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Traditional �eld-theoretical methods to study extensive many-particle systems are generalized to
discuss nonextensive situations. In particular, generalizations of Green functions, path integral,
and Gaussian integration are performed in the context of nonextensive Tsallis statistical mechanics.
These developments employ integral representations that connect the usual and the generalized
cases.

I Introduction

The Boltzmann-Gibbs statistical mechanics and the

standard thermodynamics are very useful in the dis-

cussion of extensive systems. However, they are not

good to study situations where nonextensive e�ects oc-

cur, for instance, systems involving long-range inter-

actions (e. g., d = 3 gravitation)[1, 2], long-range

microscopic memory[3], and systems with a relevant

(multi)fractal-like structure. On the other hand, the

investigations based on the Tsallis entropy[4] mainly fo-

cuses on the study of nonextensive problems. Examples

of these applications are the L�evy superdi�usion[5, 6]

and anomalous correlated di�usion[7], turbulence in

a two-dimensional pure electron plasma[8], thermal-

ization of an electron-phonon system[9], astrophysi-

cal applications[10], dynamical systems[11, 12], among

others[13].

It is important to remark that the Tsallis entropy

extends the Boltzmann-Gibbs (BG) one, because it de-

pends on a real parameter q and it is reduced to the BG

one in the limit q ! 1. Consequently, it is natural to

investigate how the formalismbased on the BG entropy

can be enlarged in order to incorporate the Tsallis one,

i. e. in order to contain the case q 6= 1. In this direc-

tion, it was veri�ed that the Legendre structure[14, 15]

is preserved, dynamic linear response theory[16], per-

turbation and variational methods for calculation of

thermodynamic quantities[17, 18], and Green functions

can be generalized[19, 20, 21], among others[13].

This work is dedicated to discuss generalizations

that employ �eld-theoretical methods. More precisely,

generalizations of the Green functions that incorpo-

rate the nonextensive Tsallis statistical mechanics are

focused here as well as the corresponding path inte-

gral formulation. Furthermore, a generalization of the

Gaussian integrals based also on the Tsallis statistics

is analyzed. In order to naturally relate a generalized

case with the usual one, integral representations are

employed. Before starting the discussion about �eld

theoretical methods applied to the generalized Tsallis

statistical mechanics, a brief review about Tsallis statis-

tics, including integral representations, is presented in

Sec. II in order to mainly establish the notation em-

ployed in this work. By using integral representations,

the generalized Green functions are discussed in Sec.

III. The Hartree and Hartree-Fock approximations for

the generalized Green functions are considered in Sec.

IV. The path integral formulation for Tsallis statistics

is presented in Sec. V. In the context of the normal-

ized version of the Tsallis statistical mechanics, Green

functions are discussed in Sec. VI. The generalization

of the Gaussian integrals is the main focus of Sec. VII.

Sec. VIII contains a summary and concluding remarks.



Renio S. Mendes 67

II Tsallis statistics and integral

representations

The nonextensive entropy (Tsallis entropy)[4]

Sq = k Tr
�̂ � �̂q

q � 1
(1)

is a fundamental object in the discussion of the so

called generalized statistical mechanics. In Eq. (1)

�̂ is the density matrix, q 2 R characterizes the de-

gree of nonextensivity, and k is a positive constant.

In order to obtain the statistical weight, the entropy

(1) is maximized subject to some constraints. In the

grand-canonical ensemble, for instance, the constraints

are chosen as[4, 14]

Tr �̂ = 1 ; (2)

Tr �̂qĤ = Uq ; (3)

and

Tr �̂qN̂ = Nq ; (4)

where Ĥ and N̂ are respectively the Hamiltonian and

number operators. In this way, the generalized grand-

canonical statistical matrix becomes

�̂ =
h
1� (1� q)�

�
Ĥ � �N̂

�i1=(1�q)�
Zq ; (5)

with the generalized grand-partition function de�ned as

Zq = Tr
h
1� (1 � q)�

�
Ĥ � �N̂

�i1=(1�q)
: (6)

Thus the probabilities in the grand-canonical ensemble

becomes

pn = [1� (1� q)� (En � �Nn)]
1=(1�q)

.
Zq ; (7)

where it was supposed that
h
Ĥ; N̂

i
�
= 0. In Eq. (7)

it is also assumed that 1 � (1 � q)� (En � �Nn) � 0.

When this condition is not satis�ed, pn = 0 must

be used in order to retain the probabilistic interpre-

tation for pn. In this way, there is a cut o� when

1 � (1 � q)� (En � �Nn) < 0. The Lagrange multi-

pliers � and � in the above equations are considered

respectively as the inverse of the generalized tempera-

ture, 1=(kT ), and generalized chemical potential. Fur-

thermore,

hAiq � Tr �̂qÂ (8)

is usually referred as the q expectation value of Â. Note

that the above equations reduce to the usual ones in the

limit q ! 1. Thus [1�(1�q)x]1=(1�q) can be considered

a generalization of exp(�x). A normalized de�nition of

generalized mean values that also reduces to the usual

in the limit q! 1 is discussed in Sec. VI.

Powerful tools to calculate the generalized partition

functions, and consequently other important statistical

quantities, are the integral representations. By using

an integral representation, Zq can be written in terms

of the usual partition function, Z1. In fact, the contour

integral[22]

b1�z
i

2�

Z
C

du (�u)�z exp(�bu) =
1

�(z)
; (9)

with b = 1� (1� q)�
�
Ĥ � �N̂

�
and z = 1+ 1=(1� q)

leads to

Zq(�; �) =

Z
C

du K(1)
q Z1(��u(1 � q); �) ; (10)

where

K(1)
q = i

�(1=(1� q))

2�(q � 1)u
(�u)�1=(1�q) exp(�u) : (11)

In Eq. (9) b > 0 and Re z > 0, where the contour

C starts from +1 on the real axis, encircles the ori-

gin once counterclockwise, and returns to +1. This

representation is very general from which others can

be obtained. For instance, the Hilhorst representation

(private communication to Tsallis)[23] is based on the

Euler de�nition of the Gamma function,

c

bz
Z 1

0

dx xz�1 exp(�bx) = �(z) (Re b > 0 and Re z > 0) ; (12)

and the Lenzi representation[24] employs the integral identity[25]

b1�z exp(ab)

2�

Z 1

�1

dt
exp(ibt)

(a+ it)z
=

1

�(z)
for b > 0 ;
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= 0 for b < 0 ; (13)

d

where a > 0, Re z > 0, and ��=2 < arg(a+ it) < �=2.

The Hilhorst representation is usually useful in the

q > 1 case and it was applied to study a set of particles

without interaction[23]. On the other hand, the Lenzi

representation is usually applicable to q < 1 and accom-

plishes the cut o� condition previously discussed. It was

employed to obtain the exact solution of the blackbody

radiation[26] and to establish the perturbative and vari-

ational methods for quantum systems in the context of

Tsallis statistical mechanics[18]. The �rst discussion

about integral representation for q < 1 was presented

by Prato[27] and it was employed to study the classical

ideal gas.

III Green functions

This section is divided in two parts. First, it is pre-

sented a brief review of the Green functions in the usual

context, q = 1. In the second part it is introduced

the generalized Green functions, q 6= 1. Subsequently,

by using integral representations, the generalized Green

functions are expressed in terms of the usual ones. This

trick enables to obtain several properties of the gener-

alized Green functions in terms of the usual ones.

A. Usual Green functions

A natural formalism to study many identical par-

ticles systems is the second quantized one[28]. In this

context, the creation operator,  ̂y(x; t), and annihila-

tion operator,  ̂(x; t), are of fundamental importance.

For instance, the number operator is given by

c

N̂ (t) =

Z
ddx n̂(x; t)

�
n̂(x; t) =  ̂y(x; t) ̂(x; t)

�
(14)

and the Hamiltonian becomes

Ĥ(t) =

Z
ddx

r ̂y(x; t) � r ̂(x; t)

2 m

+

Z
ddx ddy  ̂y(x; t) ̂y(y; t) V (x� y)  ̂(y; t) ̂(x; t) : (15)

It was employed ~ = 1, m and d to represent respectively the particle mass and the spatial dimension, and for

simplicity a two-body potential V (x � y).

The creation and annihilation operators obey the equal time (anti) commutation relation�h
Â; B̂

i
�
= ÂB̂ � ÂB̂

�
, h

 ̂y(x; t);  ̂y(y; t)
i
�
=
h
 ̂(x; t);  ̂(y; t)

i
�
= 0 ; (16)

and h
 ̂(x; t);  ̂y(y; t)

i
�
= �(x � y) : (17)

In these last two expressions, the upper sign (�) refers to Bose-Einstein particles and the lower sign (+) refers to

Fermi-Dirac particles. Furthermore, the dynamics of any operator Ô(t) is dictated by the Heisenberg equation,

i
dÔ(t)

dt
=
h
Ô(t); Ĥ(t)

i
�
: (18)

Thus Ĥ(t) and N̂ (t) are time independent because
h
Ĥ(t); Ĥ(t)

i
�
= 0 and

h
N̂ (t); Ĥ(t)

i
�
= 0.
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In the usual statistical mechanics the expectation value of any operator Ô(t), when the grand-canonical ensemble

is employed, is given by D
Ô
E
1
=

Tr exp
�
��
�
Ĥ � �N̂

��
Ô

Tr exp
�
��
�
Ĥ � �N̂

�� : (19)

By using this notation, the n-particle Green function is de�ned by

G
(n)
1 (x1; t1; :::;xn; tn;y1; t

0
1; :::;yn; t

0
n; �; �) =

1

in

D
T
�
 ̂(x1; t1)::: ̂(xn; tn) ̂

y(y1; t
0
1)::: ̂

y(yn; t
0
n)
�E

1
: (20)

The symbol T represents the Wick time-ordering operation, and arranges the product of operators in chronological

order, for instance,

T
�
 ̂(x; t)  ̂y(y; t0)

�
=  ̂(x; t)  ̂y(y; t0) for t > t0

�  ̂y(y; t0)  ̂(x; t) for t < t0 : (21)

The sign (+) is used for bosons, when the order between  and  y is changed. On the other hand, the sign (�)

is used for fermions. The upper sign will be employed for bosons and the lower sign is used for fermions in the

following discussions.

In connection with one-particle Green function, it is employed the correlation functions

G1>(x; t;y; t
0; �; �) =

1

i

D
 ̂(x; t) ̂y(y; t0)

E
1
; (22)

and

G1<(x; t;y; t
0; �; �) =

�

i

D
 ̂y(y; t0) ̂(x; t)

E
1
: (23)

Thus, G(1)
1 = G1> for t > t0 and G(1)

1 = G1< for t < t0. Because of the time and spatial translational invariance of

the Hamiltonian (15), G
(1)
1 depends only on r = x � y and ~t = t � t0, i. e. G

(1)
1 = G

(1)
1 (r; ~t; �; �). Furthermore, it

is introduced the spectral function de�ned by

A1(y;!; �; �) = G1>(x;y;!; �; �)� G1<(x;y;!; �; �)

=

Z
ddp

(2�)d
exp(ip � r) A1(p; !; �; �) (24)

=

Z
ddp

(2�)d
exp(ip � r) [G1>(p; !; �; �)� G1<(p; !; �; �)] ;

where

G1>(p; !; �; �) = i

Z
ddr

Z 1

�1

d~t exp(�ip � r+ i!~t) G1>(r; ~t; �; �) ; (25)

and

G1<(p; !; �; �) = �i

Z
ddr

Z 1

�1

d~t exp(�ip � r+ i!~t) G1<(r; ~t; �; �) : (26)

From these de�nitions and Eq. (17) the sum rule follows

Z
d!

2�
A1(x;y;!; �; �) =

Z
d!

2�

Z
ddp

(2�)d
exp(ip � r) A1(p; !; �; �)

=

Z
d!

2�

Z 1

�1

d~t exp(i!~t)


 (r; ~t) y(0; 0)�  y(0; 0) (r; ~t)

�
1

(27)

=
D�
 (r; 0);  y(0; 0)

�
�

E
1
= �(x� y) ;
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or alternatively Z 1

1

d!

2�
[G1>(p; !; �; �)� G1<(p; !; �; �)] = 1 : (28)

It is important to emphasize also that correlation functions satisfy the fundamental relation

G1<(x; t;y; t
0; �; �)jt=0 = � e�� G1>(x; t;y; t

0; �; �)jt=�i� : (29)

In terms of the spectral function and the Fourier transform of the correlation functions, this relation can be written

as

G1>(p; !; �; �) = [1� f(!; �; �)] A1(p; !; �; �) ; (30)

and

G1<(p; !; �; �) = f(!; �; �) A1(p; !; �; �) ; (31)

where

f(!; �; �) =
1

exp(�(! � �))� 1
: (32)

Here the function f(!; �; �) is the average occupation number in the grand-canonical ensemble of a mode with

energy !, and the spectral function A1(p; !; �; �) is a weighting function with total weight unity (see Eq. (27)).

For free particles, for instance, the weighting function is given by A1(p; !; �; �) = 2� �
�
! � p2=(2m)

�
.

The density of particles (see Eq. (14)) can be obtained from the correlation function G1<. Indeed, for a uniform

system,

hn̂(0; 0)i1 = hn̂(x; t)i1 =
D
 ̂y(x; t) ̂(x; t)

E
1

= �i G1<(x; t;x; t; �; �) =

Z 1

�1

d!

2�

Z
ddp

(2�)d
G1<(p; !; �; �) : (33)

From G1< the expectation value of the Hamiltonian (15) can be also obtained. To verify that this a�rmation

is true, �rst, note that the equation of motion (18) leads to�
i
@

@t
+
r2
x

2m

�
 ̂(x; t) =

Z
ddy V (x � y)  ̂y(y; t) ̂(y; t) ̂(x; t) (34)

and �
�i

@

@t0
+
r2
x

2m

�
 ̂y(x; t0) =  ̂y(x; t0)

Z
ddy V (x � y)  ̂(y; t0) ̂(y; t0) : (35)

Second, the multiplication of Eq. (34) by  ̂y(x; t) on the left, and the multiplication of Eq. (35) by  ̂(x; t0) on the

right can be combined to form

1

4

Z
ddx

��
i
@

@t
� i

@

@t0

�
 ̂y(x; t0) ̂(x; t)

�
t0=t

=
1

4

Z
ddx

" 
�
r2
x

2m
�
r2
y

2m

!
 ̂y(y; t) ̂(x; t)

#
y=x

+
1

2

Z
ddx ddy  ̂y(x; t) ̂y(y; t) V (x� y)  ̂(y; t) ̂(x; t) : (36)

Finally, when

1

4

Z
ddx

" 
�
r2
x

2m
�
r2
y

2m

!
 ̂y(y; t) ̂(x; t)

#
y=x

(37)

is added to both sides of Eq. (36) and the statistical average (19) is taken, it follows that

hĤi1 =
1

4

Z
ddx

��
i
@

@t
� i

@

@t0
+
rx � ry

m

�D
 ̂y(y; t0) ̂(x; t)

E
1

�
y=x; t0=t

= �
i

4

Z
ddx

��
i
@

@t
� i

@

@t0
+
rx � ry

m

�
G1<(x; t;y; t

0; �; �)

�
y=x; t0=t

: (38)
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Similarly, by using the de�nition of one and two-particle Green functions, Eq. (20), and equations of motion,

Eqs. (34) and (35), it can be veri�ed that�
i
@

@t1
+
r2
x

2m

�
G
(1)
1 (x1; t1;y1; t

0
1; �;�) = �(t1 � t01)�(x � y)

� i

Z
ddy V (x� y) G(2)

1

�
x1; t1;x2; t2;y1; t

0
1;y2; t

0+
2 ; �;�

�����
t2=t1

: (39)

The notation t0+2 is used to represent t02 + �, where � is an in�nitesimal positive number. Similar equations can

be obtained for others n-particle Green functions, giving a hierarchical structure.

B.Generalized Green functions

By taking into account the previous discussions, a natural way to de�ne a generalized n-particle Green function

is to replace the usual mean value, Eq. (19), with by the generalized one[19], Eq. (8). For instance, the generalized

one-particle Green function becomes

G(10)
q (x; t;y; t0) =

1

i

D
T
�
 ̂(x; t) ̂y(y; t0)

�E
q
: (40)

However, as it is demonstrated in Sec. IV, this Green function do not obey the usual equation of motion. In order

to circumvent this di�culty, it is convenient to de�ne a normalized one-particle Green function[20], i. e.

G(1)
q (x; t;y; t0) =

G
(10)
q (x; t;y; t0)

h1iq
=

1

ih1iq

D
T
�
 ̂(x; t) ̂y(y; t0)

�E
q
; (41)

where h1iq = Tr�̂q = 1 + (1� q)Sq . A further de�nition of Green functions is discussed in Sec. VI.

As in the case of the generalized partition function (see Eq. (10)), the above one-particle Green function can be

obtained from the usual one by using an integral representation. Indeed, by using the de�nition of the usual Green

function, Eq. (20), Eq. (9) with b = 1� (1� q)�(Ĥ � �N̂ ) and z = 1=(1� q), and the partition function (10), Eq.

(41) can be written as

G(1)
q (x; t;y; t0; �; �) =

Z
C

du K(2)
q (u) Z1(��u(1 � q); �) G

(1)
1 (x; t;y; t0;��u(1 � q); �) ; (42)

with

K(2)
q (u) = i

�(1=(1� q))

2�(Zq)qh1iq
(�u)�1=(1�q) exp(�u) : (43)

Of course, h1iq can be expressed employing an integral representation. In this case, it must be chosen b = 1� (1�

q)�(Ĥ � �N̂) and z = 1=(1� q).

In a similar way, the correlation functions, Gq> for t > t0 and Gq< for t < t0, can be introduced as follows

Gq>(x; t;y; t
0; �; �) =

1

h1iq

D
 ̂(x; t) ̂y(y; t0)

E
q

=

Z
C

du K(2)
q (u) Z1(��u(1� q); �) G1>(x; t;y; t

0;��u(1� q); �) (44)

and

Gq<(x; t;y; t
0; �; �) =

�

h1iq

D
 ̂y(y; t0) ̂(x; t)

E
q

=

Z
C

du K(2)
q (u) Z1(��u(1� q); �) G1<(x; t;y; t

0;��u(1� q); �) (45)

From Eqs. (44) and (45) it follows that the sum rule (28) is q invariant. In fact, Eqs. (44) and (30) leads to
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Gq>(p; !; �; �) =

Z
C

du K(2)
q (u) Z1(��u(1 � q); �) G1>(p; !;��u(1� q); �)

=

Z
C

du K(2)
q (u) [1� f(!;��u(1 � q); �)] Z1(��u(1 � q); �) A1(p; !;��u(1� q); �) (46)

and similarly

Gq<(p; !; �; �) =

Z
C

du K(2)
q (u) Z1(��u(1 � q); �) G1<(p; !;��u(1� q); �)

=

Z
C

du K(2)
q (u) f(!;��u(1 � q); �) Z1(��u(1 � q); �) A1(p; !;��u(1� q); �) ; (47)

thus Z 1

1

d!

2�
[Gq>(p; !; �; �)�Gq<(p; !; �; �)]

=

Z
C

du K(2)
q (u) Z1(��u(1 � q); �)

Z
d!

2�
A1(p; !;��u(1� q); �) = 1 : (48)

Analogously to the usual case, the physical contents of the theory can be obtained from the Green functions.

This is exactly the case of q expectation of the density of particles and Hamiltonian. Indeed, from the usual

de�nition of the expectation of the density of particles, Eq. (33), the de�nition of the q expectation of the density

of particles, Eq. (8), and the correlation function Gq<, Eqs. (45) and (47), it follows that

hn̂iq = �

Z
C

du K(2)
q (u)

Z 1

�1

d!

2�

Z
ddp

(2�)d
Z1(��(1 � q)u; �)A1(p; !; �; �)

exp(��(1 � q)u(! � �))� 1
: (49)

Thus the chemical potential can be determined in terms of the q mean value by using Eq. (49). Following the

calculations developed to obtain Eq. (38) one concludes analogously that
D
Ĥ
E
q
can be obtained from Gq<, because

the calculation in both cases (q = 1 and q 6= 1) is the same, thus

hĤiq =
1

4

Z
ddx

��
i
@

@t
� i

@

@t0
+
rx � ry

m

�D
 ̂y(y; t) ̂(x; t)

E
q

�
y=x; t0=t

= �
1

4
h1iq

Z
ddx

��
i
@

@t
� i

@

@t0
+
rx � ry

m

�
Gq<(x; t;x; t

0; �; �)

�
y=x; t0=t

: (50)

IV Hartree and Hartree-Fock Approximations

The generalized n-particle Green function is de�ned as

G(n)
q (x1; t1; :::;xn; tn;y1; t

0
1; :::;yn; t

0
n; �;�)

=
1

inh1iq

D
T
�
 ̂(x1; t1)::: ̂(xn; tn) ̂

y(y1; t
0
1)::: ̂

y(yn; t
0
n)
�E

q
(51)

=

Z
C

du K(2)
q (u) Z1(��u(1 � q); �) G

(n)
1 (x1; t1; :::;xn; tn;y1; t

0
1; :::;yn; t

0
n;��u(1 � q);�) :

As in the usual case, a set of equations for these Green functions can be obtained. Moreover, the form of these

equations is q invariant. For instance, the motion equation for G
(1)
q is�

i
@

@t1
+
r2
x

2m

�
G(1)
q (x1; t1;y1; t

0
1; �;�) = �(t1 � t01)�(x � y)

� i

Z
ddy V (x� y) G(2)

q

�
x1; t1;x2; t2;y1; t

0
1;y2; t

0+
2 ; �;�

�����
t2=t1

: (52)
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In fact, proceeding similarly to the usual case it is possible to verify that the form of Eqs. (39) and (52) are the

same.

In general, to solve the equations of motion is a formidable task. Of course, this is not di�erent in the nonextensive

Tsallis statistical mechanics. Following the usual case, two approximated methods are usually employed. The �rst

one is the Hartree approximation. It is supposed, in this simple approximation, that G
(2)
1 becomes the product

G
(1)
1 G

(1)
1 . In this way, a natural generalization of the Hartree approximations is

G(2)
q (x1; t1;x2; t2;y1; t

0
1;y2; t

0
2; �;�) = G(1)

q (x1; t1;y1; t
0
1; �;�) G

(1)
q (x2; t2;y2; t

0
2; �;�) : (53)

In this approximation, it was not considered the exclusion principle. When this new property is take into account,

Eq. (53) should be substituted by

G(2)
q (x1; t1;x2; t2;y1; t

0
1;y2; t

0
2; �;�) = G(1)

q (x1; t1;y1; t
0
1; �;�) G

(1)
q (x2; t2;y2; t

0
2; �;�)

� G(1)
q (x1; t1;y2; t

0
2; �;�) G

(1)
q (x2; t2;y1; t

0
1; �;�) : (54)

This is the generalized Hartree-Fock approximation. Further consequences of these approximations are presented

in Ref. [20].

V Path integral formulation

As discussed in Sec. II, the generalized partition function, Zq , can be expressed in terms of Z1 (see Eq. (10)). This

fact can be employed to write Zq in terms of a path integral[30]. In fact, by using the path integral representation

of the usual partition function (see, for instance, Ref. [31] ch. III),

Z1 =

Z
� � �

Z
D D exp

 
�

Z �

0

d~t

Z
ddx ( _ +H( ;  ))

!
; (55)

and the integral representation (10), it is immediate to verify that

Zq =

Z
C

du K(1)
q (u)

Z
� � �

Z
D D exp

 
�

Z ��

0

d~t

Z
ddx ( _ +H( ;  ))

!
; (56)

where �� = (1 � q)(�u)�. The functional generator of the Green functions, Zq(J; J), can be obtained in a similar

way. However, it is necessary to employ the kernel K
(2)
q instead of K

(1)
q , i. e.,

Zq(J; J) =Z
C

du K(2)
q (u)

Z
� � �

Z
D D exp

 
�

Z ��

0

d~t

Z
ddx (  +H( ;  )� J �  J)

!
: (57)

Finally, the n-particle Green function, ~G(n)
q (x1; :::;xn;y1; :::;yn), is obtained by taking functional derivatives with

relation to the sources J and J . Of course, these temperature Green functions are time-independent.

VI Green functions and normalized statistics

Recently, it was considered a new kind of generalized mean value[32], see also Ref.[21]

hhAiiq =
Tr �̂qÂ

Tr �̂q
: (58)
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By using this new de�nition, the grand-canonical distribution can be obtained maximizing the Tsallis entropy (see

Eq. (1)) subject to the constraints Tr�̂ = 1,

Tr �̂qĤ

Tr �̂q
= U (2)

q ; (59)

and
Tr �̂qN̂

Tr �̂q
= N (2)

q : (60)

In this way, the new grand-canonical distribution becomes

�̂ =
n
1� (1� q)�

h
Ĥ � U (2)

q � �
�
N̂ � N

(2)
2

�i.
Tr �̂q

o1=(1�q)�
Z(2)
q ; (61)

where

Z(2)
q = Tr

n
1� (1� q)�

h
Ĥ � U (2)

q � �
�
N̂ � N

(2)
2

�i.
Tr �̂q

o1=(1�q)
: (62)

The q-expectation value de�ned by Eq. (58) leads to hh1iiq = 1 instead of h1iq 6= 1. Furthermore, the grand-

canonical distribution does not depend of the choice on the origin of the ground state energy, contrary to the

distribution given by Eq. (5). These properties basically indicate that this new formulation is the correct one for

the nonextensive statistical mechanics[33]. However, the calculations based on the distribution (61) are di�cult to

be performed because the density matrix depends explicitly on U
(2)
q and N

(2)
q . More precisely, this fact indicates

that calculations in this new formulation must be performed in a self-consistent way. On the other hand, the

formal development discussed in the previous sections can be extended directly for this new case. For instance, the

n-particle Green function, G
(n)(2)
q , based on the new formulation can be de�ned in the following way:

G(n)(2)
q (x1; t1; :::;xn; tn;y1; t

0
1; :::;yn; t

0
n) =

1

in

DD
T
�
 ̂(x1; t1)::: ̂(xn; tn) ̂

y(y1; t
0
1)::: ̂

y(yn; t
0
n)
�EE

q
: (63)

Other examples are the motion equations for Green functions, for instance, G
(1)
q and G

(2)
q must be respectively

replaced by G(1)(2)
q and G(2)(2)

q in Eq. (52), i. e.�
i
@

@t1
+
r2
x

2m

�
G(1)(2)
q (x1; t1;y1; t

0
1; �;�) = �(t1 � t01)�(x � y)

� i

Z
ddy V (x� y) G(2)(2)

q

�
x1; t1;x2; t2;y1; t

0
1;y2; t

0+
2 ; �;�

�����
t2=t1

: (64)

The application of these developments to study a simple many-body system, the quantum ideal gas, leads to a

set of coupled equations. In general, the solutions of these equations must be performed numerically.

VII Non-Gaussian integration

A very useful tool in the context of path integrals is based on Gaussian ones, i. e. in the generating function[34]

Z1;�(G; �J; �x
(0)) =

Z
Dx exp

�
�
�

2

�
�x� �x(0)

�
G�1

�
�x� �x(0)

�
+ �J � �x

�

=

�
2�

�

�N=2
(detG)1=2 exp

� �JG �J

2�
+ �J � �x(0)

�
: (65)

Here Dx =
QN

i=1 dxi,
�J � �x =

PN
i=1 Jixi and �xG�1�x =

PN
i;j=1 xiG

�1
ij xj, and N is the space dimension. Furthermore,

the parameter � was introduced for future convenience. This section is dedicated to the generalization of the

Gaussian integral (65) based on Tsallis statistical weight[35].
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As it was emphasized bellow Eq. (7), [1+ (1� q)x]1=(1�q) is a natural generalization of the exponential function

in the present context. Thus, the function

f (1)q (G; x) =

�
1�

(1� q)

2G

�
x� x(0)

�2�1=(1�q)
(66)

can be called q-Gaussian, because it is reduced to exp
�
�
�
x� x(0)

�2.
(2G)

�
in the limit q ! 1. In this way, the

N -dimensional q-Gaussian becomes

f (N)
q (G; �x) =

�
1�

1� q

2

�
�x� �x(0)

�
G�1

�
�x� �x(0)

��1=(1�q)
: (67)

By using f
(N)
q , it is possible to generalize the generating function (65) in the following way

Zq;�

�
G; �J; �x(0)

�
�

Z
Dx

�
f (N)
q (G; �x)

��
exp

�
�J � �x

�
; (68)

since

Pq;�(xj1xj2 :::xjs) �

Z
Dx xj1xj2 :::xjs

�
f (N)
q (G; �x)

��
=
@sZq;�

�
G; �J; �x(0)

�
@Jj1 @Jj2 ::: @Jjs

�����
�J=0

: (69)

The parameter � was introduced because � 6= 1 occurs in several situations, for instance, when it is necessary to

calculate hAiq = Tr �̂qÂ in classical systems as the ideal gas.

In general, the integral (69) is divergent for q � 1 + 2�=(N + s). In fact, since Dx / j�xjN�1dj�xj and�
f
(N)
q

��
/ j�xj2�=(1�q) for large j�xj in the representative case G�1ij / �ij, Eq. (69) contains an integral propor-

tional to
R
dj�xj j�xjN�1+s�2�=(q�1) for a su�ciently large j�xj. On the other hand, following the general discussion

presented in Sec. II, f (N)
q contains a cut o� for q < 1. Consequently, the integral on the left side of Eq. (69) is

convergent for arbitrary N when q < 1. The present discussion is restrict to the convergent case, i.e., the q < 1

one.

Employing the Lenzi representation (see Eq. (13)) with a = 1, b = 1� (1� q)
�
�x� �x(0)

�
G�1

�
�x� �x(0)

��
2 and

z = �=(1� q) + 1 in Eq. (67), it follows that

�
f (N)
q (G; �x)

��
=

Z 1

�1

dt K(3)
q (t) exp

�
�
�

2

�
�x� �x(0)

�
G�1

�
�x� �x(0)

��
; (70)

with

K(3)
q (t) =

�(�=(1� q) + 1) exp(1 + it)

2� (1 + it)�=(1�q)+1
(71)

and � = (1� q)(1 + it). Thus Eq. (68) becomes

Zq;�

�
G; �J; �x(0)

�
=

Z 1

�1

dt K(3)
q (t) Z1;�( �J; �x

(0)) : (72)

The �nal expression for the generating function can be obtained by expanding the last exponential in power series

and by using Eq. (13) again with a = b = 1 to calculate each term of the integral. This calculation leads to

Zq;�

�
G; �J; �x(0)

�
= Zq;�(G; 0; 0) exp

�
�J � �x(0)

� 1X
n=0

� (�=(1� q) + 1 +N=2)

n!� (�=(1� q) + 1 + N=2 + n)

� �JG �J

2(1� q)

�n

= Zq;�(G; 0; 0) exp
�
�J � �x(0)

�
�(�+ 1)

� �JG �J

2(1� q)

���=2
I�

 �
2 �JG �J

1� q

�1=2!
; (73)

where

Zq;�(G; 0; 0) =

�
2�

1� q

�N=2
� (�=(1� q) + 1)

� (�=(1� q) + 1 + N=2)
(detG)1=2 ; (74)
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I�(x) =
P1

n=0(x=2)
2n+�=[n!�(n+ 1 + �)] is the modi�ed Bessel function of �rst kind, and � = �=(1 � q) + N=2.

Finally, by taking derivatives of Zq;�

�
�J; �x(0)

�
, all Pq;�(xj1xj2 :::xjs) can be obtained, for example,

Pq;�(1) = Zq;� (G; 0; 0) ;

Pq;�(xj1) = Zq;� (G; 0; 0) x
(0)
j1

;

Pq;�(xj1xj2) = Zq;� (G; 0; 0)

�
x
(0)
j1
x
(0)
j2

+
Gj1j2

�+ (1� q)(N=2 + 1)

�
: (75)

A similar procedure can be employed when 1 < q < 1 + 2�=(N + �), but it is necessary to replace consistently the

Lenzi representation with the Hilhorst one.

A correlation function of the product xj1xj2 :::xjs, hxj1xj2:::xjsiq;� can be de�ned in terms of the above results

by taking the relation

hxj1xj2 :::xjsiq;� � Pq;�(xj1xj2 :::xjs)=Pq;�(1) : (76)

From this de�nition with �x(0) = 0 it follows the relation between hxj1xj2 :::xj2niq;� and hxj1xj2iq;� = Gj1j2=[�+

(1� q)(N=2 + 1)], where n is an integer greater than one. A direct calculation leads to

hxj1xj2:::xj2niq;� =
nY

k=1

�+ (1� q)(N=2 + 1)

�+ (1� q)(N=2 + k)

X
perm

hxjP1xjP2 iq;� ::: hxjP2n�1

xjP2n iq;� ; (77)

d

where Pk represents a permutation and
P
perm indi-

cates a sum over all permutations without repeating

hxjP1xjP2 iq;�, since hxjPkxjPn iq;� = hxjPnxjPk iq;�. The

above result resembles the Wick's theorem (see, for in-

stance, Ref. [36]), and in particular the usual Wick's

theorem is recovered in the limit q ! 1 and N ! 1.

For the general case, Eq. (77) formally di�ers from the

usual one by a factor that decreases when n increases.

Moreover, this di�erence from one increases when q de-

creases and N increases. In conclusion, Eq. (77) is

a generalization of Wick's theorem based on f
(N)
q for

discrete systems.

Applications of the N -dimensional non-Gaussian

integration are useful in several contexts. For in-

stance, in the study of the Tsallis statistical mechan-

ics of the classical ideal gas by using the unnormal-

ized formulation[37] or the normalized one[38], because

the partition function is proportional to Zq;1 (m1; 0; 0)

(see Eq. (68)) with �x = (�p1; �p2; :::), where �pi is

the momentum of the i-th particle. A second exam-

ple is related with the variational methods, in this

case fNq is the trial function. For example, the ap-

plication of this trial function to study the equation

E� = (�~2=(2m)@2=@x2 + �x4)� leads to a very good

approximation of the ground state energy[35].

VIII Discussions and conclu-

sions

A detailed discussion about generalized Green functions

was presented. The integral representations were im-

portant tools in this discussion, because they can be

used to connect the usual case, q = 1, and the gen-

eralized one, q 6= 1. This fact indicates that integral

representations can be employed as guide to generalize

and calculate many quantities related with the formal

structure of the nonextensive Tsallis statistical mechan-

ics. The generalized Gaussian integrals are other typi-

cal examples of this formal structure.

Since the usual Green functions and path integral

are important tools in the study of extensive systems,

it is expected that the generalized Green functions

and path integral formulation of nonextensive Tsallis

statistical mechanics become useful in the discussion
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of nonextensive systems. In general, the calculations

based on generalized Green functions and path integral

are more elaborated than the corresponding case with

q = 1. Furthermore, the analysis is more di�cult to be

performed in the case of the normalized nonextensive

Tsallis statistical mechanics than in the unnormalized

one, because coupled equations must be solved. In par-

ticular, generalized Green functions and path integral

are not employed yet to analyze many-body systems

other than the quantum ideal gas.

The generalized Gaussian integral presented in Sec.

VII can be used in several contexts. Obvious applica-

tions of these integrals come from nonextensive Tsallis

statistical mechanics of the classical ideal gas and of a

set of harmonic oscillators. Of course, perturbations of

these systems can be analyzed too. Other applications

can be based on situations where deviations from the

Gaussian behavior is expected. A typical example is

the ground state of anharmonic oscillators.
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