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Acceptor binding energies in zinc-blende semiconductors are determined within the tight-binding
formalism. The importance of �tting the valence-band masses in the (100) as well as (111) directions
is discussed, and parametrizations that speci�cally �t the valence-band anisotropy are used to
calculate Ge acceptor levels in AlxGa1�xAs alloys. The sensitivity of the calculated energies to the
parameters that determine bulk masses is investigated, as well as the e�ect of varying the on-site
energy of the impurity. A comparison is made between �rst-neighbor and second-neighbor hopping
models. For shallow levels, both approaches give the same results. For deeper levels, however,
important di�erences arise. Experimental evidence suggests that �rst-neighbor models are better
suited for describing intermediate to deep levels.

I Introduction

The e�ective mass theory (EMT) has long been a prin-

cipal tool for investigating shallow impurity states in

semiconductors [1, 2]. In EMT, it is assumed that

the impurity wave function is highly delocalized in real

space, which in turn implies a strong localization in k

space. As a result, the electronic properties of the host

material may be described by only a few parameters re-

lated to the dispersion near the k point in consideration.

For instance, in the Luttinger-Kohn version of k � p the-

ory, the electronic structure of the host is completely

de�ned in terms of the spin-orbit energy and the three

Luttinger parameters (LP's), which also determine the

impurity energy level. Because each host material has a

di�erent set of LP's, and acceptor binding energies are

known to vary widely from host to host, it is clear that

the impurity level within EMT must depend sensitively

on these bulk parameters.

Another result of EMT is that, for a given mate-

rial, any singly ionized acceptor should have the same

binding energy, regardless of the species. However, ex-

perimentally it is known that such energies can vary

widely from impurity to impurity. For example, an In

acceptor in Si has a binding energy of 157 meV, com-

pared to 45 meV for a B acceptor in the same host [3].

Such deviations from EMT are attributed to central-

cell e�ects, and demonstrate that the binding energies

can also be very sensitive to the details of the potential

in the immediate neighborhood of the impurity.

Recently, an approach was presented [4] for calcu-

lating impurity states in semiconductors based on the

tight-binding (TB) formalism. The localized basis set

of TB provides a natural description for deep levels,

while the highly delocalized shallow levels are treated

by means of very large unit cells together with a scal-

ing law that allows extrapolation to the bulk limit [4].

In other words, the TB approach is not intrinsically

restricted to either the shallow or deep limits. For the

TB approach to be useful, however, a clear understand-

ing of how the calculated energies depend on the TB

parameters is required. In particular, the sensitivity

of EMT on the LP's and the the role of central-cell

e�ects must be understood in the context of the cur-

rent model. Another important question particular to

TB concerns di�erences between �rst-nearest neighbor

(1nn) and second-nearest neighbor (2nn) descriptions

of the impurity state.

The aim of this paper is to carefully investigate how

the impurity binding energies depend on the TB param-

eters that are most physically relevant to the impurity

problem. The paper is organized as follows: In Sec.

II the TB approach for calculating impurity states in

semiconductors is briey reviewed. In Sec. III the de-

pendency of the impurity binding energy on the bulk



e�ective masses and the on-site energy of the impurity

is investigated. Comparisons are also made between

1nn and 2nn TB approaches, with important di�erences

found between the two. To illustrate these e�ects, Ge

acceptors in GaAs, AlAs, and AlxGa1�xAs alloys are

considered. The summary and conclusions are given in

Sec. IV.

II Calculational Details

Our TB Hamiltonian contains terms describing the bulk

material as well as the impurity, and is given by [4]

c

H =
X

ij

X

��

hij��c
y
i�cj� +

X

i

X

��

�i h�jl � sj�i c
y
i�ci� +

X

i

X

�

U(ri)c
y
i�ci� ; (1)

d

where the roman indices denote the site and the greek

indices label the spin orbitals. The hij�� de�ne all the

on-site energies and hopping for the bulk material. In

this work, both 1nn and 2nn hopping are considered.

The strength of the spin-orbit interaction for atom i is

de�ned by �i, and the on-site energy for atom i due

to the Coulomb potential of the impurity is given by

U(ri). For our basis set the sp
3s� orbitals proposed by

Vogl [5] is used, but spin is included here leading to a

total of 10 basis states per site.

The perturbation potential U(ri) is described by an

isotropic q-dependent screening,

c

U(ri) =
e2

�0ri
+A

e2

ri
e��ri + (1�A)

e2

ri
e��ri �

e2

�0ri
e�ri ; (2)

d

where the screening parameters A, �, �, and  are taken

from Bernholc [6]. Near the origin, the potential looks

like a bare Coulomb potential Ubare = e2=ri, but far

away the potential looks like a bulk-screened potential

Ubulk = e2=�0ri, with �0 being the static dielectric con-

stant for the host material. Precisely at the impurity

site (ri = 0), Eq. (2) is unde�ned and the perturbation

potential is assigned a value U0, where U0 is a param-

eter describing central-cell e�ects.

In order to determine the acceptor energy, �rst the

energy Ev at the top of the valence band is calculated

for the pure system, setting U(ri) = 0 for all i. This

energy is easily found with the aid of Bloch's theorem.

Next, a single impurity is placed in a very large cubic

supercell containing 8L3 atoms arranged in the zinc-

blende structure and subject to periodic boundary con-

ditions, with L being the length of the supercell side in

units of the conventional lattice parameter. The pres-

ence of the impurity breaks translational symmetry and

introduces states in the gap region with energy above

Ev . The energy ~Ev(L) of the highest of these states

determines the acceptor energy for supercell size L via

the relation E(L) = ~Ev(L)�Ev . The main task there-

fore is to calculate ~Ev(L), which is accomplished here

using a variational algorithm that minimizes the ex-

pectation value of


	j(H �Eref )
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, with Eref being

a reference energy suitably chosen near ~Ev(L) [7]. The

computation time using this scheme scales linearly with

the number of states, making solutions possible even for

very large supercells. For instance, system sizes rang-

ing up to L = 20 (64000 atoms) are handled routinely

[4]. However, using a recently proposed scaling law [4],

the impurity binding energy can be extrapolated to the

bulk limit using far smaller supercell sizes. In this scal-

ing law, the energy E(L) as a function of supercell size

L is given by

E(L) = Ea + Pe��L ; (3)

with Ea being the acceptor energy in the bulk limit

(L ! 1), and P being a constant independent of L.

The acceptor energy for the in�nite system can there-

fore be found by calculating E(L) for three relatively

small supercells and then solving for Ea, P , and � in



Eq. (3). When using Eq. (3) to �nd the binding energy

in the bulk limit, caution must be exercised to verify not

only that the supercell sizes are in the scaling regime,

but also that the scaled energies have converged to the

limiting value.

III Results

In EMT, the acceptor binding energy depends on the

three Luttinger parameters 1, 2, and 3. These, in

turn, can be related to the heavy-hole (HH) and light-

hole (LH) masses along (100) and (111) [8],
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where the masses in these expressions and through-

out this work are in units of the free-electron mass.

The fact that the LP's depend on the valence-band

masses in both the (100) and (111) directions suggests

that both are very important to �t properly in the

TB parametrizations. On the other hand, due to the

high density of states associated with the HH band,

these masses are expected to be much more important

than the LH masses for the purposes of determining the

acceptor binding energies. Tight-binding parametriza-

tions speci�cally chosen to �t the HH masses have been

determined [9] both for 1nn and 2nn models, and will

be used in this work. In Table 1 the valence-band

masses resulting from these parametrizations are shown

for GaAs and AlAs, together with the experimental [10]

and theoretical [11] values.

The Ge acceptor in AlxGa1�xAs alloys acts as a

simple substitutional impurity at the As site. The bind-

ing energy has been measured experimentally [12] using

photoluminescence in the direct-gap range 0 < x < 0:4,

and the results are given by the dotted line in Fig.1.

For pure GaAs, the binding energy is � 40 meV, but

increases rapidly with an upward curvature to a rel-

atively deep � 120 meV by x = 0:40. The binding

energy curves Ea(x) calculated using the 1nn and 2nn

parametrizations are given in Fig.1 by the solid and

broken lines, respectively. The VCA was used to obtain

the Hamiltonian matrix elements for the alloy. Note, of

course, that the VCA has no e�ect on the calculated

binding energies at x = 0 or x = 1, which correspond

to pure GaAs and pure AlAs respectively. The impu-

rity perturbation potential U0 was chosen in order that

the calculated acceptor energy match the experimental

value for pure GaAs. This led to a value of 3.42 eV for

2nn and 2.80 eV for 1nn. These values of U0 were then

used for all x, so that any variation in the acceptor en-

ergy with respect to x is attributable to the electronic

response of the host material, and not to central-cell

e�ects. The result for 2nn is in qualitative agreement

with experiment, showing an increasing binding energy

with increasing Al content. However, it signi�cantly

underestimates the binding energy at x = 0:4, with an

energy of 71 meV compared to the experimental value

of 120 meV. The result is improved considerably with

1nn, giving excellent agreement up to x = 0:2. How-

ever, the results diverge beyond that, and the binding

energy of 87 meV at x = 0:4 is still substantially below

the experimental value.

Table 1 - Heavy- and light-hole e�ective masses along [100] and [111], given in units of the free-electron mass.

Reference Compound MHH [100] MLH [100] MHH [111] MLH [111]
Experiment a GaAs 0.340 0.094 0.750 0.082
2nn (this work) GaAs 0.346 0.074 0.751 0.066
1nn (this work) GaAs 0.374 0.070 0.750 0.064

Theory b AlAs 0.413 0.183 1.136 0.143
2nn (this work) AlAs 0.416 0.178 1.137 0.140
1nn (this work) AlAs 0.605 0.134 1.136 0.122

a Reference 10
b Reference 11

In order to investigate the possibility that small un-

certainties in the e�ective masses for AlAs might pro-

duce better agreement with experiment, the sensitivity

of the binding energy to the HH masses is studied. The

HH masses for AlAs are scaled by a factor ~m rang-

ing from 0.60 and 1.40 in such a way as to not modify

any of the band energies at � [9]. Even though scaling

the HH masses by such a large fraction may have an



adverse e�ect on some conduction-band features, these

are of little importance in determining acceptor binding

energies. In the inset of Fig.1, the acceptor energy at

x = 0:4 is plotted as a function of ~m, for both 1nn and

2nn cases. A remarkably linear behavior is observed

over a wide range of HH masses. Interestingly, the 1nn

model is much more sensitive to variations in the HH

mass, with even a modest increase greatly improving

agreement with experiment. For the 2nn model, how-

ever, even increasing the HH mass by 40% leads to bind-

ing energy of only 93 meV, compared to 120 meV in

experiment. It is worthwhile here to comment that in

order to obtain good agreement with experiment (say

110 meV at x = 0:4) a binding energy of � 400 meV

is required for x = 1:0 (i.e., pure AlAs). This energy

serves as a useful reference for the analysis considered

below.

Figure 1. Acceptor energies Ea for Ge impurities in
AlxGa1�xAs alloys, calculated with 1nn (solid line) and 2nn
parametrizations (dashed line). The experimental result is
given by the dotted line. Inset: acceptor energy at x = 0:4
as a function of the mass scaling factor ~m for 1nn and 2nn
parametrizations.

Varying the TB parameters that determine the HH

masses in e�ect changes the bulk properties of the host.

However, it is also possible to vary the TB parameters

that pertain only to the impurity, without modifying

the bulk properties. These parameters would therefore

describe central-cell e�ects, and can be incorporated

within the present theory through the on-site energy U0

of the impurity itself. Up to now, it has been assumed

that U0 was independent of the host. Nevertheless, it is

instructive to consider what e�ect variations in U0 have

on the impurity energies. In Fig.2(a) the acceptor en-

ergy calculated for a range of U0 is presented for GaAs

and AlAs using the 2nn parametrizations. The curves

are characterized by three distinct regimes: an ener-

getically at regime for small U0, a linearly increasing

regime for large U0, and a transition region for interme-

diate U0. In the at region, di�erent impurity species

(characterized by di�erent U0) will have nearly identical

binding energies, meaning that central-cell corrections

will be very small. Such behavior is typical of shallow

levels, which implies that EMT is expected to work well

in this regime.

It is interesting to note that in going from GaAs to

AlAs (i.e., increasing HH mass), the energetically at

regime gets pushed to ever smaller U0. In fact, for AlAs,

the at region is never quite reached, except perhaps for

U0 < 1 eV using 2nn, and so central-cell corrections are

expected to always be important for this host. It should

also be kept in mind that the Coulomb potential due

to the impurity as given by Eq. (2) is roughly 0.6 eV

at the nearest-neighbor distance (2.45 �A). Therefore,

it is unphysical to consider acceptors with U0 smaller

than this value. The linear regime observed for large U0

marks the breakdown of the e�ective mass approach. In

EMT, the impurity potential is assumed to be slowly

varying on the atomic length scale. A potential of say

5.0 eV at the impurity site, falling to 0.6 eV at the

nearest neighbor, clearly violates this approximation.

In the linear regime, central-cell e�ects are expected to

be very important, because even small variations in U0

(due to di�erent impurities) will lead to large changes

in binding energy.

In Fig.2(b) the impurity energy is plotted as a

function of U0 for AlAs and GaAs using the 1nn

parametrization. Qualitatively, the results are similar

to the 2nn case shown in Fig. (a). However, the 1nn

case is once again found to be far more sensitive than

the 2nn case. For instance, increasing U0 to just 3.3 eV

is suÆcient to give a binding energy of 400 meV in AlAs

with 1nn, whereas a value of 5.5 eV is required with a

2nn model. Recalling that for GaAs the value of U0

was 3.42 eV for 2nn and 2.80 eV for 1nn, and consid-

ering the chemical similarity between GaAs and AlAs,

a value of 5.5 eV seems unrealistic. Therefore, the in-

terpretation once more is that the 1nn results are more

consisitent with experiment.

In order to obtain a better understanding of the

connection between 1nn and 2nn models, it is neces-

sary to compare the two cases directly, using the same

value of U0. According to EMT, the acceptor binding



energy should depend only on the e�ective masses near

the k point under consideration. From this point of

view, no di�erence should exist between 1nn and 2nn

parametrizations, as long as the e�ective masses were

the same. In order to quantitatively study the validity

of this assertion, however, the 1nn and 2nn TB parame-

ters must be adjusted so as to give the same HH masses

in the (100) as well as (111) directions [9]. Next, a value

of U0 suÆciently small (0.7 eV) is chosen so that the

EMT should be expected to hold, and the binding en-

ergy calculated as a function of x, where as usual x is

the Al concentration of the AlxGa1�xAs alloy. The re-

sults are plotted in Fig.3, and show that the 1nn and

2nn results are in almost exact agreement over the en-

tire range of x. This is reassuring, because for shallow

levels the energy can only depend on the e�ective mass

if the TB result is to be consisitent with EMT. The

second case to be considered is for larger U0, in which

the EMT can be expected to break down. A value of

U0 = 3:5 eV is used and the energy Ea(x) recalculated.

From Fig.3, a radical di�erence is now observed be-

tween 1nn and 2nn parametrizations. For GaAs, the

1nn result gives 70 meV compared with only 42 meV

using 2nn. In passing, it is instructive to note that the

EMT result breaks down strongly for the U0 = 3:5 eV

case in GaAs but not for the U0 = 0:7 eV case in AlAs,

even though the binding energies are comparable. This

demonstrates that binding energy considerations alone

are not enough to determine if a level can or cannot

be described by EMT. In any case, the breakdown of

EMT is even more dramatic for the U0 = 3:5 eV case in

pure AlAs, with the 1nn approach yielding an energy

of 454 meV compared with 182 meV using 2nn. The

experimental data suggest, therefore, that 1nn descrip-

tions are more appropriate than 2nn for the case of deep

levels. The likely reason is that the 2nn hopping terms

permit the electron to escape more easily from the im-

purity potential, thereby delocalizing the wave function

and reducing the binding energy. To con�rm this con-

jecture, the radial charge distribution is calculated for

an AlAs host using both 1nn and 2nn with an on-site

energy U0 of 3.5 eV. It is found indeed that the elec-

tron is far more delocalized using the 2nn approach. For

instance, using 1nn, there is a 90% probability of local-

izing the electron within 7 �A of the impurity, whereas

using the 2nn parametrization, the same probability is

reached at roughly 14 �A.

Figure 2. Acceptor binding energies for Ge impurities as
a function of the on-site impurity potential U0 (a) Using
2nn parametrization for AlAs and GaAs. (b) Using 1nn
parametrization for AlAs and GaAs. The at region for
small U0 indicates the regime in which EMT is expected to
work well.

Figure 3. Acceptor energies calculated for shallow levels
(U0 = 0:7 eV) and deep levels (U0 = 3:5 eV) using 1nn
(solid line) and 2nn (dotted line) parametrizations, with the
same HH e�ective masses. The U0 = 0:7 results are consis-
tent with EMT, whereas major deviations are observed for
U0 = 3:5.



IV Summary and Conclusions

Binding energies have been calculated for acceptors in

GaAs, AlAs, and AlxGa1�xAs hosts. It was found that

the 1nn model is much more sensitive than the 2nn

model to small changes in the parameters. Insight was

gained into why and when central-cell corrections be-

come important. For shallow levels in which central-cell

corrections are unimportant, the 1nn and 2nn models

give the same results. However, for intermediate to

deep levels, the two results deviate, and experimental

evidence suggests that the 1nn model is more appropri-

ate. The reason is that the 2nn model is not as e�ective

in binding the wave function to the impurity. The 2nn

parametrizations are expected to be most useful there-

fore for describing shallow levels, due to their superior

ability to �t the e�ective masses. A particularly inter-

esting application of the 2nn approach may be for the

case of donors in indirect gap materials, due to intrin-

sic limitations in the 1nn ability to �t conduction- band

dispersion near the zone boundary.
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