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The theoretical and numerical approaches are discussed for ab initio calculations of optical proper-
ties. The density functional theory (DFT) combined with the local-density approximation (LDA)
allows the calculation of the geometry of crystalline solids and their surfaces with a precision of
about one percent. The DFT-LDA band structure and single-electron states therefore provide
a reasonable starting point for the calculation of linear and nonlinear susceptibilities within the
independent-particle approximation. However, this approach has to be improved by taking into
account many-body interactions: self-energy e�ects, local-�eld corrections, and electron-hole at-
traction. Three types of optical spectra are studied: the frequency-dependent dielectric function,
the second-harmonic generation, and surface reectance anisotropy spectra. The systems considered
are two-atomic semiconductors, their polytypes and their surfaces.

I Introduction

The recent major advances in the quantitative compu-

tation of ground-state properties of solids are essentially

related to the development of density-functional the-

ory (DFT) in local-density approximation (LDA) [1].

However, spectroscopic properties, as optical spectra,

are not accessible in this theory, since its single-particle

eigenvalues or di�erences of them cannot be directly

identi�ed with electronic excitation energies. For in-

stance, energy gaps of semiconductors and insulators

are remarkably underestimated within DFT-LDA [2].

Instead, quasiparticle (QP) energies have to be com-

puted. The basic approach to quasiparticles is Hedin's

GW approximation [3], in which the spatially nonlocal

and energy-dependent exchange-correlation (XC) self-

energy � is approximated by a convolution of single-

particle Green function G and dynamically screened

Coulomb interaction W. Vertex corrections are ne-

glected. Full numerical calculations of the single-

particle excitations can now be performed on real crys-

tals starting from the DFT-LDA results [4,5].

Despite of the complications with the inclusion of

the many-body e�ects, DFT-LDA has been used to

determine the atomic structure and to de�ne a rea-

sonable starting point for the description of the elec-

tronic structure. Optical spectra have been calculated

[6] within the independent-particle approximation [7].

Meanwhile, quasiparticle shifts have been included also

in calculations of the complete dielectric function [6,8].

Moreover, the e�ects of XC beyond the independent-

particle approximation have been demonstrated within

DFT-LDA for bulk semiconductors, and local-�eld ef-

fects are taken into account [9]. Very recently the com-

pensation e�ect of the dynamical screening in quasipar-

ticle and vertex corrections has been found [10]. Fur-

thermore, the Coulomb attraction of excited electrons

and holes has been indeed calculated in the limit of

static screening [11].

In the last years such kind of ab initio calculations

in the framework of DFT-LDA and the independent-

particle approximation has been also applied to non-

linear optical properties of semiconductors, e.g. the

second-harmonic generation (SHG) [12,13], and to

semiconductor surfaces [14-16]. The surface activities

have been focused on the reectance anisotropy (RA)

spectra [17]. The inclusion of the many-body self-

energy and excitonic e�ects is an unsolved problem.

However, at present many activities occur in this �eld.

They mainly concern the inclusion of the QP shifts.

After a brief description of the calculational meth-

ods and basic expressions, the status of the ab initio

description of the optical properties is demonstrated

for three examples, the frequency-dependent dielectric

function, the second-harmonic generation and the sur-

face reectance anisotropy. The semiconducting mate-

rials considered are the group- IV semiconductor Si as
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well as the compounds SiC and InP. In the SHG case

also other III-V compounds are studied. Silicon car-

bide (SiC) crystallizes in the two-atomic zinc- blende

structure (3C) but also in a variety of polytypes (nH),

i.e., in natural superlattices with hexagonal (H) sym-

metry and n di�erently stacked Si-C bilayers in a unit

cell [18,19]. The polar surfaces InP(001) show a variety

of reconstructions. The most important ones exhibit a

2� 4 translational symmetry [20], the atomic structure

of which varies with the surface stoichiometry.

II Methods

The equilibrium atomic con�gurations of the SiC poly-

types [18,19] and InP(001) surfaces [20] are determined

from fully converged self-consistent total-energy calcu-

lations [21]. The electron-ion interaction is treated by

normconserving, ab initio, fully separable pseudopoten-

tials in the Kleinman-Bylander form [22]. The elec-

tronic wave functions are expanded in terms of plane

waves. The energy cuto�s are 34 Ry (SiC) and 15 Ry

(Si, InP, other III-V).

In order to examine optical properties we �rst cal-

culate the imaginary parts of the elements of the

second-rank dielectric tensor ���(!) or the polarizabil-

ity ���(!). Within the independent-particle approxi-

mation (RPA) and the optical limit [6,8] one has,
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where Bloch eigenfunctions jnk > belonging to a

band index n = v; c (occupied, empty), the wave vector

k in the �rst Brillouin zone (BZ), and the band energy

�nk are introduced.

The real parts of the components of the dielec-

tric tensor, Re���(!), are calculated from the imagi-

nary parts by means of the Kramers-Kronig transfor-

mation. Local-�eld e�ects are neglected. To investigate

many-body e�ects, the DFT-LDA eigenvalues �n(k),

are shifted by quasiparticle corrections calculated ac-

cording to a scheme developed by Cappellini et al. [23].

The calculated quasiparticle shifts depend on the band

index and the wave vector. The renormalization of the

spectral strengths due to the energy dependence of the

XC self-energy is treated according to Ref. [6]. The

generalization of expression (1) for the case of inclu-

sion of excitons is described elsewhere [11]. Within

the independent-particle approximation and using the

Coulomb gauge, the imaginary part of the tensor of

the SHG susceptibility �
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The latter ones are given by the matrix elements of

the optical transition operator between Bloch states

p�mn0(k) = m < nkjv�jn
0k > : From the imaginary

parts of the SHG susceptibility, the real parts and ab-

solute values can be calculated using a Kramers-Kronig-

like transformation. In equation (2) both virtual-

electron (vcc0) and virtual-hole (cvv0) contributions are

taken into account [12,13].

Even for cubic crystals polarization-dependent cor-

rections to the Fresnel reectance appear. The origin of

these reectance anisotropies is located in the surface

region. In the case of normal incidence the polarization-

induced relative change is given by [17],
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where "b(!) is the bulk dielectric function, and ��� and

��� are components of the optical polarizability tensor

of the slab with thickness d. In the following we iden-

tify the subscripts � and � with the [1�10] and [110]

directions, respectively.

To model the InP(001) surface we consider a peri-

odic supercell along the surface normal. It contains 12

atomic (001) layers and a vacuum region equivalent in

thickness to 8 atomic layers. The dangling bonds at the

bottom layer of the slab are saturated with fractionally

charged pseudohydrogens [20].

III Optical properties

A. Frequency-dependent dielectric function

As typical results of ab initio calculations within

the independent-particle or independent-quasiparticle

approximation the spectral variation of the dielectric

function is plotted in Fig.1 for the semiconductor sili-

con, crystallizing in diamond structure. In addition to

the real and imaginary part, also the reectivity R(!)

is plotted according to the Fresnel formula. The the-

oretical spectra are compared with experimental ones

[24,25]. QP e�ects are taken into account in the frame-

work of the scissors operator approach. The theoretical

spectra have been shifted to higher energies by 0.47 eV,

which brings the zeros in the real part together.

The spectra in Fig.1, calculated within the

independent-QP approach, reproduce all main struc-

tures of the experimental spectra. This holds in partic-

ular for the E2 peak at about 4.3 eV in the absorption

spectrum. The E1 peak at about 3.4 eV appears only

as a shoulder in the spectrum. For many years we know

that the underestimation of its oscillator strength is re-

lated to the neglect of excitonic e�ects [26]. The bind-

ing of the saddle-point excitons near E1 is enforced due

to the nearly parallel bands along the �L direction in

the BZ. The low-photon-energy region is accompanied

with an overestimation for higher energies. A treatment

beyond the independent-QP approach [11] strongly im-

proves the agreement between theory and experiment in

the case of the dielectric function. On the other hand,

the Fresnel reectivity is already reasonably described

within the independent-QP approach. This holds for

its absolute values but also its spectral variation.

Figure 1. Real and imaginary part of the dielectric func-
tion and the Fresnel reectivity versus photon energy for
silicon. Solid line: calculation within independent-QP ap-
proach, dotted line [24] and dashed line [25]: experimental
data.

The atomic geometry strongly inuences the elec-

tronic structure and thereby the resulting optical prop-

erties of crystals. A prototypical material to study the

inuence of the crystal structure on optical spectra is

SiC. Silicon carbide occurs in more than 200 polytypes

[18]. The two most extreme polytypes are zinc blende

(3C) with pure cubic stacking of the Si-C bilayers in the

[111] direction and wurtzite (2H) with pure hexagonal

stacking in the [0001] direction. Other hexagonal (H)

polytypes, nH, represent combinations of these stack-

ing sequences with a periodicity of n double layers in

the stacking direction [19,27]. It is well known that the

polytypism strongly inuences the physical and chem-

ical properties. For example, the energy gaps and the

location of the conduction-band minima in k space vary

with the crystal structure (cf. Refs. [19,23] and refer-

ences therein). With a change of the indirect energy

gap of about 1 eV between the 3C and 2H polytypes



[28,29], SiC represents an extraordinary example for the

polytype inuence on the electronic structure. Optical

spectroscopy should make visible the drastic changes in

the electronic properties with the polytype. A system-

atic investigation of the vacuum-ultraviolet reectivity

has been presented for 3C, 4H, and 6H crystals [30,31].

Recently complete dielectric functions have been also

measured by means of the spectroscopic ellipsometry

[32,33].

Figure 2. Real and imaginary part of the dielectric function for light polarization perpendicular to the c-axis of the SiC
polytypes. Results of the spectroscopic ellipsometry are indicated by dotted lines [33].

Figure 3. Reectivity for normal incidence and light po-
larization perpendicular to the c-axis of the SiC polytypes.
Measured spectra are given as dotted lines [30] or dashed
lines [31].

Results calculated according to expression (1) are

presented in Fig.2 for the dielectric function and in

Fig.3 for the reectivity for normal incidence and light

polarization perpendicular to the c-axis. To compare

with experimental spectra [30,31,32], the theoretical

spectra are shifted to higher photon energies by a con-

stant quasiparticle shift of about 0.75 eV. The spec-

tra are strongly inuenced by the polytypism. For the

hexagonal polytypes 4H and 6H, the pronounced dou-

ble peak structure in the imaginary part of 3C shifts

to lower energies and becomes broadened. A similar

tendency is observed for the real part and the reec-

tivity. We conclude that the BZ folding e�ect accom-

panying the enlargement of the unit cell induces an ef-

fective smearing out of the structures. It is therefore

related to the period of the translational symmetry in

c-axis direction, but not to the relative number of the

twisted bonds, i.e., the hexagonality of the polytype.

The hexagonality much stronger inuences the polar-

ization dependence of the spectra.

B. Second-harmonic generation

The calculation of nonlinear optical properties is

much more complicated than the same procedure in the

linear case. The diÆculties concern both the numerics

and the physics. The k-space integration in expression

(2) has to be performed more carefully using a gener-

alization of the tetrahedron method [12,13]. More con-

duction bands have to be taken into account to reach

the same accuracy. In principle, there is still no rigor-

ous ansatz to describe local-�eld e�ects in contrast to

the linear case [34]. Making use of the Coulomb gauge

of the electromagnetic �eld and the quadratic-response

theory [13,35] the second-order optical properties can

be related to three-particle Green functions. A certain



decoupling may indicate the way to introduce correctly

excitonic e�ects. On the other hand, there are also

complications to determine the absolute value and the

frequency dependence of nonlinear optical coeÆcients

from the spectroscopic data.

Figure 4. Imaginary part of the SHG coeÆcient for four
III-V compounds.

In order to test the description of nonlinear coef-

�cients within the independent-particle approximation

we compare the SHG coeÆcient (cf. expression (2))

with results of measurements in Fig.5 for several III-V

compounds crystallizing in zinc-blende structure. The

calculations are performed using 505 k points and 24

bands. The fact that the SHG coeÆcient (expression

(2)) is related to three optical transitions has remark-

able consequences. The simpli�ed picture of superpos-

ing two combined densities of states at 2! and ! ac-

cording to the contributions to Eq. (2) is not valid.

First, the 2!-term dominates the SHG coeÆcient. Sec-

ond, the spectral behaviour of Im�
(2)
xyz(!) (Fig.4) can

be explained by the two prominent categories of opti-

cal transitions, E1 and E2, in the linear absorption of,

at least, the III-V compounds. However, matrix ele-

ment e�ects are much stronger in the nonlinear case.

In comparison to the linear absorption the peaks are

sharpened and their sign could be negative in accor-

dance to the prefactor. The sign of the imaginary part

of the product of three momentum matrix elements is

not �xed. The spectra for the four III-V compounds

are rather similar. They look like the superposition of

the spectra of more or less four pronounced oscillators

with resonance frequencies close to the E1- and E2-like

structures appearing in the 2! and ! - terms of the

imaginary parts.

Figure 5. Module of the SHG susceptibility for four III-
V compounds versus photon energy. Calculation: solid line,
measurements: GaP: dots [36], GaAs and InAs: open circles
[37], dotted line [38], dashed line [39], squares [40].

The comparison of the module of the total SHG co-

eÆcients with experimental data [36-40] for GaP, GaAs,

and InAs (Fig.5) indicates a reasonable description of

the SHG spectra by the presented theory. This holds

especially for the order of magnitude and the principal

spectral behaviour. Consequently, we conclude that the

presented theoretical description of the SHG coeÆcient

should allow the prediction of the second-harmonic gen-

eration for new materials.

As an example of such a prediction the SHG coeÆ-

cients of the most important SiC polytypes are given in

Table I for incident light with a frequency small com-

pared to the energy gap. The two independent tensor

components zzz and zxx are listed for ! = 0. The three

sets of theoretical values agree with respect to the ab-

solute value, the sign and the trend with the polytype.

This holds in particular for the comparison of our data

and those of Rashkeev et al. [41], which also nearly

agree with respect to the absolute values, though com-

pletely di�erent basis sets have been used for the single-

particle wave functions. The small deviations to the

results of Chen et al. [42] may be traced back to their

trial to consider local-�eld e�ects. The inclusion of the

QP shifts of the bands gives rise to a reduction of the

coeÆcients independent of the quality of the descrip-

tion of the QP e�ects. The larger reduction in our full

calculation of the XC self-energy in GW approximation

is mainly due to the larger gap openings (average value:



1.68 eV) compared to the scissors operators used in Ref.

41 (� = 1eV ) and Ref. 42 (� = 1:04:::1:27eV ). The

reduction of the static SHG coeÆcients itself is mainly

related to the energy denominators in expression (2).

Table I. Static SHG coeÆcient (in pm/V) of independent tensor components for several polytypes. Values are

calculated within DFT-LDA as well as including QP corrections within a GW treatment or a scissors operator

approach. The results are compared with other theoretical (Rashkeev et al. [41], Chen et al. [42]) and experimental

(Lundquist et al. [43], Niedermeyer et al. [44]) data.

The comparison with recent experimental values is

also rather successful for the static SHG coeÆcients of

the three polytypes 3C, 6H, and 4H [43,44]. The agree-

ment of the absolute values and the signs is reasonable

considering the experimental and theoretical uncertain-

ties. This holds in particular for the zxx tensor com-

ponents. The zzz tensor components seem to be over-

estimated by the procedure of data extraction. This is

already obvious for the cubic SiC polytype, where the

ratio �
(2)
zzz=�

(2)
zxx = �2 should be exactly ful�lled. The-

oretically one can show that the absolute value of this

ratio should decrease with increasing hexagonality of

the polytype.

C. Reectance anisotropy spectra

Since in the case of cubic crystals the only origin

of an reectance anisotropy is the surface region, RA

spectra can be used to clarify the atomic structure and

the stoichiometry of a surface. We probed a variety of

structural models proposed for the InP(001)2�4 surface

[16,20]. It turns out that dimer reconstruction models

are energetically most favoured. For In-rich surfaces

we predict the formation of mixed In-P dimers on top

of an In-terminated surface (Fig.6). Under less In-rich

conditions the structure gives the lowest total energy.

In the case of intermediate preparation conditions the

top-P dimer and the � structure (Fig.6) cannot be ex-

cluded. Meanwhile, it has been found that a modi�ed

�2 structure with only one top -P dimer, the so-called

Æ structure [45], is more favourable from the energetical

point of view [46].



Figure 6. Top view of InP(001)2�4 surfaces. Empty (�lled) circles represent In (P) atoms. The circle size indicates the
atomic layer.

In Fig.7 we show the RA versus photon energy

calculated according to expression (3) for the four

favourable surface geometries. The explicit calculations

of the slab polarizabilities are performed using a re-

cently developed real-space multigrid method [47]. This

approach provides for e�ective convergence acceleration

and preconditioning on all length scales and, hence, re-

duces the numerical e�ort. Furthermore, it allows for

an eÆcient parallelization and is thus particularly suit-

able for large surface reconstructions as studied here.

In Fig.7 a negative anisotropy appears around 1.7 eV

for the mixed-dimer model, which contains 6 In-In sur-

face bonds along [110]. This anisotropy is reduced in

strength for the top-P-dimer model with 4 In-In surface

bonds and is even weaker in case of the � structure with

2 In-In bonds. This feature is correlated to the exis-

tence of cation-cation bonds at the surface and caused

by transitions between �-like In-In bonding states and

empty dangling bonds localized at the surface cations.

The RA spectra show also a dependence on structural

details for higher energies: A relatively broad positive

anisotropy between about 2 and 4 eV appears and the

\three-buckle" shape in the high-energy region attens

for the �2 (and also Æ, not shown) geometry with 3 P-

P dimers parallel to [1�10]. This is due to transitions

between P-P dimer states and surface resonances. The

structure, with 2 P- P dimers, gives rise to a very similar

line shape. Its spectrum, however, is somewhat down-

shifted. All structures exhibit a derivative-like feature

around 2.5 eV, caused by transitions between surface-

modi�ed bulk states. Its energetical position coincides

with the calculated position of the E1 peak. The de-

scribed evolution of the spectra parallels closely the ex-

periments [48,49], which observe similar trends in the

RA of InP(001)2�4 surfaces exposed to varying P par-

tial pressures or di�erent temperatures. This supports

the view that the corresponding \�ngerprints" in the

measured spectra are caused by the dimerized In and

P atoms.

More in detail, the evolution of the RA spectra

with annealing temperature between 470 and 590 ÆC

[48] clearly exhibits a similar variation as the spectra

calculated for the mixed-dimer model 2 and the struc-

ture. Therefore, we identify the mixed-dimer model (�2

structure) with the stable 2�4 reconstruction at In-rich

(less In-rich) preparation conditions of the InP(001)

surface.

Figure 7. Calculated RA spectra of favourable InP surface
structures.

IV Summary

In conclusion, we have shown that in principle it is

possible to calculate optical spectra of semiconduc-

tor structures without taking into account any exper-

imentally determined parameter. The resulting agree-

ment between ab initio results and experimental data

is reasonable considering a wide spectral region. For

structures like two-atomic crystals, natural superlat-

tices with layer thicknesses up to 12 atomic layers, and

surfaces of polar semiconductors we found that a re-

liable description of their linear optical spectra over



a wide frequency range is already possible within the

independent-particle approximation. In certain cases

the optical transition energies have to be enlarged by

quasiparticle e�ects. However, for the correct descrip-

tion of the �ne structure of the spectra, excitonic and

local-�eld e�ects have to be considered as well. The

independent- quasiparticle approach also seems to be

a reasonable starting point for ab initio calculations of

nonlinear optical coeÆcients. The spectral behaviour

and the absolute values of SHG coeÆcients can be pre-

dicted with a reliable accuracy. Only the numerical ef-

forts concerning number of k points and bands have to

be enforced. Similar experiences have been made with

a parameter-free description of the spectral dependence

of the surface anisotropy. However, the accuracy of the

calculations is already high enough to predict spectra

for certain surface reconstructions and, hence, identify

the real surface geometries and stoichiometries.
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