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We revisit Tsallis Maximum Entropy Solutions to the Vlasov-Poisson Equation describing gravita-
tional N -body systems. We review their main characteristics and discuss their relationship with
other applications of Tsallis statistics to systems with long range interactions. In the following con-
siderations we shall be dealing with a D-dimensional space so as to be in a position to investigate
possible dimensional dependences of Tsallis' parameter q. The particular and important case of the
Schuster solution is studied in detail, and the pertinent Tsallis parameter q is given as a function of
the space dimension. In the special case of three dimensional space we recover the value q = 7=9,
that has already appeared in many applications of Tsallis' formalism involving long range forces.

I Introduction

For a variety of physical reasons, much work has been

devoted recently to the exploration of alternative or

generalized information measures, based upon entropy

functionals di�erent from the standard Boltzmann-

Gibbs-Shannon-Jaynes entropy [1]. Despite its great

overall success, this orthodox formalism is unable to

deal with a variety of interesting physical problems

such as the thermodynamics of self-gravitating systems,

some anomalous di�usion phenomena, L�evy 
ights and

distributions, and turbulence, among others (see [1] for

a more detailed list). The approach of Jaynes to Statis-

tical Mechanics [2, 3] is also compatible with the pos-

sibility of building up a thermostatistics starting with

a nonlogarithmic entropy, as demonstrated by Plastino

and Plastino [4]. Tsallis has introduced a family of gen-

eralized entropies [5], namely,

Sq =
1 � R

[f(x)]q dx

q � 1
(1)

where q is a real parameter characterizing the entropy

functional Sq , and f(x) is a probability distribution de-

�ned for x 2 RN . In the limiting case q ! 1 the stan-

dard logarithmic entropy, S1 = � R f(x) ln f(x) dx, is
recovered. From an Information Theory viewpoint, (1)

constitutes an information measure distinct from that

of Shannon.

The Tsallis entropy preserves or suitable generalizes

the relevant features of the Boltzamnn-Gibbs entropy

[5, 6]. It has been shown to be compatible with the In-

formation Theory foundations of Statistical Mechanics

given by Jaynes [4] and with the dynamical thermostat-

ing approach to statistical ensembles [7]. Increasing at-

tention is being devoted to exploring the mathematical

properties of Tsallis formalism [8-14,30].

The Tsallis formalism has been already applied to
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astrophysical self-gravitating systems [16, 17, 18], cos-

mology [19, 20], the solar neutrino problem [21], L�evy


ights and distributions [22, 23, 24], phonon-electron

thermalization in solids [25], turbulence phenomena

[26, 27], low-dimensional dissipative systems [28, 29],

non linear Fokker-Planck equations [30], etc. The inter-

ested reader is referred to [1] for additional references.

Tsallis theory has also been confronted with direct

experimental and observational data. Tsallis MaxEnt

distributions have been shown to provide better de-

scriptions than the ones given by the standard ther-

mostatistics, for both the experimentally measured dis-

tributions of pure electron plasmas [26], and the obser-

vational peculiar velocity distribution of galaxy clusters

[31]. Tsallis thermostatistics has also been advanced as

a possible explanation for the solar neutrino problem

[21]. It is worth remarking that all these experimental

evidences involve N -body systems whose constituent

particles interact according to the r�1 gravitational (or

Coulomb) potential.

Other alternative measures of entropy (or informa-

tion) have also been successfully applied in di�erent

areas of theoretical physics. For instance, R�enyi in-

formation is a very useful tool in the study of chaotic

dynamical systems [32]. However, it lacks a de�nite

concavity, crucial for the discussion of thermodynami-

cal stability. Tsallis entropy, on the other hand, does

exhibit such an important mathematical property, and

was thus historically the �rst one (besides the standard

Boltzmann-Gibbs) employed to develop an entirely con-

sistent Statistical Mechanics formalism [6, 4].

Active research conducted during the last few years

is giving raise to a general picture of the physical sce-

narios where Tsallis theory provides a better thermo-

statistical description than the one given by the stan-

dard Boltzmann-Gibbs formalism. These physical sys-

tems are characterized by the presence of long range

interactions, memory e�ects, or a fractal phase space.

Summing up, they show nonextensive e�ects.

The �rst physical application of Tsallis entropy was

concerned with self-gravitational systems [16]. It is well

known that the standard Boltzmann-Gibbs formalism

is unable to provide a useful description of this type of

systems [33, 34, 35, 36]. Moreover, the connection be-

tween Tsallis entropy and gravitation provided the �rst

hint of just which are the kind of problems where the

generalized formalism might be useful.

Although the standard Boltzmann-Gibbs formalism

(characterized by the value q = 1 of Tsallis parameter)

has great di�culties in dealing with gravitation in three

dimensional space, it shows no problems in the case of

one or two dimensions. On the other hand, it is possible

to obtain physically acceptable answers in D = 3, if we

employ an appropriate value of q < 7=9. These facts

suggest that dimensionality plays a decisive role within

this context. The aim of the present work is to clarify

some aspects of the application of Tsallis formalism to

the Valsov-Poisson equations, and to generalize some

of the known results connecting Tsallis Entropy with

self-gravitating systems, in order to explore the possi-

ble dependence of the Tsallis parameter q on the spatial

dimensionality D.

II Gravitation and other Long

Range Interactions.

One of the main features characterizing the thermody-

namics of self-gravitating systems is that the total en-

ergy, as well as other variables usually regarded as addi-

tive quantities, lose their extensive character. This fact

suggests that a non-additive entropic measure, like the

one proposed by Tsallis, may be more useful in dealing

with gravitation than the standard Boltzamnn-Gibbs

entropy. Indeed, non-extensivity is one of the main

properties of Tsallis entropy. Given two non-correlated

systems A and B, with entropies Sq[A] and Sq [B], the

Tsallis entropy Sq [A+B] corresponding two both sys-

tems regarded as a single, unique, system is given by
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Sq [A+B] = Sq[A] + Sq [B] + (1� q)Sq [A]Sq[B]: (2)

In the limit q ! 1, yielding Boltzmann-Gibbs thermo-

statistics, the standard additive behaviour of entropy is

recovered.

In the case of gravitational physics, the non-

extensive behaviour is due to the long range charac-

ter of the gravitational interaction. The early applica-

tions of Tsallis' Thermostatistics to gravitational sys-

tems stimulated the exploration, within Tsallis formal-

ism, of other many body problems with long range

interaction showing non-extensive e�ects [37, 38, 39].

These studies considered systems with a Lennard-Jones

like interparticle potential, characterized by a repulsive

behaviour at short distances together with an attrac-

tive long range component falling like r��. It is im-

portant to realize that this kind of potentials, while

being useful in order to illuminate the thermodynam-

ical consequences of long range forces, do di�er in an

essential way from the gravitational interaction. The

Gibbs canonical ensemble for a system of a N particles

interacting via a Lennard-Jones-like potential, enclosed

within a box of volume V , is well de�ned and has a

convergent partition function. On the other hand, and

due to the singularity at the origin of the gravitational

potential, the Gibbs canonical ensemble for a system of

N gravitationally interacting particles (even if they are

enclosed within a �nite box) has a divergent partition

function and thus is not well de�ned. The non-extensive

properties of the Lennard-Jones like gases are more ap-

parent when we try to de�ne the N ! 1 thermody-

namic limit. The main results obtained so far in con-

nection with this issue deal with the exotic scaling laws

that are to be employed in orther to de�ne the thermo-

dynamic limit in a sensible way. Cogent evidence has

already been obtained, showing that the correct scaling

(with particle number) of the thermodynamic variables

such as internal and free energy, is the one proposed by

Tsallis, that goes with NN�, where

N� =
N (1�(�=D))�1

1� (�=D)
; (3)

D being the spatial dimension. But this scaling with

the number of particles is not applicable to the strict

gravitational case, since the canonical ensemble (for a

given �nite number of particles) is meaningless. There

is another fundamental feature of the thermodynam-

ics of systems endowed with long range interactions

that has not yet been fully addressed by the simpli-

�ed models discussed in [37, 38, 39]. This property is

the breaking of the translational symmetry of space that

is implicitly assumed in standard thermodynamics [40].

This property of systems with long range interactions

is illustrated by the polytropic model discussed in [16]

and reviewed here.

III The Vlasov-Poisson Equa-

tions.

Vlasov equation constitutes one of the most impor-

tant mathematical tools employed to model astrophys-

ical self-gravitating N -body systems like galaxies and

galaxy clusters. Let us consider a system of N identi-

cal stars of mass m. Vlasov equation reads [33]

@f

@t
+ v � @f

@x
� @�

@x
� @f
@v

= 0; (4)

where f(x;v)dxdv denotes the number of stars in

the 2D-dimensional volume element dxdv in position-

velocity space, and the gravitational potential �(x) is

given by the D-dimensional Poisson equation

r2� = D(D � 2)V1G�: (5)

In the last equation G is the universal gravitational

constant, V1 denotes the volume of a D-dimensional

unitary sphere, and the mass density � given by

�(x) = m

Z
f(x;v) dv: (6)
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In the particular case of a central potential �(r) de-

pending only on the radial coordinate r, the Laplacian

operator adopts the form [41],

r2� =
1

rD�1
d

dr

�
rD�1

d�

dr

�
(7)

It is important to realize that Vlasov equation can be

cast in the form

�
df

dt

�
orbit

= 0; (8)

where the total time derivative is evaluated along the

orbit of any star moving in the potential �. In the case

of stationary solutions (i.e.; @f=@t = 0), equation (8)

implies that f(x;v) depends on the coordinates and the

velocity components only through integration constants

Ci of the motion in the potential �. This result,

fest: = f(C1; : : : CN ); (9)

constitutes the well known Jeans' Theorem in Stellar

Dynamics [33]. The solutions describing spherically

symmetric systems with isotropic velocity distributions

depend only on the energy, and it is convenient to write

them in the form

f = f(�); (10)

where

� = �(x) � 1

2
v2; (11)

and

� = �0 � �: (12)

The quantities � and � are usually called the rela-

tive energy and potential, respectively. The constant

�0 is chosen in such a way that the relative potential

vanishes at the boundary of the system.

IV MaxEnt Distributions in

Stellar Dynamics

Present day galaxies are described by stationary solu-

tions to the Vlasov-Poisson equations. These equilib-

rium con�gurations are usually assumed to be the result

of appropriate relaxation processes such as the ones de-

noted by the names \phase mixing" and \violent relax-

ation" [33]. These kind of processes are characterized

by a loss of memory about the initial conditions of the

system. It has been argued that the �nal equilibrium

state should be determined from a MaxEnt variational

principle [35]. The maximization of Boltzmann' loga-

rithmic entropy under the constraints imposed by the

conservation of the total mass and energy, leads to the

stellar isothermal sphere distribution,

f(�) = A (2��2)�3=2 exp(�=�2); (13)

where � stands for the velocity dispersion and A is an

appropriate normalization constant. Unfortunately, the

isothermal sphere is characterized by an in�nite total

mass [35]. The real meaning of this unphysical result

is that the posed variational problem does not have a

solution. For any given star distribution f(x;v), it is

always possible to obtain a new distribution f�(x;v)

with the same mass and energy but showing a larger

Boltzmann entropy [33]. For given values of total mass

and energy, entropy is not bounded from above. An

illustration of this feature of self-gravitating systems is

provided by the so-called \red giant structure". This

con�guration is characterized by a high density inner

core surrounded by a diluted extended \atmosphere".

The core accounts for almost all the energy of the sys-

tem. The outer envelope makes the main contribution

to the total entropy. By increasing the concentration

of the core while simultaneously expanding the \atmo-

sphere", the entropy can be raised as much as wanted

without changing the total energy. [33].

Summing up, a MaxEnt approach based on the



Brazilian Journal of Physics, vol. 29, no. 1, March, 1999 83

Gibbs-Boltzmann entropic measure seems to be unable

to characterize relaxed self-gravitating systems. This

fact has motivated the exploration of alternative en-

tropy functionals [36] of the form

S =

Z
C[f ] dx dv; (14)

C[f ] being a convex function that vanishes for f = 0.

Here enters Tsallis generalized entropy Sq . It has been

shown that adopting appropriate values for Tsallis pa-

rameter q, the extremization of Tsallis functional Sq

under the constraints imposed by the total mass and

energy leads to sensible stellar distributions. Indeed,

the so-called stellar polytropes are obtained [16]. These

distributions have been widely employed in the mod-

elization of astrophysical objects like galaxies [33], al-

though their relationship with Tsallis entropy was not

known. The mass density of a stellar polytrope behaves

in the same fashion as the density of a self-gravitating

sphere constituted by a gas with a polytropic equation

of state,

p = const:� �
 : (15)

The exponent 
 in the equation of state is related to

the polytropic index n by


 = 1 +
1

n
: (16)

Stellar polytropes constitute the most simple, but

still physically acceptable, models for equilibrium stel-

lar systems. In the earlier days of stellar dynamics,

polytropes where considered as possible realistic models

for galaxies and globular clusters. Nowadays it is known

that stellar polytropes do not �t properly the concomi-

tant observational data. However, they still play an im-

portant role in theoretical astrophysics, and are widely

employed as a �rst theoretical approach, both in numer-

ical simulations and analytical studies, for the descrip-

tion of stellar systems. From our point of view they

are relevant because they illustrate how a generalized

thermostatistical formalism, based on a non-extensive

entropy, is able to deal in a physically sensible way

with self-gravitating systems. Moreover, the present

formalism is relevant in connection with many of the

empirical veri�cations of Tsallis theory that we have

up to now. Bogoshian's application of Tsallis entropy

to the pure electron plasma [26] is based essentially in

the same mathematical formalism as the one involved

in the discussion of stellar polytropes. Furthermore, it

has been recently shown [31] that a Tsallis distribution

�ts the observed velocity distribution of galaxy clusters

in a much better way than other models based on the

standard entropy. The reason for the success of Tsallis

theory within this context, is presumably due to the

long-range gravitational forces involved. And, so far,

the stellar polytropes are the only detailed theoretical

model establishing a link between Tsallis distributions

and N -body self-gravitational systems. For all these

reasons we believe that a further study of the relation-

ship between stellar polytropes and Tsallis statistics is

worthwhile, and will contribute to the understanding of

non-extensive systems.

V Tsallis MaxEnt Solutions.

Now we will extremize the Tsallis entropy of the star

distribution function f(x;v),

Sq =
1

q � 1

Z
(f � fq) dx dv; (17)

under the constraints imposed by the total mass

M

m
=

Z
f(x;v) dx dv; (18)

and the total energy E,

E

m
=

1

2

Z
f(x;v)

�
v2 + �(x)

�
dx dv: (19)

In order to avoid some misunderstandings that arose in

the literature in connection with this last formula [26],

we must stress that the above expression deals with the
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system's gravitational potential in a self consistent way.

The potential � appearing in (19) is generated by the

mass distribution � associated with the distribution f

itself. We are not considering a given external poten-

tial. In such a case, the appropriate expression would

be

E�

m
=

Z
f(x;v)

�
1

2
v2 + �(x)

�
dx dv: (20)

Introducing now appropriate Lagrange multipliers �

and �, our variational problem can be put in the form

�

�
Sq � �

E

m
� �

M

m

�
= 0; (21)

yielding the Tsallis MaxEnt solution

fME =

�
1

q
[1 + (1� q)� � �(q � 1)e]

� 1

q�1

= const �
�
�(1� q) + 1

(q � 1)�
� e

� 1

q�1

; (22)

where

e =
1

2
v2 + � (23)

is the energy (per unit mass) of an individual star.

Making the identi�cation

�0 =
�(1� q) + 1

(q � 1)�
(24)

the MaxEnt distribution adopts the form of a stellar

polytrope,

fME = F�� (25)

with

� =
1

q � 1
; (26)

F being constant. So far we have used, as the con-

straints in our variational approach, the ordinary kind

of mean values. However, within Tsallis formalism, a

generalization of the concept of mean value has been

considered [6, 26]. If the above calculations are re-done

using Tsallis mean values, a politropic distribution is

again obtained, but with a di�erent value of the pa-

rameter q. This important point will be discussed in

more detail in section (IV).

The cut-o� condition on the generalized MaxEnt

distribution was originally introduced by Tsallis in a

rather ad-hoc way. However, within the present appli-

cation of Tsallis generalized thermostatistics, the cut-

o� prescription admits of a clear physical interpreta-

tion. Within the polytrope stellar distributions, the

Tsallis cut-o� corresponds to the escape velocity from

the system [33].

The mass density distribution associated with the

politropic distribution is

c

�(x) = DV1F

Z p
2�

0

�
� � 1

2
v2
��

vD�1 dv (27)

This expression can be simpli�ed making the change of variables

v2 = 2� cos2 �; (28)

wich yields

� = 2D=2DV1F�
�+D=2

Z �=2

0

sin2�+1 � cosD�1 �d�: (29)

Introducing now the politropic index
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n = � +
D

2
; (30)

we obtain

� = 2D=2DV1F�
n

Z �=2

0
sin2n�D+1 � cosD�1 �d�: (31)

This last equation can be recast in the simpler form

� = C�n; (32)

where C is now a constant given by

C = 2D=2DV1F

Z �=2

0

sin2n�D+1 � cosD�1 �d�: (33)

Inserting this expression in the D-dimensional Poisson equation (5) we obtain a non-linear ordinary di�erential

equation for � (recall that � = �0 � �) ,

1

rD�1
d

dr

�
rD�1

d�

dr

�
+ D(D � 2)V1GC�

n = 0: (34)

The expression for the mass density � also allows us to obtain the radial derivative of the total massM (r) contained

within radious r,

dM

dr
= DV1r

D�1� = DV1r
D�1C�n: (35)

Inserting this last result in the di�erential equation veri�ed by �, it is easy to see that

�
rD�1

d�

dr

�
+ G(D � 2)M (r) = const; (36)

which evaluated in r = 0 leads to

�
rD�1

d�

dr

�
+ G(D � 2)M (r) = 0: (37)

From this last equation it follows that � � r2�D is the limiting asimptotic behaviour still yielding a �nite total

mass.

d
VI D-dimensional Schuster

Spheres.

In terms of the dimensionless variables

h = �=�0; (38)

and

y = [D(D � 2)V1GC�
n�1
0 ]1=2 r; (39)

the di�erential equation for � reads

1

yD�1
d

dy

�
yD�1

dh

dy

�
+ hn = 0: (40)

If we adopt the politropic index

n =
D + 2

D � 2
; (41)

the above equation admits the solution
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h(y) =

�
1 +

y2

D(D � 2)

� 2�D

2

; (42)

which, in term of the physical variables reads,

� = �0

�
1 +

j2r2

D(D � 2)

� 2�D

2

; (43)

where

j = [D(D � 2)V1GC�
n�1
0 ]1=2: (44)

From equation (37) it follows that the D-

dimensional Schuster Sphere shows the limiting asimp-

totic behaviour for a �nite total mass.

The exponent � appearing in the stellar politrope

distribution is now

� = n � D

2
=

8 � (D � 2)2

2(D � 2)
: (45)

Notice that for a space dimension D > Dl , where

Dl = 2 + 2
p
2; (46)

the D-dimensional Schuster politrope is a monotonic

increasing function of the energy.

VII Tsallis generalized Mean

Values

Tsallis generalized mean values constitute a remarck-

able component of the generalized thermostatistical for-

malism that has not appeared yet in the present consid-

erations. Given a probability distribution f , the gener-

alized mean value of a quantity A is de�ned as

hAiq =

Z
Afq d
; (47)

where d
 stands for the volume element on the appro-

priate phase space where the distribution f is de�ned.

The physical interpretation of the q-generalized mean

values poses a di�cult problem. For instance, we have

to deal with the ba�ing fact that the mean value of

1 is not equal to 1. The original motivation for in-

troducing the generalized mean values was of a rather

formal nature. Tsallis and Curado proved that, if we re-

place the standard mean values by the generalized ones,

all the usual thermodynamical relations are preserved

within Tsallis formalism [6]. We now know, however,

that the connection with thermodynamics still holds

true if we employ Tsallis entropy along with the stan-

dard mean values [43, 44]. This last result somewhat

weakened the case for the q-generalized mean values.

On the other hand, the generalized mean values show

some desirable properties in connection with thermo-

dynamic stability. Another advantage of the q-values

is that they are useful in order to characterize distribu-

tions with divergent (ordinary) moments. For instance,

hx2i is divergent for L�evy distributions while, employ-

ing an appropriate Tsallis parameter q di�erent from

unity, hx2iq converges.
The �rst discussion of Vlasov-Poisson dynamics in

connection with Tsallis statistics was done employ-

ing the usual linear mean values [16]. Afterwards,

Boghosian [26] reformulated those results in terms of

the q-generalized mean values. In order to appreciate

Boghosian' contribution, it is useful to consider the fol-

lowing expression for the kinetical and gravitational po-

tential energies of the system

T = m

Z
1

2
v2 f(r;v) dr dv (48)

and

c

W = �G
Z Z

�(r1) �(r2)

j r1 � r2 jD�2
dr1 dr2

= �Gm2

Z Z
f(r1;v1) f(r2;v2)

j r1 � r2 jD�2
dr1 dv1dr2 dv2: (49)
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In order to introduce Tsallis generalized mean values, Boghosian de�ned the following generalizations for the kinetic

and potential energies,

Tq = m

Z
1

2
v2 fq(r;v) dr dv; (50)

and

Wq = �Gm2

Z Z
fq(r1;v1) f

q(r2;v2)

j r1 � r2 jD�2
dr1 dv1dr2 dv2: (51)

d
Moreover, he proposed to identify the mass density with

�(r) = m

Z
fq(r;v) dv; (52)

Boghosian' approach is tantamount to identify the ac-

tual stellar distribution with fq instead of making the

identi�cation with f itself. Consequently, a Tsallis dis-

tribution with parameter q, obtained by recourse to the

usual mean values, is equivalent to a Tsallis distribution

a la Boghosian with a new parameter q� given by

q�

1� q�
=

1

q � 1
: (53)

Hence, making use of the complete Tsallis formalism,

the Tsallis parameter characterizing the D-dimensional

Schuster distributions is given by

q� =
8 � (D � 2)2

8 � (D � 2)2 + 2(D � 2)
: (54)

It is interesting to notice that in the limitD ! 2, we

obtein q� ! 1. This is consistent with the known fact

that the standard Boltzmann-Gibbs Thermostatistics

is able to deal in a physically acceptable way with self-

gravitating systems with spatial dimension less than 2

[34, 42]. In the case of D = 3, we recover the known

value q� = 7=9 [26] corresponding to the limit value of

q� providing a polytropic distribution with �nit total

mass.

A di�erent kind of generalized mean values have

been recently introduced by Tsallis and coworkers

[45, 46]. These mean values are de�ned by

hhAiiq =

R
fq Ad
R
fq d


; (55)

where d
 is the volume element in the relevant phase

space where the distribution f \lives". These general-

ized mean values still do exhibit the convenient prop-

erties of Tsallis' original q-moments. However, the new

normalized mean values are free of many of the trou-

blesome features of the original q-values. For instance,

we now recover the desirable relation

hh1iiq = 1: (56)

It would be interesting to reformulate the q-

nonextensive approach to stellar dynamics in terms

of the normalized q-mean values (55). When the

normalized q-values are used, the nonextensive q-

thermostatistics can be reformulated in terms of ordi-

nary linear mean values [46]. This fact suggests that

this new formulation of Tsallis formalism may be par-

ticularly useful in order to develope the q-nonextensive

version of the BBGKY hierarchy [33]. This line of work

poses formidable di�culties when the unnormalized q-

mean values are used.

VIII The q = �1 MaxEnt Time

Dependent Solutions to

the Vlasov- Poisson Equa-

tions

The Tsallis nonextensive thermostatistics is also useful

in order to obtain approximate time dependent solutions

to the Poisson-Vlasov equations [17]. The q-MaxEnt



88 A. Plastino and A. R. Plastino

scheme developed in [17] is based on the idea of follow-

ing the time evolution of the mean values of a small set

of M relevant dynamical quantities Ai(x;v),

c

hAiiq =
1

h

Z
fq(x;v)Ai(x;v) dx dv (i = 1; : : : ;M ); (57)

where h is just a constant with the dimensions of the element of volume in the pertinent (x;v) space. If the

distribution function f(x;v) evolves according to the Vlasov equation the time derivative of the relevant mean

values is given by

d

dt
hAiiq =

1

h

Z
fq(x;v) (v � rxAi � r� � rvAi) dx dv (i = 1; : : : ;M ): (58)

Unfortunatelly, this last set of equations does not constitute, in general, a closed set of M ordinary di�erential

equations for the mean values hAiiq. However, the MaxEnt approach allows us to build up, at each time t, a

q-MaxEnt distribution

fq(x;v; t) =
1

Zq

"
1 � (1� q)

MX
i=1

�i(t)Ai(x;v)

#1=(1�q)
; (59)

d
taking as constraints the instantaneous values adopted

by the relevant moments hAiiq and introducing appro-

priate Lagrange multipliers �i (i = 1; : : : ;M ). The

right hand sides of equations (58) can then be evaluated

by recourse to this q-MaxEnt approximation. In such

a manner a closed system of equations is formally ob-

tained. The ensuing system, however, becomes highly

non-linear. As a counterpart, the Vlasov equation, a

partial di�erential equation, becomes now a system of

ordinary di�erential equations for the evolution of the

relevant mean values. In [17] it has been shown that

such an approach is indeed useful because it does pre-

serve some important properties of the exact evolution

equation.

The q-MaxEnt approxiamte solution fq(x;v; t) pre-

serves, by construction, the exact equations of motion

of our M relevant moments. These moments, along

with the concomitant Lagrange multipliers, evolve ac-

cording to a set of 2M ordinary di�erential equations

that can be given a Hamiltonian form [17]: the relevant

mean values hAiiq and their associated Lagrange mul-

tipliers turn out to be canonicaly conjugate dynamical

variables. Due to this Hamiltonian structure the asso-

ciated 
ow in phase space does not have sinks, nor does

it have sources. Moreover, the Tsallis entropy Sq eval-

uated upon the MaxEnt approximate solution fq(x;v)

is a constant of the motion. This means that the evo-

lution of the system does not exhibit any relaxation

process. This is an important feature of the exact so-

lutions that is shared by our MaxEnt approximations.

All these general properties of the q-MaxEnt scheme do

not depend on the dimensionality of the (one-particle)

con�guration space. They hold true for any number of

spatial dimensions. However, in the particular case of

q = �1 and D = 1 or D = 3, our MaxEnt approxima-

tion generates, if the relevant mean values are properly

chosen, exact solutions to the Vlasov-Poisson equations

[17]. Indeed, various of the known exact solutions of

the Valsov-Poisson equations turn out to be particular

instances of our general q-MaxEnt approach [17].

It should be stressed that these time dependent q-
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MaxEnt solutions of the Vlasov equation are not re-

lated in a direct fashion to the previously discussed sta-

tionary MaxEnt solutions. The total energy does not

appear as a constraint within the time dependent sce-

nario, as happens in the stationary case. This means

that the q = �1 value of the Tsallis parameter lead-

ing to exact time dependent solutions should not be

regarded as belonging to the \allowed" q < 7=9 range

of q-values yielding physically acceptable stationary so-

lutions. These two special q-values, 7=9 and �1, arise
from quite di�erent circumstances and, as far as we

know, are completely unrelated.

IX Conclusions

We have considered MaxEnt Tsallis distributions

in connection with stationary solutions of the D-

dimensional Vlasov-Poisson equations. In particular,

we obtained an analitical relation between Tsallis pa-

rameter q and the dimension D of physical space for

the special case of D-dimensional Schuster solutions.

Although these solutions have in�nite spacial extent,

the density falls rapidly enough so as to have a �nite

total mass. Furthermore, they show, within the larger

set of Tsallis MaxEnt solutions, the limiting behaviour

between sensible solutions with �nite mass and unphys-

ical solutions with divergent mass.
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