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In this work we calculated the electronic structure of spherical quantum dots based on zincblend
semiconductor compounds. The strong conduction-valence band coupling in this class of semi-
conductors induces a strong mixing of the electronic states which requires a theoretical model to
properly take into acount these e�ects. We have used a full 8�8 Kane Hamiltonian in order to
include the strong admixture and study the set of symetries associated with these electronic states
and their angular momentum in this central force problem. As an application, we have calculated
the electronic structure in narrow-gap HgCdTe, InSb and CdTe quantum dots.

I Introduction

The synthesis and characterization of new structural

materials showing potential application as optical de-

vices has been the subject of a large number of investi-

gations in recent years. Almost all of them have studied

semiconductor structures such as quantum wells(QW),

quantum well wires(QWW) and quantum dots(QD),

presenting quantum con�nement in one, two and three

dimensions, respectively.

The main interest in this work will be the electronic

structure of QD which show a completely discrete en-

ergy spectrum for all carriers and, for this reason, they

are frequently referred to as \arti�cial atoms ". Synthe-

sis on colloids and on vitreous matrices are techniques

which have shown high degree of reproducibility and

control. The crystallites have uniform spherical shapes

where the diameter size can be tuned during the syn-

thesis or by thermal treatment of the vitreous matrices

producing narrow distribution of QD sizes within 5%

rms [1].

In these nanocrystallite structures the number of

carriers in the dots can be controlled externally[2] and

the full spatial con�nement, besides producing sharp

energy levels, also has strong inuence on their linear

[3] and nonlinear[4] optical properties.

In this short work we show some results for the elec-

tronic structure of quantum dots with spherical symme-

try within the envelope-function approximation where

we solve analytically the full k:p Hamiltonian.

II The k:p representation

A large number of band structure calculation has been

used in solids however the k:p, �rst introduced by

Kane[5] and Luttinger[6] has proved to be the most gen-

eral e�ective mass approach for heterostructures where

the states are expanded in a �nite set of Bloch states

close to an extremum, k0, of the bulk band structure

inside the Brillouin zone of the crystal.

The basic k:p Hamiltonian procedure used by us is

well described by Weiler[7] and used in a modi�ed ver-

sion by [8] in QD's. We are going to use the standard

k.p version, with only a special ordering of states in two

sets with spin up and down, as c+, hh+, lh+, so+, c�,

hh�, lh�, so�. All operators appearing in the stan-

dard k.p Hamiltonian are given in terms of kx = �i @
@x
,

ky = �i @
@y

and kz = �i @
@z

, that will be transformed

into spherical coordinates operators in the form
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Our model consider the QD with a radius R and in�nite barrier at the surface of the QD, since outside the

crystallites the materials have amorphous structures for QD's grown on colloidal or vitreous matrices. Thus, the

potential is V = 0 for r � R and V =1 for r > R is a realistic model. Therefore, the solutions of

( bHk:p + V )	n;l;m(r; �; �) = En;l;m	n;l;m(r; �; �); (2)

can be found in the form,
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where the term An;l Jl(
�l
n

R
r)Y m

l (�; �) is an eigenfunc-

tion obtained as a solution, for each carrier type, of

the diagonal elements of bHk:p and the kets fj j >g

with (j = 1; 8) are the Bloch functions at the ��point,

with the proper symmetry of the crystallite. The coef-

�cients An;l are the normalization constants, Jl(
�l
n

R
r)

are Bessel spherical functions, as shown in Fig.1, whose

zeroes for each level n and angular momentum l, are

found as �ln and, �nally, Y m
l (�; �) are the spherical har-

monic functions.

Figure 1. The �rst twelve spherical Bessel functions for any
quantum dot of radius R = 10�A. These functions have par-
ity de�ned according to the angular momentum and were
chosen in order of increasing energy.

The number, in the Fig. 1, labels the �rst twelve

spherical Bessel functions in order of increasing energy.

The are associated to each root of Jl(
�l
n

R
r), which has

quantum numbers (n, l) for each energy level having de-

generacy (m = 2l+1) in the quantum number m. The

root are only function of (n; l) and, in a spectroscopic

notation they represent the (nl)-atomic like states, and

are labeled: 1S : l = 0; 1P : l = 1; 1D : l = 2;

2S : l = 0; 1F : l = 3; 2P : l = 1; 1G : l = 4; 2D : l = 2;

1H : l = 5; 3S : l = 0; 2F : l = 3; 1I : l = 6.

Within the model used in this work every element

of matrix, <  n0;l0;m0 j bHk:p j  n;l;m >, in the spherical

QD's, can be calculated analytically since every part in

 n;l;m(r; �; �) is a well known function.

III Results

We will apply our model to calculate the QD elec-

tronic structure, as a function of the radius, in three

di�erent materials. We have chosen to make the com-

parison of the energy levels of QD's for CdTe, InSb,

Hg0:8Cd0:2Te due to the size of their band gap energy.

The Table below show all values of all k:p parameters

used in the calculation.



Parameters HgCdTe(b) InSb(a) CdTe(a)

F �0:80 �0:68 �0:50
Eg (meV ) 75:98 236:8 1606:9
�so (meV ) 1000:0 810:0 920
1 3:30 3:440 1:657
2 0:10 �0:524 �0:817
3 0:90 0:506 0:235

P (meV �A) 85:083 94:462 82:600

(a) Ref.[9] (b)Ref.[7] A = 100�A

Figure 2. Comparison of the e�ect due to conduction-
valence band coupling on the �rst four energy levels of elec-
trons in quantum dots of the three materials listed in Ta-
ble I.

In Fig. 2 we show the conduction band states, for

each material of Table I, as a function of the inverse of

the radius of the QD. We display the �rst four states,

being two for l = 0 and two for l = 1. It becomes very

clear that the coupling between the conduction and the

valence bands is the strongest one for HgCdTe mate-

rial, as should be expected due to its very small band

gap energy. This e�ect is somewhat similar for InSb

and becomes small, but not negligible at all, for CdTe

QD's.

In Fig. 3 we show the calculated �8 valence band

energy spectra for l = 0 and l = 1, as a function of the

inverse of the radius of the QD, for all three materials

of Table I. Here again the two material with narrow gap

somewhat show similar dispersions for the mixed lh and

hh states. For CdTe the energy levels corresponding to

l = 0 are further away from those with l = 1.

Finally, we may notice the complexity of the valence

band electronic structure in spherical quantum dots.

It seems that our full k:p Hamiltonian model can de-

scribe well these states and some degeneracy are lifted

for some quantum numbers. We intend to further ex-

plorer and study these e�ects on the optical spectrum

of these structures.

Figure 3. Comparison of the e�ect due to valence band mix-
ing on the �rst four energy levels of light- and heavy-holes
in quantum dots of the three materials listed in Table I.
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