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We review the basic features of interminiband absorption in superlattices, focussing on the joint
density of states, the oscillator strength and the associated sum rule. Then we will discuss infrared
spectroscopic studies under application of an electric �eld. With a �eld in the plane of the layers, a
hot-electron distribution can be generated. Using the temperature dependence of the interminiband
absorption, energy loss and relaxation rates can be determined. A vertical electric �eld leads to
negative di�erential resistance, domain formation and the break-up of the minibands into Wannier-
Stark ladders. We will present experiments showing the formation of interpenetrating Wannier-
Stark ladders in the continuum, which are strongly coupled by Zener resonances. This is the �rst
time to correlate transport and infrared absorption in a biased superlattice.

I Introduction

Semiconductor superlattices are a fascinating model

system for electrons in a periodic potential [1]. They

have enabled researchers to observe long-sought physi-

cal phenomena such as Wannier-Stark localization [2]

and Bloch oscillations [3]. In the present paper we

would like to review some of the basic properties of

electrons in superlattices, in particular those related to

optical transitions between minibands within the con-

duction band, which can be studied by infrared spec-

troscopy [4]. We will also present some recent absorp-

tion studies of superlattices under application of an

electric �eld, both parallel and perpendicular to the

layers. Whereas in the former case information on the

hot-electron relaxation is obtained [5], the latter exper-

iment reveals the formation of Wannier-Stark ladders

far in the continuum and allows us, for the �rst time,

to correlate the current-voltage characteristic with the

infrared absorption spectrum [6].

II Interminiband absorption

The conduction band of a GaAs/AlGaAs superlattice

(SL) can be well described using the envelope function

method, which, in the case of only one band, reduces

to the Kronig- Penney model with di�erent e�ective

masses in the well and barrier material. At �rst we

would like to discuss a superlattice consisting of 75 �A

wide GaAs quantum wells and 25 �A wide Al0:3Ga0:7As

barriers. The calculated band structure is shown in Fig.

1. The �rst miniband has a width of �1 = 18 meV, the

second of �2 = 70 meV approximately. If the superlat-

tice is doped with electrons, optical transitions can oc-

cur between all �lled states of the �rst miniband and all

empty states in the second miniband. It is well known

that such transitions require the electric �eld of the ex-

citing radiation to possess a non-vanishing component

perpendicular to the SL layers (z-component) [7]. In

quantum wells such so-called intersubband transitions

have been extensively studied and have found appli-

cations in infrared detectors (\quantum well infrared



photodetectors", QWIPs) [8] and lasers (\quantum cas-

cade lasers") [9]. In a strong- coupling superlattice, as

in the present case, the thin barriers give rise to a �-

nite miniband width and kz-dispersion. The absorption

coeÆcient, �, can then be written in the form [10]

c

� =
e2kT

�0c�~2�m�!

Z �=d

0

dkz jh1jpzj2ij2 ln
�
1 + exp([EF �E1(kz)]=kT )

1 + exp([EF �E2(kz)]=kT )

��
�=�

(E2(kz)�E1(kz)� ~!)2 + �2

�
(1)

d

Here the parameters in the prefactor have their usual

meaning, � is the refractive index. The integration

over kx and ky has already been performed assum-

ing parabolic bands, which leads to the logarithmic

Fermi-Dirac factor. The energy-conserving Æ-function

has been replaced by a Lorentzian with full-width at

half-maximum (FWHM) of 2�. The integral over kz

has to be evaluated numerically, using the miniband

dispersions En(kz) in the Lorentzian. Note that also

the matrix elements are kz-dependent.

Figure 1. The calculated miniband structure of the
GaAs/AlGaAs superlattice under investigation (well width
75 �A, barrier width 25 �A ). The horizontal dashed line indi-
cates the top of the barriers. The 1s and 2pz impurity states
are also included schematically [4]. The interminiband tran-
sitions at the center and the edge of the mini-Brillouin zone
are indicated as well as the impurity transition.

There are three essential contributions to the ab-

sorption coeÆcient: the squared momentum matrix el-

ement (which is proportional to the oscillator strength

through f12 = (2=m�
~21)jh1jpz j2ij2), the Fermi-Dirac

thermal occupation factor, and the Lorentzian. To-

gether with the kz integration the latter is nothing

less than the joint density of states (JDOS), which has

two singularities at the center (kz = 0) and the edge

(kz = �=d) of the mini- Brillouin zone with a 1=
p
! di-

vergence, characteristic of its one-dimensional charac-

ter. The JDOS for transitions between the two lowest

minibands of the above superlattice is shown in Fig. 2

(dotted curve). The singularities are smoothed out by a

broadening parameter of � = 10 meV. The full curve in

Fig. 2 reects the total absorption coeÆcient according

to eq.1 using an electron concentration of 6�1017 cm�3

and a temperature of T = 5 K. (At this doping level

the Fermi energy lies above the top of the �rst mini-

band, i.e., the �rst miniband is \full"). There is now

a strong asymmetry with an enhanced low-frequency

peak, which corresponds to transitions at the edge of

the mini-Brillouin zone (near kz = �=d). The reason for

this is the variation of the oscillator strength, f12(kz),

across the Brillouin zone. In our present superlattice

the oscillator strength varies from f12(kz = 0) = 0.3

to f12(kz = �=d) = 2.3. This can be compared to the

oscillator strength of an in�nite single QW, which is

f12 = 0:96.

Such a behavior is characteristic of most superlattice

band structures (it has actually been employed in mini-

band cascade lasers [11]), and is related to an extension

of the well- known oscillator sum rule to periodic sys-

tems with energy bands. It reads

X
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or X
j

fij(kz) = 1� m�

m
(i)
SL

(2)

m
(i)
SL is the e�ective mass along the z-direction, which

is related to the curvature of the miniband at a cer-

tain point along kz . In the above equation the �rst

term describes transitions between di�erent minibands

(inter-miniband transitions). The second term, which

is absent in atomic system and contains the curvature

of the miniband at a certain point along kz , corresponds

to free-carrier type of transitions within one miniband

[4]. From Eq. 2 it is clear that a large curvature (or a

small e�ective miniband mass mz) will strongly inu-

ence the values of fij(kz). Since the miniband curvature

is positive near kz = 0, the oscillator strength has to be

reduced there, whereas it has to be enhanced due to the

negative curvature near kz = �=d in order to ful�ll the

sum rule. Physically this corresponds to the possibility

of free-carrier absorption and emission, respectively.

Figure 2. Calculated joint density of states (JDOS, dotted)
and theoretical absorption coeÆcient for the above SL with
n = 6� 1017 cm�3 at T=5 K.

Let us now turn to the experiment. Two

GaAs/AlGaAs SLs with the above mentioned param-

eters were investigated, one homogeneously doped to

n = 6 � 1017 cm�3 (having 200 periods), the other

one to n = 6 � 1016 cm�3 (and 500 periods). A cru-

cial di�erence is that in the higher-doped sample the

Fermi energy (at low temperature) lies above the top

of the �rst miniband (which is \full"), whereas in the

lower-doped sample it lies approximately in the middle

of the �rst miniband (it is \half-�lled"). Both sam-

ples were prepared in a multi-pass waveguide geome-

try with wedged facets in order to provide a �nite z-

component of the electric �eld of the infrared radiation

and thus a coupling to the interminiband transition.

The measurements were performed with a rapid-scan

Fourier-transform spectrometer, the samples mounted

in a LHe ow-cryostat with variable temperature. The

absorption spectrum of the higher-doped sample, ob-

tained by ratioing p- and s-polarized transmission, is

shown in Fig. 3. Evidently it agrees very well with

the calculated spectrum in Fig. 2 and also does not

change much with temperature. The situation is di�er-

ent for the lower-doped sample (Fig. 4). In this case

the top-edge of the �rst miniband can be populated

with electrons by increasing the temperature and thus

the absorption spectrum becomes strongly temperature

dependent. The temperature dependence is thus a clear

proof of the kz-dispersion of the �rst miniband. The ad-

ditional line appearing at low temperature at ~! = 125

meV is due to the 1s�2pz donor transition [10] and its

discussion is beyond the scope of the present paper [4].

Figure 3. Measured absorption spectrum of the higher
doped SL at T=20 K and T=300 K (absorbance = -log10
(transmission)). This should be compared with the theoret-
ical curve in Fig. 2.

Figure 4. Measured absorption spectrum of the lower doped
SL superlattice at di�erent temperatures as indicated. For
an explanation, see text.



III Hot-electron relaxation

In this section we would like to show, how the temper-

ature dependence of the interminiband absorption can

be used as an intrinsic thermometer for the electrons,

and how the energy relaxation of the electrons can be

measured [5]. When an electric �eld is applied par-

allel to the SL layers, the electron distribution will be

heated up. If impurity and electron- electron scattering

are strong enough and the �eld is not too high, the re-

sulting electron distribution will still be quasi-thermal,

with an electron temperature Te. Since the shape of

the absorption spectrum is mostly determined by the

electron distribution, the electron temperature can be

deduced by comparing the spectra at certain electric-

�eld values with spectra at certain lattice temperatures.

Finally, the electron temperature reached in the electric

�eld allows one to determine the electron heating and,

in steady state, cooling rate.

For the experiment the above lower-doped SL is pre-

pared with two ohmic contact stripes on the sides and

voltage pulses up to 38 V (electric �eld F=190 V/cm)

and 10 �s duration are applied to them with a repe-

tition rate of the order of 100 Hz. The transmission

experiment is performed using the Fourier-transform

spectrometer in a gated step-scan mode, where IR spec-

tra can be recorded during a short time window and

the spectrometer is synchronized with the electric �eld

pulses. The sample is held at a lattice temperature of

TL=10K.

Fig. 5 shows the di�erential transmission spectra for

di�erent electric-�eld values. The transmission spectra

during an electric-�eld pulse have been recorded and

divided by a spectrum taken 10 �s after the pulse. For

comparison with the temperature dependent spectra,

the data of Fig. 4 are replotted in Fig. 6. Here the

transmission spectra at di�erent temperatures are di-

vided by the spectrum at TL=10K. The striking simi-

larity between Figs. 5 and 6 indicates that the assump-

tion of a quasi-thermal electron distribution function is

well justi�ed. The electron temperature, Te, at each

electric �eld can now unambiguously be determined by

comparing both �gures, i.e., each electric-�eld value in

Fig. 5 can be assigned to an electron temperature.

Figure 5. Electric-�eld dependence of the transmission
change: The transmission spectrum at the time of the volt-
age pulse is divided by the transmission after the pulse. The
respective electric- �eld values are indicated.

Figure 6. Ratio of the transmission at the lattice tempera-
ture TL (as indicated) to the transmission at TL = 10K.

From these data the average of the power loss and

energy relaxation rate of the electron system as a func-

tion of electron temperature can be determined in the

following way. The power loss per electron is given by

e�F 2, where � is the electron mobility, taken from tem-

perature dependent mobility measurements (typically a

few 1000 cm2/Vs). Then an average energy relaxation

time, �e, can be determined via the balance equation

e�F 2�e =< �(Te) > � < �(TL) > : (3)

Here < �(Te) > and < �(TL) > are the carrier en-

ergies averaged over the hot distribution function at

an electron temperature Te and at equilibrium (where

Te = TL), respectively. We have evaluated the rhs of



eq. (3) using the numerically calculated SL band struc-

ture. The resulting energy relaxation time as a func-

tion of electron temperature is shown in Fig. 7. It

continuously decreases from 400 ps at 15 K to about

20 ps at 48 K. A more detailed analysis [5] shows that

at low electron temperature the energy loss is governed

by emission of acoustic phonons, whereas at higher tem-

perature (Te > 30 K) optical phonons, emitted by elec-

trons in the high-energy tail of the distribution func-

tions, dominate the relaxation. These values can be

compared with a momentum relaxation time of around

0.1 ps as deduced from the mobility, which is dominated

by impurity scattering.

Figure 7. Energy relaxation time as a function of electron
temperature.

IV Vertical transport and

Wannier-Stark ladders

A vertical electric �eld, applied perpendicular to the

layers of a superlattice, is known to split up the mini-

bands into a ladder of localized states, the Wannier

Stark ladder (WSL). Its existence has been demon-

strated through interband optical experiments, involv-

ing transitions from the valence to the conduction band

[2]. In a semiclassical picture, the electron can reach the

inection point at the edge of the mini-Brillouin zone,

giving rise to negative di�erential resistance (NDR) in

the current-voltage characteristics and to Bloch oscilla-

tion [12,13], which is the semiclassical analogue of the

Wannier-Stark ladder. Bloch oscillations have been ob-

served directly in the time domain by optically exciting

electron wavepackets with a sub- picosecond laser pulse

[3]. NDR, however, also arises in more weakly coupled

superlattices, where transport proceeds by sequential

resonant tunneling, and is usually accompanied by the

formation of electric-�eld domains [14,15]. In the very

high-�eld regime, the resonant Zener breakdown has

been observed [16] as well as infrared emission from

Wannier-Stark ladders [17].

The experimental methods discussed in the previous

section can now be employed to study the intermini-

band absorption under application of a vertical electric

�eld. This opens up the possibility to spectroscopically

investigate the above mentioned phenomena in the in-

frared domain, using transitions between electron states

only. Such type of investigations have only been per-

formed on isolated quantum wells (with thick barriers),

showing phenomena such as Stark shifts [18] or trans-

fer of oscillator strengths in coupled quantum wells [19].

On the other hand, note that transport and interband

optical experiments in a superlattice have been reported

[20].

In strongly coupled superlattices, the �nite mini-

band width gives rise to large current densities in a

vertical electric �eld, which are of the order of j � 103

to 104 A/cm2, corresponding to vertical resistivities,

V=j, below the 10�3 
cm2 range. Thus very small

mesa structures (<< 100 �m diameter) would be re-

quired to avoid excessive inuence of parasitic series re-

sistances and sample overheating. On the other hand,

the minimum mesa size for infrared measurements is

around 500 �m. In order to get around this prob-

lem, we compromise on the sample design. We de-

sign a superlattice with a rather narrow �rst miniband

(to keep the current density reasonably low), but a

rather wide second miniband, to achieve still strong

coupling of the excited states. The sample is a 300 pe-

riod GaAs/Al0:29Ga0:71As superlattice with 50 �A wide

quantum wells and 80 �A thick barriers, sandwiched be-

tween n+ GaAs contact layers. The resulting widths of

the �rst and second miniband, �1 and �2, are 1.2 meV

and 30 meV, respectively. The zero-�eld band structure

is shown in the left inset of Fig. 8. Note that the second

miniband lies in the continuum just above the barriers

(right inset of Fig. 8). The superlattice is doped in the

central 30 �A of the barriers, giving an areal electron

concentration of 2:25� 1011 cm�2 per period.



Figure 8. Interminiband transmission spectrum for zero
electric �eld. The insets show the absorption process in
k-space and real-space, respectively. The main absorption
and the high-energy shoulder, due to the singularities in the
joint-density of states, are indicated by arrows.

For the IR absorption measurements, 1mm2 mesa

structures were prepared with wedged facets in order

to couple the IR light to the intersubband transitions.

Fig. 8 shows the zero-�eld interminiband transmission

spectrum of the superlattice, obtained by ratioing the

p- and s-polarization. The main absorption maximum

at 164 meV and the high-energy shoulder at 180 meV

(both indicated by arrows) are due to the singularities

of the joint density of states at kz = �=d and kz = 0;

respectively. This is illustrated in the left inset, which

shows the three lowest minibands.

In Fig. 9 the current-voltage characteristic of a 200

�m mesa is shown. At low bias the conduction is ohmic

and proceeds by ground-state to ground-state tunnel-

ing up to a voltage of 0.5 V [21]. There the SL breaks

up into a low- and a high-�eld domain; in the latter the

electrons tunnel from the ground state in one well to

an excited state in a subsequent well (usually the ad-

jacent well). Its extent increases with increasing bias,

until the �eld distribution is again homogeneous and

the current rises steeply. In the present superlattice

this occurs at 27 V, i.e., the voltage drop per period

is 27V/300 = 90 mV. Since this is only about half the

value of the subband separation, E2 �E1 = E21 � 170

meV, we conclude that in the high-�eld domain elec-

trons do not tunnel to the adjacent well, but rather to

the next-nearest SL period, traversing two barriers and

one well (see inset of Fig. 9). This is the �rst observa-

tion, of resonant tunneling over two periods in a regular

superlattice [22].

Figure 9. Current-voltage characteristic of the superlat-
tice. The inset shows the conduction-band edge near the
boundary of the low- and high-�eld domain together with a
schematic of the transport process.

For the measurement of the IR absorption spectrum

in a vertical electric �eld [6], voltage pulses of about 10

�s duration with a repetition rate of a few 100 Hz were

applied to a 1 mm2 superlattice mesa. The transmis-

sion change, �T = T (F )=T0, is again measured by di-

viding the signal during the electric-�eld pulse, T (F ),

by the signal taken a few ten �s after the pulse, T0.

Fig. 10 shows a series of traces for increasing voltage.

At �rst note that minima in the signal correspond to

decreased transmission, i.e. they essentially correspond

to absorption lines induced by the electric �eld (marked

by arrows). Maxima correspond to frequencies, where

the absorption is reduced compared to the zero-�eld

spectrum. Remarkably, the positions of the maxima

and minima hardly change with bias, but �T continu-

ously increases, reaching up to 30% at the highest volt-

age. This is completely consistent with the observations

in the I-V characteristics. Two di�erent electric-�eld

values exist in the sample, which are realized in two

spatial domains; one is close to zero (in the low-�eld

domain), the other one (in the high-�eld domain) is

approximately F = 85mV/130 �A = 65kV/cm. Increas-

ing the voltage only increases the relative length of the

high-electric-�eld domain, resulting in a larger optical

signal. Above 30 V the current increases so steeply that

no measurements can be performed in this regime. At

very low voltages, on the other hand, below the onset of

domain formation, no transmission change is observed,

since the wavefunction overlap and thus the matrix el-

ements of indirect WS transitions are still too weak.



Figure 10. Di�erential transmission spectrum (T (F )=T0) of
the superlattice for a series of bias voltages between 8 and
30 V. Minima essentially correspond to electric-�eld-induced
absorption lines (marked by arrows).

Understanding the transmission change spectra of

Fig. 10 requires a calculation of the absorption coeÆ-

cient, �, under bias. For this purpose we have calcu-

lated the energy spectrum, the wavefunctions and the

optical matrix elements between the ground state of

one period and all excited states, using a �nite system

of N=19 SL periods. The absorption coeÆcient � is

proportional to

�n(!) = const:�
NX

n0=1

fnn0

�=�

(En0 �En � ~!)2 � �2
;

(4)

where n indicates the initial state (ground state of one

SL period), n0 are the �nal states, and fnn0 is the oscilla-

tor strength, obtained from the optical matrix elements.

A Lorentzian broadening �=7 meV of each transition is

assumed. The calculated absorption coeÆcient is plot-

ted in Fig. 11 for electric �elds from F = 0 up to F = 70

kV/cm. Only up to 20kV/cm the splitting of the in-

terminiband absorption into a regular Wannier-Stark

ladder can be observed. At higher �elds, strong mixing

of several continuum Wannier-Stark ladders occurs due

to Zener coupling [16,23] and the interpretation of the

spectra is far from straightforward. The strong Zener

coupling results from the fact that eFd is much larger

than the minigaps in the continuum.

Figure 11. Absorption coeÆcient calculated for electric
�elds from 0 to 70 kV/cm. In addition, the transmission
change is shown for 50, 60, and 70kV/cm in the upper panel
to facilitate comparison with the experiment (see text). The
experimentally relevant 60kV/cm spectra are plotted with
thicker lines (compare with Fig. 10).

For direct comparison with experiment, where

�T = T (F )=T0 is measured, we have to calculate the

di�erence �(0)� �(F ), since

c

T (F )

T (0)
=

exp(��(F )d)
exp(��(0)d exp[(�(0)� �(F ))d] �= 1 + [�(0)� �(F )]d (5)



for small absorption changes, as observed experi-

mentally. This is plotted in the top part of Fig. 11 for

F=50, 60, and 70 kV/cm. Comparison with the ex-

perimental traces, Fig. 10, shows that most of the ex-

perimental features can be reasonably well reproduced

for a �eld of F=60kV/cm (drawn by thicker lines for

clarity); only the maximum at �180 meV is larger than

predicted, probably since its strength is very sensitive

to the shoulder in the T0 spectrum. The above �eld cor-

responds to a voltage drop of 80 meV per SL period,

which is very close to half the energy separation E21,

and thus con�rms the tunneling to the next-nearest SL

period.

In order to obtain a more graphical understanding

of the transitions dominating the absorption spectrum,

we attempt a classi�cation of the energy levels in terms

of pure WSL quantum numbers, neglecting the interac-

tion due to Zener coupling for the moment. Then the

energy spectrum can be written as

Em;p = �m + peFd; (6)

where m=1,2,... is the (zero-�eld) miniband index, and

p=...-1, 0, 1,...., is the spatial WSL index. Such an as-

signment can be done by inspecting in detail the wave-

functions and oscillator strengths over several SL pe-

riods. Transitions occur from states jm = 1; p > to

jm0; p0 > and for brevity, we term such a transition

(m0; p0�p); so, for example, (2,-1) represents a spatially

indirect transition to a WS state localized in the next

downhill QW and associated to the second miniband.

Fig. 12 shows the resulting assignment graphically. The

main part of the relevant wavefunctions are drawn bold

and also the calculated absorption coeÆcient is shown

for comparison. The main observed transitions (indi-

cated by arrows) are, from low to high energies, (3,-1),

(2,0) (this is the main vertical intersubband transition),

(3,0), and (4,-2). Thus, besides the direct transitions,

we observe indirect transitions up to the next-nearest

downhill QW (p0 � p = �2), and up to states related

to the fourth miniband (m0 = 4). Note that the (4,-2)

state is as far as 200 meV above the top of the bar-

rier, when measured at its associated quantum well,

p0�p = �2. The lowest- and highest-energy transitions
(at 132 and 247 meV) predicted by the calculation are

not resolved in the experiment.

Figure 12. Conduction-band pro�le, energy levels and
squared wavefunctions drawn for four superlattice periods
with an electric �eld of 60kV/cm. The calculation was per-
formed for a 19 period SL. The experimentally observed
transitions are indicated by arrows and the main parts of the
respective wavefunctions are emphasized by thicker lines.
The numbers on the right represent an (approximate) as-
signment in terms of WS states (see text). In addition,
the calculated absorption coeÆcient is shown on the left for
comparison, including the peak photon energies.

As seen in Fig. 12, the continuum WSL wavefunc-

tions are distinctly di�erent from the usual, symmet-

rically localized tight-binding type wavefunctions [24].

They are very asymmetric and extended far towards the

anode, partly exhibiting Airy-function character. Note

also that due to the �niteness of the structure used in

the calculation, no perfect periodicity of the solution for

the wavefunctions under a translation z ! z + d and

E ! E�eFd is obtained. For example, (2,1) and (2,-1)

consist of two anticrossed levels, whereas (2,0) of only

one level. The absorption coeÆcient, however, which is

the observable quantity, ful�lls this symmetry to a much

better degree, when calculated with a �nite broadening

�. In other words, the oscillator strength per �nite en-

ergy interval � is independent of the quantum number

p, despite di�erences in the wavefunctions. This shows

the relation of � to the coherence length; when � is very

small, the wavefunctions more easily feel the edges of

the �nite SL [25].

V Summary

We have attempted to review our investigations on in-

terminiband absorption in superlattices; in particular,

we have discussed the absorption spectrum in terms of

the joint-density of states and the oscillator strength.



With an electric �eld applied in the SL planes, energy

relaxation times can be determined by employing the

temperature dependence of the absorption spectrum.

Finally we have described the �rst infrared absorption

measurement on a biased superlattice, which has evi-

denced the existence of interpenetrating Wannier-Stark

ladders in the continuum of a superlattice. In the fu-

ture, similar experiments extended to the far-infrared

spectral region may unveil the intra-miniband [26] spec-

tral response (and possibly gain) of a biased superlat-

tice under Bloch-oscillation conditions.
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