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The exact solution of the asymmetric exclusion problem with �rst- and scond-class particles is
presented. In this model the particles (size 1) of both classes are located at lattice points, and
di�use with equal asymmetric rates, but particles in the �rst class do not distinguish those in the
second class from holes (empty sites). We generalize and solve exactly this model by considering
molecules in the �rst and second class with sizes s1 and s2 (s1; s2 = 0; 1; 2; : : :), in units of lattice
spacing, respectively. The solution is derived by a Bethe ansatz of nested type. We give a simple
pedagogical presentation of the Bethe ansatz solution of the problem which can easily be followed
by a reader not specialized in exactly integrable models.

I Introduction

The similarity between the master equation describing

time uctuations in nonequilibrium problems and the

Schr�odinger equation describing the quantum uctua-

tions of quantum spin chains turns out to be fruitful for

both areas of research [1] - [15]. Since many quantum

chains are known to be exactly integrable through the

Bethe ansatz, this provides exact information on the

related stochastic model. At the same time the clas-

sical physical intuition and probabilistic methods suc-

cessfully applied to nonequilibrium systems give new

insights into the understanding of the physical and al-

gebraic properties of quantum chains.

An example of this fruitful interchange is the prob-

lem of asymmetric di�usion of hard-core particles on

the one dimensional lattice. This model is related to

the exactly integrable anisotropic Heisenberg chain [16]

(XXZ model). However if we demand this quantum

chain to be invariant under a quantum group symmetry

Uq(SU(2)), we have to introduce, for the equilibrium

statistical system, unphysical surface terms, which on

the other hand have a nice and simple interpretation

for the related nonequilibrium stochastic system [3, 4].

In the area of exactly integrable models it is well

known that one of the possible extensions of the spin-
1
2 XXZ chain to higher spins, is the anisotropic spin-1

Sutherland model (grading �1 = �2 = �3 = 1) [17]. On

the other hand in the area of di�usion limited reactions

a simple extension of the asymmetric di�usion prob-

lem is the problem of di�usion with �rst and second

class particles[18] - [20] . In this problem a mixture of

two classes of hard-core particles di�uses on the lattice.

Particles belonging to the �rst class ignore the pres-

ence of those in the second class, i. e., they see them

in the same way as they see the holes (empty sites).

In [3] it was shown that for open boundary conditions

the anisotropic spin-1 Sutherland model and this last

stochastic model are exactly related, the Hamiltonian

governing the quantum or time uctuations of both

models being given in terms of generators of a Hecke

algebra, invariant under the quantum group UqSU(3).

In this paper we are going to derive the exact solution of

the associated quantum chain, in a closed lattice. Re-

cently [15] (see also [14]) we have shown that without

losing its exact integrability, we can consider the prob-

lem of asymmetric di�usion with an arbitrary mixture

of molecules with di�erent sizes (even zero), as long

they do not interchange positions, that is, there are no

reactions. Motivated by these results we are going to

extend the asymmetric di�usion problem with a second

class of particles, to the case where the particles in each

class have an arbitrary size, in units of the lattice spac-

ing. Unlike the case of asymmetric di�usion problem,

we have in this case a nested Bethe ansatz [21].

The paper is organized as follows. In the next sec-

tion we introduce the generalized asymmetric model

with second-class particles and derive the associated

quantum chain. In section III the Bethe ansatz solu-

tion of the model is presented in a pedagogical and self
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contained way, which should be simple to follow by an

audience not specialized in exactly integrable models.

Finally in section IV we present our conclusions, with

some possible generalizations of the stochastic problem

considered in this paper, and some perspectives on fu-

ture work.

II The generalized asymmetric

di�usion model with �rst-

and second-class of particles

A simple extension of the asymmetric exclusion model,

where hard-core particles di�use on the lattice, is the

problem where a mixture of particles belonging to dif-

ferent classes (�rst and second class) di�uses on the

lattice. This problem was used to describe shocks [18] -

[20] out of equilibrium and also has a stationary proba-

bility distribution that can be expressed via the matrix-

product ansatz [22]. In this model we have n1 and n2
molecules belonging to the �rst and second class, re-

spectively. Both classes of molecules di�use asymmet-

rically, but with the same asymmetrical rates, whenever

they encounter empty sites (holes) at nearest-neighbor

sites. However, when molecules of di�erent classes are

at their minimum separation, the molecules of the �rst

class exchange position with the same rate as they dif-

fuse, and consequently the �rst-class molecules see no

di�erence between molecules belonging to the second

class and holes.

We now introduce a generalization of the above

model, where instead of having unit size, the molecules

in the �rst and second class have in general distinct

sizes s1 and s2 (s1; s2 = 1; 2; : : :), respectively, in units

of lattice spacing. In Fig. 1 we show some examples of

molecules of di�erent sizes. We may think of a molecule

of size s as formed by s monomers (size 1), and for sim-

plicity, we de�ne the position of the molecule as the

center of its leftmost monomer. The molecules have

a hard-core repulsion: the minimum distance d�� , in

units of the lattice spacing, between molecules � and

�, with � in the left, is given by d�� = s�. In order

to describe the occupancy of a given con�guration of

molecules we de�ne, at each site i of a lattice with N

sites, a variable �i (i = 1; 2; : : : ; N), taking the values

�i = 0; 1 and 2, representing site i empty (size s0 = 1),

occupied by a molecule of class 1 (size s1) or a molecule

of class 2 (size s2), respectively. Then the allowed con-

�gurations are given by the set f�ig (i = 1; : : : ; N),

where for each pair (�i; �j) 6= 0 with j > i we should

have j � i � s�i .

Figure 1. Example of con�gurations of molecules with dis-
tinct sizes s in a lattice of size N = 6. The coordinates of
the molecules are denoted by the black squares.

The time evolution of the probability distribution
P (f�g; t), of a given con�guration f�g is given by the
master equation

c

@P (f�g; t)

@t
= ��(f�g ! f�0g)P (f�g; t) + �(f�0g ! f�g)P (f�0g; t); (1)

d

where �(f�g ! f�0g) is the transition rate for con�gu-

ration f�g to change to f�0g. In the present model we

only allow, whenever it is possible, the particles to dif-

fuse to nearest-neighbor sites, or to exchange positions.

The possible motions are di�usion to the right

1i ;i+s1 ! ;i 1i+1; (rate �R)

2i ;i+s2 ! ;i 2i+1; (rate �R); (2)

di�usion to the left

;i 1i+1 ! 1i ;i+s1 ; (rate �L)

;i 2i+1 ! 2i ;i+s2 ; (rate �L); (3)

and interchange of particles

1i 2i+s1 ! 2i 1i+s2 ; (rate �R)

2i 1i+s2 ! 1i 2i+s1 ; (rate �L): (4)

As we see from (4), particles in the �rst class inter-

change positions with those of the second class with

the same rate as they interchange positions with empty

sites (di�usion). We should remark however that unless
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the second class particles have unit size (s2 = 1), the

net e�ect of the second class particles in those of the

�rst class is distinct from the e�ect produced by the

holes, since as the result of the exchange the �rst class

of particles will move by s2 lattice size units, accelerat-

ing its di�usion.

The master equation (1) can be written as a

Schr�odinger equation in Euclidean time (see Ref. [3]

for general application for two body processes)

@jP >

@t
= �H jP >; (5)

if we interpret jP >� P (f�g; t) as the associated

wave function. If we represent �i as j� >i the vector

j� >1 
j� >2 
 � � � 
 j� >N will give us the associ-

ated Hilbert space. The process (2)-(4) gives us the

Hamiltonian (see Ref. [3] for general applications)

c

H = D
X
j

Hj

Hj = �Pf
2X

�=1

�
�+(E

0�
j E�0

j+1 �E��
j E00

j+1) + ��(E
�0
j E0�

j+1 �E00
j E��

j+1)
�

+�+(E
21
j E10

j+s2E
02
j+s1 �E11

j E00
j+s2E

22
j+s1 ) + ��(E

12
j E20

j+s1E
01
j+s2 �E22

j E00
j+s1E

11
j+s2 )gP (6)

with

D = �R + �L; �+ =
�R

�R + �L
; �� =

�L
�R + �L

(�+ + �� = 1); (7)

d

and periodic boundary conditions. The matrices E�;�

are 3 � 3 matrices with a single nonzero element

(E�;�)i;j = Æ�;iÆ�;j (�; �; i; j 2 Z). The projector P in

(6), projects out from the associated Hilbert space the

vectors jf�g > which represent forbidden positions of

the molecules due to their �nite size, which mathemat-

ically means that for all i; j with �i; �j 6= 0; ji � jj �

s�i(j > i). The constant D in (6) �xes the time scale

and for simplicity we chose D = 1. A particular sim-

pli�cation of (6) occurs when molecules of the �rst and

second class have the same size s1 = s2 = s. In this

case the Hamiltonian can be expressed as an anisotropic

nearest-neighbor interaction spin-1 SU(3) chain. More-

over in the case where their sizes are unity (s = 1) the

model may be related to the SU(3) Sutherland model

with twisted boundary conditions [17].

III The Bethe ansatz equations

We present in this section the exact solution of the gen-

eral quantum chain (6). Since the present paper is go-

ing to appear in a special issue where the main subject

is nonequilibrium physics, we are going to present a

pedagogical and self-contained derivation of the exact

solution, that can easily be followed by a nonexpert in

the arena of exactly solvable models in statistical me-

chanics.

Due to the conservation of particles in the di�usion

and interchange processes the total numbers of particles

n1 and n2 of particles of class 1 and 2 are good quantum

numbers and consequently we can split the associated

Hilbert space into block disjoint sectors labeled by the

numbers n1 and n2 (n1 = 0; 1; : : : ; n; n2 = n�n1; n =

n1+n2). We therefore consider the eigenvalue equation

H jn1; n2 >= Ejn1; n2 >; (8)

where

c

jn1; n2 >=
X
fQg

X
fxg

f(x1; Q1; : : : ;xn; Qn)jx1; Q1; : : : ;xn; Qn > : (9)
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Here jx1; Q1; : : : ;xn; Qn > means the con�guration

where a particle of class Qi(Qi = 1; 2) is at position xi
(xi = 1; : : : ; N). The summation fQg = fQ1; : : : ; Qng

extends over all permutations of n numbers in which n1

terms are 1 and n2 terms are 2, while the summation

fxg = fx1; : : : ; xng runs, for each permutation fQg, in

the set of the n nondecreasing integers satisfying

c

xi+1 � xi + sQi
; i = 1; : : : ; n� 1; sQ1 � xn � x1 � N � sQn

: (10)

Before getting the results for general values of n let us consider initially the cases where we have 1 or 2 particles.

n = 1. For one particle on the chain (class 1 or 2), as a consequence of the translational invariance of (6) it is

simple to verify directly that the eigenfunctions are the momentum-k eigenfunctions

j1; 0 >=
NX
x=1

f(x; 1)jx; 1 >; or j0; 1 >=
NX
x=1

f(x; 2)jx; 2 >; (11)

with

f(x; 1) = f(x; 2) = eikx; k =
2�l

N
; l = 0; 1; : : : ; N � 1; (12)

and energy given by

E = e(k) � �(��e
ik + �+e

�ik � 1): (13)

n =2. For two particles of classes Q1 and Q2 (Q1; Q2 = 1; 2) on the lattice, the eigenvalue equation (8) gives

us two distinct relations depending on the relative location of the particles. The �rst relation applies to the case

in which a particle of class Q1 (size sQ1) is at position x1 and a particle Q2 (size sQ2) is at position x2, where

x2 > x1 + sQ1 . We obtain in this case the relation

Ef(x1; Q1;x2; Q2) = � �+f(x1 � 1; Q1;x2; Q2)� ��f(x1; Q1;x2 + 1; Q2)

� ��f(x1 + 1; Q1;x2; Q2)� �+f(x1; Q1;x2 � 1; Q2)

+ 2f(x1; Q1;x2; Q2); (14)

where we have used the relation �+ + �� = 1. This last equation can be solved promptly by the ansatz

f(x1; Q1;x2; Q2) = eik1x1eik2x2 ; (15)

with energy

E = e(k1) + e(k2): (16)

Since this relation is symmetric under the interchange of k1 and k2, we can write a more general solution of (14) as

f(x1; Q1;x2; Q2) =
X
P

A
Q1;Q2

P1;P2
ei(kP1x1+kP2x2)

= A
Q1;Q2

1;2 ei(k1x1+k2x2) +A
Q1;Q2

2;1 ei(k2x1+k1x2) (17)

with the same energy as in (16). In (17) the summation is over the permutations P = P1; P2 of(1,2). The second

relation applies when x2 = x1 + sQ1 . In this case instead of (14) we have

Ef(x1; Q1;x1 + sQ1 ; Q2) = ��+f(x1 � 1; Q1;x1 + sQ2 ; Q2)� ��f(x1; Q1;x1 + sQ1 + 1; Q2)

�~�Q1;Q2f(x1; Q2;x1 + sQ2 ; Q1) + (1 + ~�Q1;Q2)f(x1; Q1;x1 + sQ1 ; Q2); (18)

where

~�1;1 = ~�2;2 = 0; ~�1;2 = �+ and ~�2;1 = ��: (19)

If we now substitute the ansatz (17) with the energy (16), the constants AQ1;Q2

12 and A
Q1;Q2

21 , initially arbitrary,

should now satisfyX
P

f
�
DP1;P2 + eikP2 (1� ~�Q1;Q2)

�
eikP2 (sQ1�1)A

Q1;Q2

P1;P2
+ ~�Q1;Q2e

ikP2sQ2A
Q2;Q1

P1;P2
g = 0 (20)
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where

Di;j = �(�+ + ��e
i(ki+kj)): (21)

At this point it is convenient to consider separately the case where Q1 = Q2 from those where Q1 6= Q2. If

Q1 = Q2 = Q (Q = 1; 2) eq. (20) gives

X
P

�
DP1;P2 + eikP2

�
eikP2 (sQ�1)A

Q1;Q2

P1;P2
= 0 (22)

and the cases Q1 6= Q2 give us the equations

X
P

�
DP1;P2 + eikP2 �� �+e

ikP2

��e
ikP2 DP1;P2 + �+e

ikP2

� "
eikP2 (s1�1)A

1;2
P1;P2

eikP2 (s2�1)A
2;1
P1;P2

#
= 0:

Performing the above summation we obtain, after lengthy but straightforward algebra, the following relation among

the amplitudes

"
A
1;2
1;2e

ik2(s1�1)

A
2;1
1;2e

ik2(s2�1)

#
= �

D1;2 + eik1

D1;2 + eik2

�
1� �(k1; k2)

�
�+ ��+
��� ��

�� �
A12
2;1e

ik1(s1�1)

A21
2;1e

ik1(s2�1)

�
;

where

�(k1; k2) =
eik1 � eik2

D1;2 + eik1
: (23)

Equations (22) and (23) can be written in a compact form

A
Q1;Q2
P1;P2

= ��P1;P2

2X
Q0

1;Q
0

2=1

S
Q1;Q2

Q0

1;Q
0

2
(kP1 ; kP2)A

Q0

2;Q
0

1

P2;P1
; (Q1; Q2 = 1; 2) (24)

with

�l;j =
Dl;j + eikl

Dl;j + eikj
=

�+ + ��e
i(kl+kj) � eikl

�+ + ��ei(kl+kj) � eikj
; (25)

where we have introduced the S matrix. From 22 and (23), the only non zero elements of SQ1;Q2

Q0

1;Q
0

2
are:

S
1;1
1;1(k1; k2) = ei(k1�k2)(s1�1); s

2;2
2;2(k1; k2) = ei(k1�k2)(s2�1);

S1;22;1(k1; k2) = [1� �+�(k1; k2)] e
i(k1�k2)(s1�1);

S
2;1
1;2(k1; k2) = [1� ���(k1; k2)] e

i(k1�k2)(s2�1);

S1;21;2(k1; k2) = �+�(k1; k2)e
ik1(s2�1)e�ik2(s1�1);

S
2;1
2;1(k1; k2) = ���(k1; k2)e

ik1(s1�1)e�ik2(s2�1): (26)

A graphical representation of the S matrix is shown in Fig. 2a. Equations (24) do not �x the \wave numbers" k1
and k2. In general, these numbers are complex, and are �xed due to the cyclic boundary condition

f(x1; Q1;x2; Q2) = f(x2; Q2;x1 +N;Q1); (27)

which from (17) gives the relation

A
Q1Q2

1;2 = eik1NA
Q2;Q1

2;1 ; A
Q1;Q2

2;1 = eik2NA
Q2;Q1

2;1 : (28)

This last equation, when solved by exploiting (24)-(26), gives us the possible values of k1 and k2, and from (16) the

eigenenergies in the sector with 2 particles. Instead of solving these equations for the particular case n = 2 let us

now consider the case of general n.
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Figure 2. Graphical representations of: a) the S matrix (26) and b) the Yang-Baxter equations (34).

General n. The above calculation can be generalized for arbitrary values of n1 and n2 of particles of classes 1
and 2, respectively (n1 + n2 = n). The ansatz for the wave function (9) becomes

f(x1; Q1; : : : ;xn; Qn) =
X
P

A
Q1;���;Qn

P1;:::;Pn
ei(kP1x1+���+kPnxn); (29)

where the sum extends over all permutations P of the integers 1; 2; : : : ; n. For the components jx1; Q1; : : : ;xn; Qn >

where xi+1�xi > sQi
for i = 1; 2; : : : ; n, it is simple to see that the eigenvalue equation (8) is satis�ed by the ansatz

(29) with energy

E =

nX
j=1

e(kj): (30)

On the other hand if a pair of particles of class Qi; Qi+1 is at positions xi; xi+1, where xi+1 = xi + sQi
, equation

(8) with the ansatz (29) and the relation (30) give us the generalization of relation (24), namely

A
���;Qi;Qi+1;���
:::;Pi;Pi+1;:::

= ��Pi;Pi+1

2X
Q0

1;Q
0

2

S
Qi;Qi+1

Q0

1;Q
0

2
(kPi ; kPi+1)A

���;Q0

2;Q
0

1;���
:::;Pi+1;Pi;:::

Qi; Qi+1 = 1; 2; (31)

with S given by eq. (26). Inserting the ansatz (29) in the boundary condition

f(x1; Q1; : : : ;xn; Qn) = f(x2; Q2; : : : ;xn; Qn;x1 +N;Q1) (32)

we obtain the additional relation
A
Q1;���;Qn

P1;:::;Pn
= eikP1NA

Q2;���;Qn;Q1

P2;:::;Pn;P1
; (33)

which together with (31) should give us the energies.
Successive applications of (31) give us in general distinct relations between the amplitudes. For example

A
:::;�;�;;:::
:::;k1;k2;k3;:::

relate to A
:::;;�;�;:::
:::;k3;k2;k1;:::

by performing the permutations �� ! �� ! �� ! �� or �� !
�� ! �� ! ��, and consequently the S-matrix should satisfy the Yang-Baxter [16, 23] equation

2X
;0;00=1

S
�;�0

;0 (k1 � k2)S
;�00

�;00 (k1 � k3)S
0;00

�0;�00(k2 � k3) =

2X
;0;00=1

S
�0;�00

0;00 (k2 � k3)S
�;00

;�00 (k1 � k3)S
;0

�;�0(k1 � k2); (34)

for �; �0; �00; �; �0; �00 = 1; 2 and S given by (26). In Fig. 2b we show graphically this equation. Actually the relation
(34) is a necessary and suÆcient condition [16, 23] to obtain a non-trivial solution for the amplitudes in Eq. (31).

We can verify by a long and straightforward calculation that for arbitrary values of s1 and s2, the S matrix
(26), satis�es the Yang-Baxter equation (34), and consequently we may use relations (31) and (33) to obtain the
eigenenergies of the Hamiltonian (6). Applying relation (31) n times on the right of equation (33) we obtain a
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relation between the amplitudes with the same momenta. Using the graphical representation in Fig. 2a for the S
matrix, we illustrate in Fig. 4 the result of such applications. We then obtain

A
Q1;:::;Qn

P1;:::;Pn
= eikP1NA

Q2;:::;Qn;Q1

P2;:::;Pn;P1
=

 
nY
i=2

��Pi;P1

!
eikP1N

X
Q0

1;:::;Q
0

n

X
Q00

1 ;:::;Q
00

n

S
Q1;Q

00

2

Q0

1;Q
00

1
(kP1 ; kP1)S

Q2;Q
00

3

Q0

2;Q
00

2
(kP2 ; kP1) � � �S

Qn�1;Q
00

n

Q0

n�1
;Q00

n�1
(kPn�1 ; kP1)S

Qn;Q
00

1

Q0

n;Q
00

n
(kPn ; kP1)A

Q0

1;:::;Q
0

n

P1;:::;Pn
; (35)

where we have introduced the harmless extra sum

1 =

2X
Q00

1
;Q00

2
=1

ÆQ00

2 ;Q
0

1
ÆQ00

1 ;Q1
=

2X
Q00

1
;Q00

2
=1

S
Q1;Q

00

2

Q0

1;Q
00

1
(kP1 � kP1): (36)

In order to �x the values of fkjg we should solve (35), i.e., we should �nd the eigenvalues �(k) of the matrix

T (k)
fQg
fQ0g =

2X
Q00

1 ;:::;Q
00

n=1

( 
n�1Y
l=1

S
Ql;Q

00

l+1

Q0

l
;Q00

l

(kPl � k)

!
S
Qn;Q

00

1

Q0

n;Q
00

n
(kPn ; k)

)
; (37)

and the Bethe-ansatz equations which �x the set fklg will be given from (35) by

e�ikjN = (�1)n�1

 
nY
l=1

�l;j

!
�(kj); j = 1; : : : ; n: (38)

Using the graphical representation for S given in Fig. 2a the matrix T in (37) can be represented graphically as in
Fig. 5, and we identify T (k) as the transfer matrix of an inhomogeneous 6-vertex model, on a periodic lattice, with

Boltzmann weights SQ1;Q2

Q0

1;Q
0

2
(kPl ; k) (l = 1; : : : ; n). Consequently, in order to obtain the eigenenergies of the quantum

chain (6) we should diagonalize the above transfer matrix T (k).

Figure 3. Graphical representation of the relation (31). The circles represents the particle's indices fQg and fQ0g, and the
lines the \wave numbers" fkPig. The variables represented in the full circles are summed.
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Figure 4. a) Graphical representation of the result of n iterations of relation (31) on the right of equation (33). The
diagramatic representation of Fig. 3 was used. b) A graphical representation of equation (36).

Diagonalization of T (k)
The simplest way to diagonalize T is through the introduction of the monodromy matrix M(k) [21], which is a
transfer matrix of the inhomogeneous vertex model under consideration, where, instead of being periodic, the �rst
and last link in the horizontal direction are �xed to the values �1 and �n+1 (�1; �n+1 = 1; 2), that is

M
fQg;�n+1

fQ0g;�1
(k) =

X
�2;:::;�n

S
Q1;�2
Q0

1;�1
(kP1 ; k)S

Q2;�3
Q0

2;�2
(kP2 ; k) � � �S

Qn�1;�n
Q0

n�1
;�n�1

(kPn�1 ; k)S
Qn;�n+1

Q0

n;�n
(kPn ; k): (39)

The monodromy matrixM
fQg;�n+1

fQ0g;�1
(k) is represented in Fig. 6a and has coordinates fQg; fQ0g in the vertical space

(2n dimensions) and coordinates �1; �n+1 in the horizontal space (4 dimensions). This matrix satis�es the following
important relations

S
�01;�

0

1
�1;�1 (k

0; k)M
flg;�n+1

f�lg;�01
(k)M

f�lg;�n+1

flg;�01
(k0) =M

flg;�
0

n+1

f�lg;�1
(k0)M

f�lg;�
0

n+1

flg;�1
(k)S

�n+1;�n+1

�0
n+1

;�0
n+1

(k0; k): (40)

This relation is shown graphically in Fig. 6b; its validity follows directly from successive applications of the Yang-
Baxter equations (34) (see Fig. 2b).

In order to exploit relation (40) let us denote the components of the monodromy matrix in the horizontal space
by

A(k) = A(k)
flg
f�lg

=M
flg;1
f�lg;1

(k); B(k) = B(k)
flg
f�lg

=M
flg;2
f�lg;1

(k);

C(k) = C(k)
flg
f�lg

=M
flg;1
f�lg;2

(k); D(k) = D(k)
flg
f�lg

=M
flg;2
f�lg;2

(k); (41)
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and clearly the transfer matrix T (k) of the periodic inhomogeneous lattice, we want to diagonalize, is given by

T (k) = A(k) +D(k): (42)

As a consequence of (40) the matrices A, B, C and D in (41) obey some algebraic relations. The elements
(�1; �1; �n+1; �n+1) = (1; 1; 2; 2), (1; 1; 1; 2) and (1; 2; 2; 2) give us the relations

[B(k); B(k0)] = 0; (43)

A(k)B(k0) =
S
1;1
1;1(k; k

0)

S
1;2
1;2(k; k

0)
B(k0)A(k)�

S
1;2
2;1(k; k

0)

S
1;2
1;2(k; k

0)
B(k)A(k0); (44)

D(k)B(k0) =
S
2;2
2;2(k

0; k)

S
1;2
1;2(k

0; k)
B(k0)D(k)�

S
2;1
1;2(k

0; k)

S
1;2
1;2(k

0; k)
B(k)D(k0); (45)

respectively. The diagonalization of T (k) in (42) will be done by exploiting the above relations. This procedure
is known in the literature as the algebraic Bethe ansatz [21]. The �rst step in this method follows from the
identi�cation of a reference state j
 >, which should be an eigenstate of A(k) and D(k), and hence T (k), but not
of B(k). In our problem it is simple to see that a possible reference state is j
 >= jf�l = 1g >l=1;:::;n, which
corresponds to a state with �rst-class particles only. It is simple to calculate

A(k)j
 > = a(k)j
 >; D(k)j
 >= d(k)j
 >;

C(k)j
 > = 0; B(k)j
 >=

nX
i=1

bi(k)j
 >; (46)

where

a(k) =
nY
i=1

S
1;1
1;1(kPi ; k); d(k) =

nY
i=1

S
1;2
2;1(kPi ; k);

bi(k) =
i�1Y
l=1

S
1;1
1;1(kPl ; k)

nY
l=j

S
1;2
1;2(kPl ; k): (47)

In Fig. 7 we show a graphical representation of the above relation. The idea in the algebraic Bethe ansatz is that
B(k) acts as a creation operator in the reference (\vacuum") state, i.e., it creates particles of second class in a sea of
particles of �rst class j
 >, and it is expected that a general eigenvector of T (k) in the sector with n2 second-class
particles will be given by the ansatz

	(k
(1)
1 ; k

(1)
2 ; : : : ; k(1)n2

) = B(k
(1)
1 )B(k

(1)
2 ) � � �B(k(1)n2

)j
 > : (48)

The numbers fk
(1)
i g; i = 1; : : : ; n2 here play the role of the \wave number" fkig in the coordinate Bethe ansatz (29),

and are going to be �xed by the eigenvalue equation

T (k)	(k
(1)
1 ; : : : ; k(1)n2

) = (A(k) +D(k)) 	(k
(1)
1 ; : : : ; k(1)n2

) = �(k)	(k
(1)
1 ; : : : ; k(1)n2

): (49)

Before deriving the relation for general values of n2, let us consider initially the cases where n2 = 1 and n2 = 2.

Figure 5. Graphical representation of the transfer matrix T (k), of the inhomogeneous 6-vertex model, in a periodic lattice
of size n.
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Figure 6. Graphical representation of the relation (40) between the S matrix and the monodromy matrixM.

n2 = 1. Using relation (44) and (45) in (49) we obtain

T (k)	(k
(1)
1 ) =

"
S
1;1
1;1(k; k

(1)
1 )

S
1;2
1;2(k; k

(1)
1 )

+ d(k)
S
2;2
2;2 (k

(1)
1 ; k)

S
1;2
1;2 (k

(1)
1 ; k)

#
	(k

(1)
1 )

�

"
S
1;2
2;1(k; k

(1)
1 )

S
1;2
1;2(k; k

(1)
1 )

+ d(k
(1)
1 )

S
2;1
1;2(k

(1)
1 ; k)

S
1;2
1;2(k

(1)
1 ; k)

#
B(k)j
 >= �(k)	(k

(1)
1 ); (50)

which is clearly satis�ed if the coeÆcient of B(k)j
 > (unwanted term) vanishes. This condition, which �xes k
(1)
1 ,

is given by
nY
j=1

S
1;2
1;2(kPj ; k

(1)
1 ) = 1; (51)

where we used the relation
S
1;2
2;1(k; k

0)

S
1;2
1;2(k; k

0)
= �

S
2;1
1;2(k

0; k)

S
1;2
1;2(k

0; k)
; (52)

valid for the S matrix (26). The eigenvalue is given by

�(k) =
S
1;1
1;1(k; k

(1)
1 )

S
1;2
1;2(k; k

(1)
1 )

+
S
2;2
2;2(k

(1)
1 ; k)

S
1;2
1;2(k

(1)
1 ; k)

nY
j=1

S1;21;2(kPj ; k); (53)

provided (51)is satis�ed.

Figure 7. Graphical representation of the relations (46).
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n2 = 2. In this case the application of A(k) and D(k) in the ansatz (48) give us

A(k)	(k
(1)
1 ; k

(1)
2 ) =

S
1;1
1;1(k; k

(1)
1 )S1;11;1(k; k

(1)
2 )

S
1;2
1;2(k; k

(1)
1 )S1;21;2(k; k

(1)
2 )

a(k)	(k
(1)
1 ; k

(1)
2 )

�
S
1;2
2;1(k; k

(1)
1 )S1;11;1(k

(1)
1 ; k

(1)
2 )

S
1;2
1;2(k; k

(1)
1 )S1;21;2(k

(1)
1 ; k

(1)
2 )

a(k
(1)
1 )B(k)B(k

(1)
2 )j
 >

�
S
1;2
2;1(k; k

(1)
2 )S1;11;1(k

(1)
2 ; k

(1)
1 )

S
1;2
1;2(k; k

(1)
2 )S1;21;2(k

(1)
2 ; k

(1)
1 )

a(k
(1)
2 )B(k)B(k

(1)
1 )j
 >; (54)

and

D(k)	(k
(1)
1 ; k

(1)
2 ) =

S
2;2
2;2(k

(1)
1 ; k)S2;22;2(k

(1)
2 ; k)

S
1;2
1;2(k

(1)
1 ; k)S1;21;2(k

(1)
2 ; k)

d(k)	(k
(1)
1 ; k

(1)
2 )

�
S
2;1
1;2(k

(1)
1 ; k)S2;22;2(k

(1)
2 ; k

(1)
1 )

S
1;2
1;2(k

(1)
1 ; k)S1;21;2(k

(1)
2 ; k

(1)
1 )

d(k
(1)
1 )B(k)B(k

(1)
2 )j
 >

�
S
2;1
1;2(k

(1)
2 ; k)S2;22;2(k

(1)
1 ; k

(1)
2 )

S
1;2
1;2(k

(1)
2 ; k)S1;21;2(k

(1)
1 ; k

(1)
2 )

d(k
(1)
2 )B(k)B(k

(1)
1 )j
 >; (55)

where besides relations (44) and (45) we have used (43), which implies 	(k
(1)
1 ; k

(1)
2 ) = 	(k

(1)
2 ; k

(1)
1 ). From (54) and

(55) the condition (49) gives us

�(k) =

nY
i=1

S
1;1
1;1(kPi ; k)

2Y
j=1

S
1;1
1;1(k; k

(1)
j )

S
1;2
1;2(k; k

(1)
j )

+

nY
i=1

S
1;2
1;2(kPi ; k)

2Y
j=1

S
2;2
2;2(k

(1)
j ; k)

S
1;2
1;2(k

(1)
j ; k)

; (56)

under the condition, which �xes k
(1)
1 and k

(1)
2 ,

nY
i=1

S
1;2
1;2(kPi ; k

(1)
� ) =

2Y
�=1(6=�)

S
1;1
1;1(k

(1)
� ; k

(1)
� )S1;21;2(k

(1)
� ; k

(1)
� )

S
1;2
1;2(k

(1)
� ; k

(1)
� )S2;22;2(k

(1)
� ; k

(1)
� )

nY
j=1

S
1;1
1;1(kPj ; k

(1)
� ) � = 1; 2: (57)

In deriving this last expression the relation (52) was also used.
General n2. The previous procedure can be iterated straightforwadly for arbitrary numbers n2 of second-class
particles, which gives

A(k)	(k
(1)
1 ; : : : ; k(1)n2

) = �(A)(k)	(k
(1)
1 ; : : : ; k(1)n2

)

�
nX
i=1

�
(A)
i (k)	(k; k

(1)
1 ; : : : ; k

(1)
i�1; k

(1)
i+1; : : : ; k

(1)
n2
);

D(k)	(k
(1)
1 ; : : : ; k(1)n2

) = �(D)(k)	(k
(1)
1 ; : : : ; k(1)n2

)

�
nX
i=1

�
(D)
i (k)	(k; k

(1)
1 ; : : : ; k

(1)
i�1; k

(1)
i+1; : : : ; k

(1)
n2
); (58)

where

�(A)(k) =

nY
j=1

S
1;1
1;1(kPj ; k)

n2Y
i=1

S
1;1
1;1(k; k

(1)
i )

S1;21;2(k; k
(1)
i )

;

�(D)(k) =

nY
j=1

S
1;2
1;2(kPj ; k)

n2Y
i=1

S
2;2
2;2(k

(1)
i ; k)

S
1;2
1;2(k

(1)
i ; k)

;

�
(A)
j (k) =

S
1;2
2;1(k; k

(1)
j )

S
1;2
1;2(k; k

(1)
j )

a(k
(1)
j )

n2Y
l=1( 6=j)

S
1;1
1;1(k

(1)
j ; k

(1)
l )

S
1;2
1;2(k

(1)
j ; k

(1)
l )

;
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�
(D)
j (k) =

S
2;1
1;2(k

(1)
j ; k)

S
1;2
1;2(k

(1)
j ; k)

d(k
(1)
j )

n2Y
l=1( 6=j)

S
2;2
2;2(k

(1)
l ; k

(1)
j )

S
1;2
1;2(k

(1)
l ; k

(1)
j )

:

(59)

Then 	(k
(1)
1 ; : : : ; k

(1)
n2 ) is an eigenvector of T with eigenvalue �(k) = �(A)(k) + �(D)(k), i. e.,

�(k) =

nY
i=1

S
1;1
1;1(kPi ; k)

n2Y
�=1

S
1;1
1;1(k; k

(1)
� )

S1;21;2(k; k
(1)
� )

+

nY
i=1

S
1;2
1;2(kPi ; k]

n2Y
�=1

S
2;2
2;2(k

(1)
� ; k)

S1;21;2(k
(1)
� ; k)

; (60)

if the following conditions, which �x fk
(1)
1 ; : : : ; kn2g are satis�ed:

�
(A)
i (k) + �

(D)
i (k) = 0; i = 1; : : : ; n2: (61)

Using the relations (52), this last condition can be written as

nY
j=1

S1;21;2(kPj ; k
(1)
� )

S
1;1
1;1(kPj ; k

(1)
� )

=

n2Y
�=1( 6=�)

S
1;1
1;1(k

(1)
� ; k

(1)
� )S1;21;2(k

(1)
� ; k

(1)
� )

S
1;2
1;2(k

(1)
� ; k

(1)
� )S2;22;2(k

(1)
� ; k

(1)
� )

; � = 1; : : : ; n2; (62)

which concludes the diagonalization of T (k).
Now let us return to our original problem of �nding the eigenvalues of the Hamiltonian (6). The Bethe-ansatz

equations will be obtained by inserting in (38) the eigenvalues evaluated at kj , i. e., �(kj), given in (60), with the

condition (62). Taking into account that S1;21;2(k; k) = 0, we obtain

e�ikjN = (�)n�1
nY
l=1

�
�l;jS

1;1
1;1(kl; kj)

� n2Y
�=1

S
1;1
1;1(kj ; k

(1)
� )

S
1;2
1;2(kj ; k

(1)
� )

; j = 1; : : : ; n; (63)

with the condition

nY
j=1

S
1;2
1;2(kj ; k

(1)
� )

S
1;1
1;1(kj ; k

(1)
� )

=

n2Y
�=1(6=�)

S
1;1
1;1(k

(1)
� ; k

(1)
� )S1;21;2(k

(1)
� ; k

(1)
� )

S
1;2
1;2(k

(1)
� ; k

(1)
� )S2;22;2(k

(1)
� ; k

(1)
� )

; � = 1; : : : ; n2: (64)

Writing explicitly the S-matrix elements (26) in (63) and (64) we can state that the energies, in the sector with n1
�rst-class particles and n2 second-class particles are given by

E = �
nX
j=1

(��e
ikj + �+e

�ikj � 1); (65)

where fkj ; j = 1; : : : ; ng are given by the solutions of

eikj (N�n2(s2�s1)) = (�)n1�1
nY
l=1

"�
eikj

eikl

�s1�1
�+ + ��e

i(kl+kj) � eikj

�+ + ��ei(kl+kj) � eikl

#

�
n2Y
�=1

�+(e
ikj � eik

(1)
� )

�+ + ��ei(kj+k
(1)
� ) � eik

(1)
�

(j = 1; : : : ; n); (66)

eikj (s2�s1)n (�+)
n

nY
i=1

eikj � eik
(1)
�

�+ + ��ei(kj+k
(1)
� ) � eikj

=

(�)n1�1
n2Y
�=1

�+ + ��e
i(k(1)� +k

(1)

�
) � eik

(1)
�

�+ + ��e
i(k

(1)
� +k

(1)

�
) � eik

(1)

�

(� = 1; : : : ; n2): (67)
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It is interesting to observe that in the particular case

where n2 = 0 we obtain the Bethe-ansatz equations, re-

cently derived [15], for the asymmetric di�usion prob-

lem with particles of size s1. Also the case s1 = s2 = 1

give us the corresponding Bethe ansatz equations for

the standard problem of second class particles. The

Bethe-ansatz equations for the fully asymmetric prob-

lem is obtained by setting �+ = 1 and �� = 0.

IV Conclusions and generaliza-

tions

We obtained through the Bethe ansatz the exact solu-

tion of the problem of �rst- and second-class particles

di�using and interchanging positions on the lattice. We

show that the solution can be derived in the general case

where the particles have arbitrary sizes.

Some extensions of our results can be made. A �rst

generalization is the problem whereM > 2 hierarchical

ordered classes of particles (1st, 2nd, ...,Mth classes),

with sizes si (i = 1; : : : ;M), besides di�using on the lat-

tice, interchange positions in such way that particles of

higher hierarchical classes see the lower ones in the same

way as they see the holes (0 class). The allowed pro-

cesses and the Hamiltonians are simple generalizations

of relations (2)-(4) and (6), respectively. The Hamil-

tonian obtained in a open lattice will be Uq(SU(M))

symmetric and in the case s1 = s2 = : : : = sM = 1 it

is related with the spin S = M
2 Sutherland model [17].

The model is certainly integrable and its eigenspectra

will be given in terms of M -nested Bethe ansatz equa-

tions which are generalizations of (66)-(67).

A further quite interesting generalization of our

model happens when we consider molecules in one or

both classes with size s = 0. Molecules of size zero

do not occupy space on the lattice, having no hard-

core exclusion e�ect. Consequently we may have, at a

given lattice point, an arbitrary number of them. The

Bethe-ansatz solution presented in the previous section

is extended directly in this case (the equations are the

same) and the eigenenergies are given by �xing in (65)-

(67) the appropriate sizes of the molecules. It is inter-

esting to remark that particles of second class with size

s2 = 0, contrary to the case s2 > 1, where they \ac-

celerate" the di�usion of the �rst class particles, now

they \retard" the di�usive motion of these particles.

The quantum Hamiltonian in the cases where the par-

ticles have size zero are written in terms of spin s =1

quantum chains.

The Bethe-ansatz equations in the case of the asym-

metric di�usion, with particles of unit size [10, 11], or

with arbitrary size [15], was used to obtain the �nite-

size corrections of the mass gap GN of the associated

quantum chain. The real part of these �nite-size correc-

tions are governed by the dynamical critical exponent

z, i. e.,

Re(GN ) � N�z: (68)

The calculation of the exponent z for the model pre-

sented in this paper, with particles of arbitrary sizes, is

presently in progress [24].
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