, these facts may also
be exploited to good methodological advantage in pre-
senting the equipartition theorem.
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Let us consider a Hamiltonian system with f degrees
of freedom (i.e., with a 2f-dimensional phase space)
whose Hamiltonian function is of the form

H = g(x1; : : : ; xL) + h; (4)

where (x1; : : : ; xL) constitutes a subset of the 2f phase
space coordinates, h does not depend on any of those L
variables, and g is an homogeneous function of degree
r. The homogeneity character of g means that for any
� > 0,

g(�x1; : : : ; �xL) = �rg(x1; : : : ; xL): (5)

What we are going to prove is that the only prop-
erties of g determining its contribution hgi to the mean
value of the Hamiltonian are its degree r of homogene-
ity and the number L of its arguments. Thus, our gen-
eral form of the energy equipartition theorem can be
stated as follows: All the homogeneous terms of the

Hamiltonian that are characterized by the same values

of the parameters r and L make the same contribution

to the total mean energy. As already mentioned, we
shall assume that our Hamiltonian system is described
by a phase space probability density f(qi; pi) depend-
ing on the canonical variables only through the system's
Hamiltonian,

f(qi; pi) = F [��� �H(qi; pi)]; (6)

where � is a dimensionless constant determined by the
normalization condition and the constant � is such that
the argument of the function F is dimensionless. For
instance, in the case of Gibbs' canonical ensemble we
have F (x) = ex, � is equal to the logarithm of the par-
tition function Z, and the constant � can be identi�ed
with the inverse temperature 1=kT .

Now, in order to compute the mean value of g, it
proves convenient to introduce the function

I(�) =

Z
A

�
��� �

n
g(�x1; : : : ; �xL)+h

o�
d
; (7)

where d
 = dq1; : : : ; dpf is the phase space volume el-
ement and the function A(x) is a primitive function of
F (x), that is

A0(x) = F (x): (8)

By recourse to the change of integration variables

x0i = �xi; (i = 1; : : : ; L); (9)

it is easy to see that

I(�) = ��L I1; (10)

where I1 = I(� = 1). On the other hand, making ex-
plicit use of the homogeneity of g one �nds

I(�) =

Z
A

�
��� �

n
�rg(x1; : : : ; xL)+h

o�
d
: (11)

Computing the logarithmic derivatives of expressions
(10) and (11) and evaluating them at � = 1, we obtain,
respectively,

�
1

I

dI

d�

�
�=1

= �L; (12)

and

�
1

I

dI

d�

�
�=1

= �
�r

I1
hgi: (13)

These last two relations give us a simple expression for
the mean value of g, namely

hgi =
L

r�
I1; (14)

or equivalently, by identifying � with the inverse tem-
perature 1=kT ,

hgi =
L

r
kT I1: (15)

This expression constitutes the main result of the
present note. Before discussing the physical meaning
of equation (15) a few comments on its mathematical
derivation are in order. First of all, we have assumed
that both the integrals de�ning the quantities I (that is,
equation (11) and dI=d� converge. That is to say, equa-
tion (15) is veri�ed provided that the integrals for I and
dI=d� exist. The convergence of these integrals must
be checked in each speci�c case by recourse to the stan-
dard techniques of the Calculus. This is just the usual
situation with general theorems in theoretical physics,
as can be illustrated by the following elementary exam-
ple. Given a one dimensional, normalized probability
distribution p(x) it is well-known that

D
(x� hxi)2

E
= hx2i � hxi2: (16)

However, this relation makes sense only if the integral
hx2i =

R
x2p(x)dx converges. There are important

probability distributions for which the moment hx2i di-
verges. As a famous example we have the Cauchy dis-
tribution

p(x) =
��1

1 + x2
: (17)

In spite of these problematic cases there can be no
doubt that it is both interesting and useful to know the
general theorem (16), even if it holds only when the
relevant integrals converge. Another moral that we can
extract from the above little example is that it is not
enough to restrict our considerations to the moments
of positive quantities in order to avoid divergence dif-
�culties. It should be stressed that in the case of the
equipartition theorem the problem of convergence is by
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no means a consequence of our generalization. These
kind of di�culties may arise also within the standard
case of the Boltzmann-Gibbs statistical mechanics. For
instance, in the case of a classical self gravitating N -
body system not even the integral de�ning the parti-
tion function converges. Secondly, let us consider the
limits of integration for the integral (11) and the asso-
ciated integral for dI=d�. If those limits go to �1 in
all the variables x1; : : :xL then our derivation is clearly
correct. Let us consider the case when those limits do
not go to �1. In principle, this may happen by two
di�erent reasons:

� (1) The system has intrinsic constraints. For in-
stance, if we have a particle moving inside the one
dimensional box [�L;L] it is plain that the limits
of integration for the coordinate x do not go to
�1.

� (2) The limits of integration do not go to �1 be-
cause the distribution function f(qi; pi) given by
(6) has a cut-o� (as happens, for example, with
Tsallis distribution).

Our generalized version of the equipartition theorem
does not hold in the case (1), and the same happens
with the standard proof of the theorem. The equipar-
tition theorem (as applied to the mean value of an ad-
ditive term in the potential function) is not veri�ed
under this condition because a system endowed with
those kind of constraints is, strictly speaking, outside
the hypothesis of the theorem. Those constraints are
described by \rigid wall" terms in the potential func-
tion associated with the system's Hamiltonian. The
equipartition theorem is not applicable because poten-
tial functions exhibiting rigid walls are not, in general,
homogeneous functions of the coordinates. It is clear
that our generalization must not be blamed for this
di�culty.

On the other hand, our theorem still holds true in
the case (2). Let us assume that the function F (x)
appearing in the de�nition (6) of the phase space dis-
tribution function vanishes outside the interval [a1; a2],
but is continuous at the points a1;2. We can then choose
A(x) (see equation (8)) in such a way that it vanishes
too outside that interval, while being itself continuous
and endowed with continuous derivatives at the points
a1;2. The boundary of the integration region associated
with I(�) and dI=d� is then given by the two phase
space hipersurfaces �(�)1;2 de�ned by the equations

� � � �
n
g(�x1; : : : ; �xL) + h

o
= a1;2: (18)

When we perform the change (9) of integration vari-
ables it is easy to realize, according to elementary calcu-
lus, that in terms of the new variables x0i the boundary
of the integration region is now given by the equations

� � � �
n
g(x01; : : : ; x

0

L) + h
o

= a1;2; (19)

and equation (10) follows immediately. As a �nal com-
ment, notice that when one evaluates the derivative
with respect to � of the expression (7) for I(�), a sur-
face term appears due to the dependence on � of the
boundary of integration. This term, however, makes no
contribution to dI=d� because the integrand A vanishes
at the integration boundary. Taking into account the
above remarks and caveats, equations (12) and (13) are
easily veri�ed.
Equation (15) generalizes the standard energy equipar-
tition theorem. For a system in equilibrium at a given
temperature, it means that the contribution to the
mean energy due to an homogeneous component g of
the Hamiltonian is only a function of the temperature
T , the degree of homogeneity r, and the total num-
ber L of arguments entering the function g. The mean

value of g does not depend upon its detailed structure.
In particular, each quadratic term in the Hamiltonian
depending on a single canonical variable (for example,
each component of the kinetic energy) makes the same
contribution to the total mean energy of the system,
i.e.,

1

2
kT I1: (20)

It is important to stress that the expression (15) was ob-
tained without any assumption about the speci�c form
of the phase space distribution function. However, our
general result does depend on the distribution function
through the quantity (see (7))

I1 =

Z
A(�� � �H) d
: (21)

In the case of Gibbs canonical ensemble, the distribu-
tion function adopts the form

f(qi; pi) = exp(��� �H(qi; pi)); (22)

where the parameter � is equal to the logarithm of the
partition function Z and has a value such that the dis-
tribution f(qi; pi) is appropriately normalized, that is

Z
f(qi; pi) d
 =

Z
exp(��� �H(qi; pi)) d
 = 1:

(23)
Hence, we have F (x) = exp(x) and, since the only re-
quirement on the function A(x) is to be a primitive
function of F (x), we can take

A(x) = F (x) = ex: (24)

Thus, because of the normalization of the canonical dis-
tribution,

I1 =

Z
F (��� �H) d
 = 1: (25)
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Hence, within the Boltzmann-Gibbs formalism, our
generalized theorem (15) leads to

hgi =
L

r
kT: (26)

Turner's result reduces to the particular L = 1 case
of the above expression, which describes the mean value
of an homogeneous component of the Hamiltonian de-
pending on one single canonical variable [7]. On the
other hand, if g is an homogeneous quadratic func-
tion, like the kinetic energy of the N particles in a
nonrelativistic classical gas (L = 3N; r = 2), we re-
cover the standard version of the energy equipartition
theorem usually appearing in textbooks of statistical
mechanics[1-5]

hgi =
3

2
NkT: (27)

Notice, however, that the relation (26) is more gen-
eral than the one usually found in textbooks, since it
deals with homogeneous functions of arbitrary degree of
homogeneity and arbitrary number of arguments. For
instance, consider the case where the potential func-
tion depends on two generalized coordinates q1 and q2
through a term of the form

g(q1; q2) = q21q2: (28)

This is an homogeneous function of degree 3 in the vari-
ables q1 and q2 and, consequently, we have r = 3 and
L = 2. It thus follows that the mean value of g evalu-
ated on the Gibbs canonical ensemble is

hgi =
2

3
kT: (29)

Now we are going to illustrate the application of
the general equipartition theorem to a nonexponen-
tial phase space distribution. Among the several avail-
able possibilities, let us consider the case of a distri-
bution function exhibiting a power law dependence on
the Hamiltonian. These kind of distribution functions
appear naturally in many physical scenarios and are
nowadays being intensively studied (see [10, 11] and ref-
erences therein). For example, these power-law models
have been successfully applied to describe the observed
velocity distribution of clusters of galaxies [12]. The
one-particle power-law distribution is

f(H) =
1

Zq

�
1 � (q � 1)�

1

2
mv2

�1=(q�1)

; (30)

where

Zq =

Z �
1 � (q � 1)�

1

2
mv2

�1=(q�1)

d3v; (31)

and both f and the integrand appearing in the de�ni-
tion of Zq are set equal to zero whenever the quantity

between brackets becomes negative. We shall refer to
this last requirement as the \cut-o�" condition.

In this context, the functions F (x) and A(x) pre-
viously introduced now assume, respectively, the forms
below

F (x) =
1

Zq
[1 + (q � 1)x]1=(q�1)

; (32)

and

A(x) =
1

qZq
[1 + (q � 1)x]

q=(q�1)
: (33)

The contribution of one velocity component to the
mean kinetic energy is

D1
2
mv2x

E
=

1

2
kT I1; (34)

with

I1 =
1

qZq

Z �
1 � (q � 1)�

1

2
mv2

�q=(q�1)

d3v: (35)

By taking q > 1, and making the change of variables
de�ned by

u =
h
(q � 1)�

1

2m
i
�1=2

v; (36)

one may cheek that I1 can be put under the guise

I1 =
1

q

C1

C2
; (37)

where

C1 =

Z 1

0

u2
�
1 � u2

�q=(q�1)
du; (38)

and

C2 =

Z 1

0

u2
�
1 � u2

�1=(q�1)
du: (39)

The above two integrals are tabulated (see, for instance,
[13]). Inserting their values into (37) one obtains

I1 =
2

5q � 3
; (40)

and from equation (34),

D1
2
mv2x

E
=

kT

5q � 3
: (41)

Although evaluating I1 under assumption q > 1, it is
not hard to prove that the expression (40) still holds
true if 3=5 < q � 1. For q values equal or lower than
the critical value qc = 3=5, the mean values of v2x and
v2 diverge. For q < 1=3, nor even the probability dis-
tribution itself is normalizable. Like in the standard
Boltzmann-Gibbs approach, it should be noticed that



180 Brazilian Journal of Physics, vol. 30, no. 1, Mar�co, 2000

the quantity I1 in this example does not depend on the
temperature T . It is also worth remarking that, in the
case of Tsallis statistics, we have illustrated our gen-
eral theorem with the mean value of the kinetic energy
which is always an extensive quantity. That is, the total
kinetic energy of a classical N -body system is equal to
the sum of the contributions due to each component of
the velocities of each of its particles, even if the system
exhibits an overall nonextensive behaviour due to long
range interactions.

Naturally, as we have already mentioned, the gen-
eral energy equipartition theorem (15) is meaningful
only if the distribution function f = F (����H) is nor-
malizable and the integrals de�ning hgi and I1 converge.
Otherwise, relation (15) may lead to somewhat contra-
dictory results. For example, in the case of a function g
endowed with a negative degree of homogeneity, rela-
tion (15) seems to imply that the mean value of g must
be negative, even if g itself is always positive! This dif-
�culty has already been pointed out by Turner[7]. In
this concern, we remark that the distribution function
F (�� � �H) is in general not normalizable when the
Hamiltonian function has a term with a negative degree
of homogeneity.

Summing up, we have shown that Hamiltonian dy-
namical systems decribed by phase space distributions
depending only on the Hamiltonian comply with the
strictures of a generalized energy equipartition theo-
rem. Homogeneous terms in the Hamiltonian exhibit-

ing the same degree of homogeneity and depending on

the same number of canonical variables give the same

contribution to the total mean energy. In the case of
Gibbs canonical ensemble our version of the theorem
reproduces the standard well-known results. However,
it can also be applied within more general frameworks.
Hopefully, the simple generalization presented here may
play an interesting role in the statistics and thermody-
namic of nonextensive systems recently discussed in the
literature[10, 11].
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