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A theoretical study of optical properties in narrow gap semiconductor quantum wells has been
developed using an 8x8 Kane Hamiltonian. The interband transition selection rules have been
obtained and a detailed description of the interband absorption using Voight and Faraday scattering
con�gurations has been given. Interesting e�ects produced by the intraband admixture, such as spin-
ip transitions, will be discussed. The complementation of measurements using di�erent scattering
con�gurations will be analyzed.

I Introduction

A good knowledge of the full electronic structure is an

essential feature in order to get the best understanding

of the optical and transport properties of a semicon-

ductor heterostructure. Due to the great development

reached by growth centers which use epitaxial tech-

niques, the smoothness of interfaces is in the scale of

one monolayer and this progress has permitted the ex-

perimental observation of a number of ultra �ne aspects

present in these properties. The application of exter-

nal electric andnor magnetic �elds and internal strains

occurring due to the mismatch of lattice parameters at

the interfaces, have the e�ect of breaking some hidden

degeneracies and they may help to study as well as to

explore these properties as possible optoelectronic de-

vices.

The spatial con�nement of carriers, the strong va-

lence band mixing and conduction-valence band cou-

pling lead to the observed complex subband dispersions

with very interesting e�ects on the optical properties

in the heterostructures, such as: large excitonic e�ects

and oscillator strengths, special selection rules for opti-

cal transitions between levels, etc.

Magnetooptical techniques have reached their most

advanced sophistication when applied to semiconduc-

tors with crystalline zinc-blende structure. It has al-

ready been pointed that band theories developed for

diamond-type semiconductors are not directly applica-

ble to zinc-blende-type systems [3], since the lack of in-

version symmetry in the latter type induces a k�linear
term in the Hamiltonian which is responsible for the

coupling of ladders with di�erent spin orientations.

Here we will be interested in study the magne-

tooptical properties in zinc-blende type CdTe-CgHgTe

quantum wells as a function of the applied magnetic

�eld. The main interest in structures based on HgCdTe

solid solutions resides in their potential applications

as infrared optical modulators, lasers, detectors and

emitters [4]. In these narrow-gap structures the large

nonparabolicity, the very strong interband mixing, the

small e�ective mass of carriers and the possibility to

reach the zero-gap semiconductor structures provide a

rich variety of novel optical and electronic properties

[5][6].

In order to be able to explore properly these prop-

erties one needs a good Hamiltonian model in which

the intersubband couplings are considered and that is

able to bring magnetic and internal strain �elds within

the same framework. Hence we will deal with a full 8x8

Hamiltonian, �rstly proposed by Kane [7] and Luttinger

[8] and later extended by Weiler [9]. The eigenstates

obtained by such an approach consist in a combination

of � point Bloch functions whose weights will de�ne

the character of the corresponding state at given condi-

tions. This treatment shows the realistic picture of the

energy dispersions of all carriers.

In this work we have selected a suitable basis set

to expand the eigenstates of the quantum well Hamil-

tonian which contains its natural symmetry [10] and



parity. It helps not only the reduction of the size of the

Hamiltonians handled as well as the time spent with the

numerical calculations and the unambiguous identi�ca-

tion of admixed states which facilitates enormously the

interpretation of the theoretical results.

The case of interband absorption for di�erent po-

larizations of the incident light as well as for di�erent

scattering con�gurations will be discussed. There are

many features related to band admixture that will be

analyzed. The band coupling increases, in principle, the

number of allowed transitions though some of them will

appear to be very weak to be experimentally detected.

Some e�ects like spin-ip transitions attract special in-

terest and will be discussed. The anisotropic behavior

of the absorption coeÆcient make complementary the

results obtained using di�erent con�gurations.

II Basic Hamiltonian Model

The functions jji, which are the periodic Bloch function
at k = 0 will be numbered from j = 1; :::; 8 are order

c+, hh+, lh+, so+, c�, hh�, lh�, so�, to represent the
carrier type and the signs labeling the z-component of

the total angular momentum J = L+ S, respectively as
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For this set of Bloch functions, the full k.p Hamiltonian can be written, in the Hermitian form, as:
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In these expressions F , P , 1, 2, 3 are the pa-

rameters associated to the e�ective masses and {, q,

Nw are the Luttinger and Weiler[9] parameters asso-

ciated to the gyromagnetic factor[10] of all carriers in

the full k.p model. Also, s = h
�
eB0

cm0

�
measures the

energy in terms of the free electron cyclotron energy !c,
1
R2
c
=
�
eB0

ch

�
de�nes the cyclotron radius, E

c(v)
� de�nes

the band o�set energy for conduction(valence) band at

the interface of the heterostructure and Eg(�0) is the

band gap(spin-orbit energy) of the material in the quan-

tum well structure.

The system treated in this work consists of a sin-

gle quantum well with a magnetic �eld pointing along

the(001) growth direction (bz axis). In order to obtain

a complete set of Landau levels for k.p Hamiltonian in

the quantum well, the following set of basis functions

will be used to expand the eigenstates fj	(�)ig[1][2],

j	(�)i = jAj (�)i jkyi
��N j

� jji : (3)

where repeated indexes represent sum over quantum

numbers, jkyi = eikyyrepresents the free planewave

component,
��N j

�
is the quantum oscillator functions

and the corresponding Landau level. Also, the enve-

lope function component jAj (�)i = Ci
j (�)

��F i
j (z)

�
is

a combination of all classical quantum well wavefunc-

tions
��F i

j (z)
�
for the pure (parabolic) carrier type-j in

subband-i. In this way, the chosen basis set contains

the natural symmetry properties for the quantum well

structure. The Landau level index N and the subband

index m of the renormalized "carrier" are included in

the index �. Finally, the notation used for labeling

the subbands (e�(+), hh�(+), lh�(+), so�(+)) coincides

with the dominant spinor component for the carrier

character at B0 = 0 or, equivalently, at kk = 0.

The quantum well magneto solutions split into two

blocks formed by envelope functions with even sym-

metry fjAj (�)ig and odd symmetry fjBj (�)ig on the

coordinate z. The spinor egeinstate is formed with mix-

ture of symmetries which de�nes two Hilbert subspaces

denoted with indexes I and II . This spinor egeinstate

for each subspace has the general form:

c
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These states no longer can be classi�ed in symmetric

or antisymmetric states, as in the parabolic model, but

there is rather �xed arrangement of the spatial sym-

metry in each envelope function component, in order

to characterize each eigenstate in the Hilbert subspace.

Furthermore, the Landau levels corresponding to states

of the same Hilbert subspace will never show level cross-

ings for a given B0.

III Optical Transitions

The matrix element for the electron-radiation interac-

tion Hamiltonian is given by
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where �i represents the photon wavevector, be is the po-
larization of light, � is the refractive index, V is the

volume of the crystal and bP is the momentum opera-

tor. The last term in the expression above, de�nes a

polarization matrix �j0;j = hj0 j(be�P)j ji, for the inci-

dent light with circular polarization or in the Faraday

con�guration where be = (bx� iby) =p2and for linear po-

larizations or in the Voight con�guration where be = bei;
i = x; y; z for the Cartesian coordinates. In this way,

the corresponding selection rules for each optical tran-

sition in all con�gurations can be easily obtained.

For the Faraday con�guration with �� polariza-

tions, the mixed symmetry Hilbert subspace is pre-

served or, saying di�erently, there will be only transi-

tions between initial and �nal Landau levels belonging

to the same subspace I or II. These transitions satisfy

the selections rules shown in Table I.

Table I: Selection rules for magnetooptical transitions in QW under Faraday con�guration
(I) � (I) (II) � (II) �+ ��

e�  � hh� me = 2; 4:::;mv = 2; 4::: me = 1; 3:::;mv = 1; 3::: �N = 0 �N = �2
e+  � hh+ me = 1; 3:::;mv = 1; 3::: me = 2; 4:::;mv = 2; 4::: �N = 2 �N = 0
e+  � hh� me = 1; 3:::;mv = 2; 4::: me = 2; 4:::;mv = 1; 3::: �N = �1 �N = �3
e�  � hh+ me = 2; 4:::;mv = 1; 3::: me = 1; 3:::;mv = 2; 4::: �N = 3 �N = 1

e+  � lh+ (so+) me = 1; 3:::;mv = 1; 3::: me = 2; 4:::;mv = 2; 4::: �N = 0 �N = �2
e�  � lh� (so�) me = 2; 4:::;mv = 2; 4::: me = 1; 3:::;mv = 1; 3::: �N = 2 �N = 0
e+  � lh� (so�) me = 1; 3:::;mv = 2; 4::: me = 2; 4:::;mv = 1; 3::: �N = 1 �N = �1
e�  � lh+ (so+) me = 2; 4:::;mv = 1; 3::: me = 1; 3:::;mv = 2; 4::: �N = 1 �N = �1

For the Voight con�guration where � ? B k bz k be (denoted in the following as vz) we �nd a di�erent situation.

Here only the components lh and so of the Landau levels for the valence band will be coupled with the Landau levels

of electrons in the conduction band. Thus, the allowed transitions will be possible if they involve one initial state

in one of the Hilbert subspace and the �nal state in the other subspace. Therefore there will be an admixture of

the states or interchange of subspaces produced by the optical excitation, with the selection rules being represented

in the Table II.

Table II: Selection rules for magnetooptical transitions in QW under Voight con�guration
(II) � (I) (I) � (II) vz

e+  � hh+ me = 2; 4:::;mv = 1; 3::: me = 1; 3:::;mv = 2; 4::: �N = 1
e�  � hh� me = 1; 3:::;mv = 2; 4::: me = 2; 4:::;mv = 1; 3::: �N = �1
e+  � hh� me = 2; 4:::;mv = 2; 4::: me = 1; 3:::;mv = 1; 3::: �N = �2
e�  � hh+ me = 1; 3:::;mv = 1; 3::: me = 2; 4:::;mv = 2; 4::: �N = 2

e+  � lh+ (so+) me = 2; 4:::;mv = 1; 3::: me = 1; 3:::;mv = 2; 4::: �N = �1
e�  � lh� (so�) me = 1; 3:::;mv = 2; 4::: me = 2; 4:::;mv = 1; 3::: �N = 1
e+  � lh� (so�) me = 2; 4:::;mv = 2; 4::: me = 1; 3:::;mv = 1; 3::: �N = 0
e�  � lh+ (so+) me = 1; 3:::;mv = 1; 3::: me = 2; 4:::;mv = 2; 4::: �N = 0

In all cases the numbering of the Landau levels starts from N = 0 for each carrier type.



IV Magnetoabsorption coeÆcient

The magnetoabsorption coeÆcient is calculated as
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are the oscillator strengths for the transitions. For the

Faraday and Voigth con�gurations, ��(vz); they will

be denoted as G�(z)(Nc;mc;Nv;mv), where Nc(v) indi-

cates the Landau level of the corresponding conduction

(valence) subband mc(v). Notice that a sum is running

over indexes j and j0 and the Landau levels selection

rules are already implicit. The subband Landau levels

will be denoted as subband label (Nc(v);mc(v)):

For simplicity, only the strongest resonance peak, in

the range of energy of our study will be denoted alpha-

betically and indicating the conduction Landau level N

involved in transition. As an example we show in Table

III some peaks for the one Faraday con�guration.

Faraday �+ con�guration Final (= Initial
A+(N) = G+(N; 1;N � 3; 2) e� � hh+

B+(N) = G+(N; 1;N; 3) e� � hh�

C+(N) = G+(N; 2;N + 1; 1) e+ � hh�

D+(N) = G+(N; 1;N; 1) e� � hh�

Notice that the transitions A+(N) and C+(N) in-

volve "spin-ip" from the initial to the �nal states

whereas B+(N) and D+(N) preserve the spin compo-

nent.

V Results and Discussion

All calculations shown here were made for a quan-

tum well of Lz = 100�A with the solid solution,

Hg0:8Cd0:2Te/CdTe at T = 24K. We have also used

all material parameters listed by Weiler [9] for concen-

trations ranging from x = 18% to x = 35% of Cd in the

solid solution. At x = 2% of Cd, which is just above

the semimetal-semiconductor transition, the band gap

of the quantum well is Eg = 79:0 meV at T = 24K.

In Fig. 1 we show the calculated oscillator strength,

as a function of the magnetic �eld, for a number of op-

tical transitions with �+ polarization. As the magnetic

�eld increases, one can observe a very clear interchange

of oscillator strengths (intensities) between transitions

A+(3), from the subspace I, and B+(3), from the sub-

space II . Close to B0 = 13 Tesla both transitions have

nearly the same strength and, for higher �elds, B+(3)

oscillator strength is the dominant one and the transi-

tion A+(3) almost disappears above B0 = 15Tesla. An

explanation for this fact is the following. The conduc-

tion Landau level involved in both transitions is e�(3; 1)
and the valence levels involved are hh+(0; 2) for A+(3)

and hh�(3; 3) for B+(3) respectively. These two va-

lence levels anticross near B0 = 13 Tesla thus yielding

an interchange of character of the corresponding tran-

sitions.

Figure 1. Calculated transition strengths as a function of
the magnetic �eld for transitions A+(N), B+(N), D+(N),
and F+(N) for Landau levels from N = 3 to N = 5.

For sake of comparison, Fig. 2 shows the calcu-

lated magnetoabsorption spectrum for the �+ Faraday

con�guration as a function of the energy. In order to

reveal the observed anisotropy in the oscillator strength



we are showing the evolution of all three spectra as the

�eld increases. The energy broadening has been �xed

to 1 meV for all the levels thus, the relative height of

a peak is a direct measure of the corresponding oscilla-

tor strength. The thin solid line is the total spectrum

resulting from the sum A+(3) (dotted line) and B+(3)

(thick solid line) contributions and, the information in

each spectrum is complementary. On can observe that

shape and position (resonance) of peaks change dras-

tically with increasing magnetic �eld. Its is very clear

that some transitions may appear while others will dis-

appear. Our interest was focused in those transitions

and energy where an interchange of character will be

observed. The strongest transition in each case is ex-

pected to be the one that preserves the Landau level

index and the subband symmetry. Above 14 Tesla the

exchange already occurred. Notice also that the "spin-

ip" like transitions A+(N) and C+(6) almost disap-

peared due to the overlapping of the stronger peaks

B+(3); D+(8) . The existence of such anisotropy in the

magnetooptical spectrum is a direct consequence of the

peculiar symmetry properties inherent into this system.

Figure 2. Theoretical absorption spectra for di�erent magnetic �elds using �+ polarization. The solid thin lines represent the
total absorption. The solid dark lines are the contributions from transitions B+(N) and the dashed lines are the contributions
from spin-ip like transitions A+(N).
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