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We present some recent developments concerning general aspects of the thermodynamical formalism.
Through simple arguments, we exhibit some basic entropies that have most of the thermodynamic
properties of the Shannon entropy. Their stabilities are also analysed, and several points concerning
nonextensive thermodynamics are discussed.

I Introduction

The growing �eld of research concerning nonexten-

sive thermodynamics has a hard task to do. In order to

have nonextensivity it could be necessary to release the

well{known Boltzmann-Gibbs-Shannon (BGS) entropy

and, maybe, to substitute it by another entropic form.

We are therefore obliged to relax some of the Khinchin

axioms, because they lead only to the BGS entropy.

Relaxing the fourth axiom, related to additivity, the

possible entropy of a nonextensive system must obey

only the �rst three Khinchin axioms, but these axioms

are so weak that an enormous amount of entropic forms

are allowed.

With the proposition by Tsallis [1] of a di�erent en-

tropic form that has been shown to satisfy the whole

thermodynamic formalism [2] and to have very interest-

ing properties [1, 2, 3], the study of alternative forms

of entropy in the study of nonextensive physical prob-

lems has begun. These alternative forms have been

used principally in problems where the standard sta-

tistical mechanics fails, as for example in some prob-

lems with long range interactions, long term memory

or some kind of intrinsic fractality [4]. This relatively

new �eld of research on nonextensive generalizations

of standard Boltzmann-Gibbs statistical mechanics is

very promising but has been centered on applications

of Tsallis statistics and not many papers have been ded-

icated to the general aspects of the nonextensive statis-

tical mechanics. To discuss these general aspects let us

start with the Khinchin axioms [5], that provide some

of the conceptual tools of information theory. These

axioms are:

� The entropy is a function only of the

probabilities. It is continuous and di�erentiable

with respect to them;

� The entropy has a maximum at the

equiprobability con�guration;

� The addition of a null event does not change the

value of the entropy, that is,

S(p1; p2; : : : ; pW ) = S(p1; p2; : : : ; pW ; pW+1 = 0);

� Let a system � (with an entropy S) be

composed by two sub-systems, �A (with an

entropy SA) and �B (with an entropy SB). Let

fpijg be the probability distributions associated

to the system � and fpAi g (fp
B
j g) the

probability distributions associated to the

sub-system A (B). The fourth axiom says that

S(fpijg) = SA(fpAi g) +
X
i

pAi S
B(fpBj gjp

A
i )

where the sum over i (j) refers to the states of

sub-system A (B). The term SB(fpBj gjp
A
i )

means the conditional entropy of system B

under the situation where the system A is at the

state i. When the two sub-systems are

independent, not correlated, we get directly the

additivity property of the entropy

S(fpijg) = SA(fpAi g) + SB(fpBj g):

Khinchin has shown that only the Shannon entropic

form satis�es these axioms. If the fourth axiom is a lit-

tle bit relaxed and, instead, we assume only the less re-

strictive condition that the entropies are additive when

the sub-systems are not correlated, then the Renyi en-

tropy [6] also satis�es the axioms. In order to try to
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restrict the huge number of entropic forms allowed by

relaxing the fourth axiom, we study some basic proper-

ties that any reasonable entropy must present and the

limitations imposed by these properties.

We will show in this paper that there are some

basic entropic forms that satisfy almost automati-

cally the �rst three axioms and are the \basis" for

other more complex entropic forms. This can be

reached by an analysis of the symmetry of permuta-

tion of the probabilities, S(p1; : : : ; pi; : : : ; pj; : : : ; pW ) =

S(p1; : : : ; pj; : : : ; pi; : : : ; pW ) , that any entropic form

must obey. The value of the entropy should not de-

pend on the position of the probabilities, but only on

their values. We also analyse the thermodynamical-like

formalism behind them and their stability. We show

some conditions that must be obeyed by more complex

entropies in order to satisfy the �rst three axioms and

the whole structure of thermodynamics. The stability

of these entropies is analysed and some general proper-

ties of more complex entropies are discussed.

II Generality of the thermody-

namical formalism

Recently, two very interesting papers have ap-

peared, illustrating in a clear way, the generality of the

thermodynamical formalism [7, 8]. Essentially their re-

sults allow us to say that a large amount of the systems

which present some quantity (\entropy") that tends to

an extremum, minimum or maximum does not matter,

subjected to some constraints, should have a formal-

ism analogous to the well-known thermodynamical for-

malism. This statement could appear strong, but the

demonstration is really simple, and the interested peo-

ple should read these papers for further details. Here

only one point of these results will be sketched, related

to the connection between the �rst and second laws of

thermodynamics. Let us assume a phase space with a

�nite number of states, W, for simplicity. We postu-

late, as usual, an entropic form depending only of the

probabilities of these states, that is, S = S(fpig) , con-

tinuous with respect to the probabilities, di�erentiable

and concave. Let us say, for analogy with standard

thermodynamics, that we have, besides the constraint

of the sum of probabilities
PW

i=1 pi = 1, one constraint

that we call U which depends on fpig and on a set of

parameters f�ig ,

U = U (fpig; f�ig) : (1)

Suppose that we have other constraints, let us call them

V�, depending on the probabilities and on other (exter-

nal) parameters v�i ,

V�(fpig; fv
�
i g) ; (2)

where the latin index i is related to the states and the

greek index � is related to the constraints.

So, to �nd the extremum of the general entropy pro-

posed, S(fpig), with the constraint given by eqs.(1), (2)

and
PW

i=1 pi = 1, we have to extremize the function �:

� = S��
WX
i=1

pi��U (fpig; f�ig)�
X
�

��V�(fpig; fv
�
i g) ;

(3)

where �, � and f��g are the Lagrange parameters

which are considered �xed. After writing � with the

solutions obtained by its extremization with respect to

the probabilities, we have d� = 0 , implying that

dS � �dU �
X
�

��dV� = 0 ; (4)

since
PW

i=1 dpi = 0. We have then, as consequence

of the application of the Maximum Entropy Principle

(MEP), the complete analogy of the �rst law of ther-

modynamics (obviously, the functions S, U , and fV�g

are now functions of the equilibrium probability distri-

bution obtained by the extremization of �). Note that

we have here a completely general entropic form S, sat-

isfying only some basic requirements of concavity and

analiticity ! Clearly, if we call T � (��1), the eq.(4)

can be rewritten as dU = TdS �
P

� T��dV�. If we

call dQ = TdS and dW =
P

� T��dV� the �rst law

dU = dQ� dW is reobtained, for a general proposal of

the entropic forms S(fpig)! We could then say that if

some problem obeys the MEP, with some entropic form,

then there exists an analogy of the �rst law of thermo-

dynamic for this problem. It does not matter if the

entropic form is di�erent from Shannon's, this result

depends only on the existence of a MEP for the sys-

tem studied. In fact, the role played by the constraints

given by eqs. (1) and (2) are, formally, absolutely equiv-

alent. We have written them in a di�erent form only

to emphasize the analogy with thermodynamics, where

one constraint, the energy, has a special role. We also

could say, reversing the reasoning and on very general

grounds, that the existence of some conservation law in

some system involving some quantity that always tends

to increase or decrease, implies the existence of a MEP

for this system if it is possible to adopt this quantity

as an entropic form. Also, as shown in [7, 8], the en-

tire thermodynamical formalism is preserved and the



38 Brazilian Journal of Physics, vol. 29, no. 1, March, 1999

Legendre transformations and the Euler relations are

formally reobtained.

III Simplest entropies

The Shannon and Tsallis entropies have some very

interesting features that other entropies do not have.

Besides the thermodynamical formalism, that a large

number of entropic forms satisfy, see [7, 8], these two

entropies also have two di�erential points: simplicity

and explicitness. By simplicity we mean that they have

a simple form like

S(fpig) = k

WX
i=1

s(pi) ; (5)

and satisfy all the basic Khinchin postulates - with the

only exception of the fourth one for the Tsallis form.

By explicitly we mean that, with these entropies, it is

possible to obtain, explicitly, the probability distribu-

tions, the partition functions and all the relevant ther-

modynamical functions. This second point is extremely

restrictive and only very few entropic forms satisfy this

requirement. Clearly, this is not a physical limitation

but rather an aesthetic one. The question about the

existence of other entropic forms which have all the

standard properties of entropies - with the exception of

additivity - and which also allow us to obtain, explic-

itly, distribution probabilities, partition functions and

all thermodynamic functions, is not obvious. We will

try to �nd in this paper the simplest entropic forms

that satisfy these points based mainly on the symmetry

property of permutation of probabilities in the entropic

forms.

To show the existence of simple forms of entropy,

let us assume, as usual, that the entropic forms we are

searching are functions only of the probabilities. Fur-

thermore, the simplest way to write an entropic form

respecting the symmetry of permutation of the proba-

bilities is to write it as eq.(5), where all the functions

s(pi) are the same function (continuous, di�erentiable,

de�nite concavity), independent of the index i. We note

that, with this form, in order to satisfy the Khinchin

axiom of null event we need only to de�ne functions

s(p) such that s(0) = 0. Also, to satisfy the desired

condition that S(0; : : : ; 1; : : : ; 0) = 0, it is su�cient to

add a global constant to the entropy S if our previous

proposal of S does not ful�ll this requirement. The

axiom of having a maximum at equiprobability is not

so obviously satis�ed and we will return to it later,

in section (IV). Hereafter, for simplicity, we will use

adimensional entropic forms, i.e., we �x the constant

k = 1. With respect to the constraints, we assume

only the one given by eq.(1) (also for simplicity), which

depends on parameters (f�ig) that could be, for ex-

ample, eigenvalues of the Hamiltonian (or any other

operator). We will from now on call all the generalized

functions by the name of their similar functions in ther-

modynamic (energy, free energy etc.). We believe that

this will aid to easier understand the connections and

analogies that the generalized formalism will present

and will not lead to any misleading comprehension.

Also, all the results obtained below are only formal,

we have not studied in detail the \thermodynamical"

consequences of the new entropic forms introduced.

With respect to the constraints we have two situa-

tions:

a) usual constraints, given by the mean values of

operators; and

b) arbitrary constraints, given by arbitrary forms of

eq.(1).

III.1 Mean Value Constraints

Let us �rst start with the former case. For simplic-

ity we will assume only one constraint (the extension

to more constraints is straightforward). We have:

S(fpig) =
WX
i=1

s(pi) (6)

WX
i=1

pi = 1 (7)

U =
WX
i=1

pi�i : (8)

The extremization of the function

� = S � �

WX
i=1

pi � �

WX
i=1

pi�i ; (9)

leads us to

s0(pi) = �+ ��i ;

where s0(pi) means ds(pi)=dpi. Assuming also that the

function s0(pi) is invertible, we get for the probability

distribution,

pi = g(�+ ��i) ; (10)
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where g � (s0)�1 is the inverse function of s0. We are

here at the crucial point. To get the probability distri-

bution and partition function explicitly we have to sep-

arate the Lagrange parameter � from the other ones (in

our case we have only one more, �). In order to sepa-

rate � from � we have two possibilities for the function

g, which should satisfy one of the two following forms:

g(�+ ��i) = g(�) + g(��i) (11)

g(�+ ��i) = g(�) � g(��i) : (12)

III.1.1 Product form

Let us analyse the product form given by eq. (12).

The function that satis�es this condition is the expo-

nential, so we have:

g(:) = exp(:) :

As g � (s0)�1 then (s0)�1 = exp . Furthermore

s0(pi) / log(pi) implying

s(pi) /

Z
log(pi)dpi / pi log(pi)� pi :

As S(fpig) =
PW

i=1 s(pi) and as the functions s(pi)

are adapted (using the constants of integration) to

satisfy the �rst three Khinchin axioms, we get, with-

out any additional hypotheses, only assuming that

we want simple entropic forms, the Shannon entropy

�
PW

i=1 pi log(pi) ! The validity of the whole structure

of thermodynamics for this entropic form is obviously

well-known by everybody.

III.1.2 Sum form

The eq. (11) could be satis�ed by a linear function,

i.e.,

g(� + ��i) / �+ ��i :

As g � (s0)�1, we have that (s0)�1(x) / x, implying

s0(pi) / pi. This result leads us to

s(pi) /

Z
pidpi / p2i :

Again, as S(fpig) =
PW

i=1 s(pi), we get,

S = (1=2)
WX
i=1

p2i : (13)

This entropic form is known as \enstrophy" and is re-

lated to the vorticity in turbulence problems. In these

systems the enstrophy tends to be minimized instead of

maximized. Also, this entropic form seems to be related

to the Tsallis entropy with q = 2, but the constraints

used by his theory (the so-called q-expectation values)

are not mean values like here. Therefore, this entropy,

with mean values, can not be reduced to a particular

case of Tsallis q-statistical mechanics. What can we say

about the existence of a thermodynamical formalism for

this type of entropy? Could we succeed here to develop,

explicitly, with the enstrophy, all the structure of the

Legendre transformations present in the Shannon and

Tsallis entropy? To answer this let us �rst minimize the

enstrophy, eq. (13) with the constraints given by eqs.

(7) and (8). This lead us to the following equation for

the probability distribution (linear in the parameters

�i):

pi = �+ ��i : (14)

The sum rule leads us to the expression for �:

� = (1 � �

WX
i=1

�i)=W : (15)

The enstrophy and the \energy" equation (8) can

then be written as:

S =
1

2W
�

�2

2
(
WX
i=1

�2i �
1

W
(
WX
i=1

�i)
2) (16)

U =
1

W

WX
i=1

�i � �(
WX
i=1

�2i �
1

W
(
WX
i=1

�i)
2) ; (17)

allowing us to immediately recognize that the following

expressions are nicely satis�ed:

�(�) + �U = S (18)

�
d(�(�))

d�
= U (19)

@S

@U
= � ; (20)

where

�(�) =
1

2W
�

�

W

WX
i=1

�i +
�2

2
(
WX
i=1

�2i �
(
PW

i=1 �i)
2

W
) :

(21)

Partition Function

Clearly we could de�ne a partition function such

that �(�) � f(Z) with Z = Z(�) . The de�nition of

the partition function for the Shannon and Tsallis en-

tropy is straightforward, but here this de�nition is not

so immediate. The better way is to note that in both
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the Shannon and Tsallis entropy, when all the probabil-

ities are equal (pi =
1
W

, 8i), the expression obtained by

the entropy (S = logW for Shannon and S = W1�q
�1

1�q

for Tsallis form) is exactly similar to the function f(Z)

in equations like eq. (18), i.e., f(Z) = logZ for the

Shannon and f(Z) = Z1�q�1
1�q

for the Tsallis entropy.

Also, this functional form is the same as the one that

appears in the relation between the free energy and the

partition function in both cases (see [2] for details). To

get the same relations here we note that, for the en-

strophy, when all the probabilities are equal we have

S = 1
2W : So, along the lines exposed above, we impose

that the eq.(21) be equal to 1
2Z , giving us the explicit

expression for the partition function of the enstrophy:

c

Z =
W

2
f
1

2
�

WX
i=1

��i +
W�2

2
(
WX
i=1

�2i �
(
PW

i=1 �i)
2

W
)g�1 : (22)

Free Energy

We can also de�ne a \free energy" in a complete analogous way to standard thermodynamics. The free energy

F = U � TS , where we have de�ned T = (�)�1 , can be written as:

F = �
T

2W
+

1

2T
(
WX
i=1

�2i +
(
PW

i=1 �i)
2

W
) +

PW

i=1 �i
W

: (23)

d

It is obvious that the expressions F = U �TS = �T 1
2Z

are correct, exemplifying the connection and analogy

with the thermodynamical formalism. The whole struc-

ture of Legendre transformation is preserved, and it

would be very interesting to see this type of formalism

applied to problems of turbulence, a kind of thermody-

namics of turbulence, obtained from the minimization

of the enstrophy.

Forbidden gap in the probability distribu-
tion

Substituting the eq. (15) in eq.(14) we get the fol-

lowing expression for pi :

pi =
1

W
+

1

T
(�i �

PW

i=1 �i
W

) :

First we can see immediately that when T ! 1 all

pi's go to the same value, 1
W

. Also, considering that

the probability distribution can not be negative nor

greater than 1, these constraints lead to restrictions in

the temperature range (we assume, as in Tsallis statis-

tics, that pi � 0 whenever the expression in the right

hand side is � 0). Here, because of the convexity of

the enstrophy, the situation is inverse with respect to

the usual statistical mechanics. The lowest allowable

positive temperature does not privilege the lowest level

and the highest negative temperature does not favor

the highest level as standard statistical mechanics does.

The actual situation is more subtle. Further, there ex-

ists a gap of forbidden temperatures which includes the

zero temperature. The necessity of a gap (or cut-o�) in

turbulence problems has received support recently [9]

(see also [10]), where the authors empirically assumed

a cut-o� in order to eliminate negative values of the

probability distribution, with remarkable experimental

agreement. Here, in this formalism, the cut-o� is a nat-

ural exigency and is completely similar to the cut-o�

existing in the Tsallis statistics for example [1].

III.2 Arbitrary Constraints

We change in this case the equation of the con-

straint. We use equations (6) and (7) and replace eq.(8)

by:

U =
WX
i=1

s(pi)�i ; (24)

where s(pi) is the same function of the probability

present in the entropic form.

The extremization of the function,



Evaldo M. F. Curado 41

� = S � �

WX
i=1

pi � �

WX
i=1

s(pi)�i ; (25)

gives us,

s0(pi) =
�

1� ��i
;

where s0(p) = ds
dp

. Assuming that s0 is invertible and

calling g this function, i.e.,

g = (s0)�1 ;

we get:

pi = g(
�

1� ��i
) :

To separate the Lagrange parameter � from � we have

only two possibilities for the function g; this function

should have one of the two following forms:

g(
�

1� ��i
) = g(�) � g(

1

1 � ��i
) (26)

g(
�

1� ��i
) = g(�) + g(

1

1� ��i
) : (27)

III.2.1 Product form

The solution for eq.(26) is :

g(
x

y
) / (

x

y
)� ;

implying that

s0(p) / (p)
1

� :

This leads us to

s(p) /

Z
(p)

1

� dp / p
1

�
+1 :

By renaming 1
�
+ 1 = q, summing up over all W states

and adequately choosing the constants of integration,

we end up with the Tsallis entropy

S =
1�
PW

i=1(pi)
q

q � 1
!

The validity of the whole thermodynamic formalism for

this entropic form was shown in [2]. Also, many very

interesting properties and applications of this entropy

have been shown in many papers in the literature, see

[1, 2, 3, 4, 12]. This entropic form has also been ap-

plied to many problems that present probability distri-

butions decaying algebraically, with excellent �tting in

many situations. This entropy was derived here with-

out any ad hoc hypotheses, only by searching for the

simplest forms that satisfy the symmetry of permuta-

tion of the probabilities and allow the probabilities and

partition functions to be obtained explicitly.

III.2.2 Sum form

A solution for eq. (27) is:

g(
�

1 � ��i
) / log(

�

1 � ��i
) :

As g � (s0)�1, we have that (s0)�1(x) / log (x), imply-

ing: s0(pi) / exp (�bpi), where b is a constant. This

result leads us to

s(pi) /

Z
exp (�bpi)dpi / exp (�bpi) :

Therefore, the entropy function s(p) is proportional

to the exponential of the probability plus a constant.

Again, as S(fpig) =
PW

i=1 s(pi) and by carefully

choosing the constant needed to satisfy the �rst three

Khinchin axioms, we get,

S =
WX
i=1

(1� exp (�bpi)) ; b > 0: (28)

We could also add a constant = exp (�b) � 1 to get

the property S(0; 0; : : : ; 1; : : : ; 0) = 0 but this is not so

relevant here. This entropic form is unknown, at least

to me, but it has very nice properties (let us call it

the exponential entropy). Following the procedure of

section(III) and adopting the constraint of the energy

as

U =
WX
i=1

exp (�bpi)�i ;

we get:

for the probability distribution,

pi =
1

Z
+

1

b
log (1 + ��i) ; (29)

exhibiting a logarithmic decay of the parameters �i .

For the partition function we obtain:

Z =
bW

b�
PW

i=1 log (1 + ��i)
; (30)

for the exponential entropy:

S =
WX
i=1

(1� exp (�
b

Z
)(1 + ��i)

�1) ; (31)

for the energy:
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U = exp (�
b

Z
)
WX
i=1

�i
(1 + ��i)

; (32)

and for the free energy:

F = �Tf(Z) ; (33)

where

f(Z) = W (1� exp (�
b

Z
)) :

The following relations are valid:

S = f(Z) + �U

F = �Tf(Z) = U � TS

�
@S

@U
= �

�
@f(Z)

@�
= U ;

where we have called T = (�)�1, and � is the Lagrange

parameter. Clearly, all the thermodynamical relations,

Legendre transformations, Euler relations etc, are also

valid here. It is also possible to explicitly obtain all the

relevant thermodynamical functions.

So, with the four simplest entropies presented here,

and depending on the constraints, we cover practi-

cally all important types of possible behaviour of the

probability distribution as a function of the parameters

f�ig - namely, the exponential case (Shannon entropy),

the power law distribution (Tsallis entropy), the lin-

ear distribution (enstrophy) and a logarithmic distri-

bution (exponential entropy). In some sense the Shan-

non entropy is the inverse to the exponential entropy

(the probability distribution associated with Shannon's

entropy - which is logarithmic in the probabilities - is

exponential in the �i's and the probability distribution

related to the exponential entropy - which is exponen-

tial in the probabilities - is logarithmic in the f�ig).

Also the partition function is inverse in both cases, a

sum of exponentials in the Shannon case and a sum of

logarithms in the exponential case. The function f(Z)

is also, in some sense inverse. f(Z) is a logarithm of Z

using the Shannon entropy and is an exponential of Z

using the exponential entropy. Apparently, these con-

siderations do not have any practical consequence and

are only amusing similarities - or anti-similarities. The

table (1) summarizes these entropies, the constraints

used and the type of separations - sum or product.

Table 1: Simplest entropic forms

p = g(�; �) U =
PW

i=1 pi�i U =
PW

i=1 s(pi)�i

Product S = �
PW

i=1 pi log (pi) S =
1�
P

W

i=1
(pi)

q

q�1

Sum S = 1
2

PW

i=1(pi)
2 S =

PW

i=1(1 � exp (�bpi))

IV Stability

One important question with respect to these en-

tropic forms is related to their stability. The stability

of the Shannon entropy in the equilibrium state is one

of the most important pillars of statistical mechanics.

The Tsallis entropy has also shown similar properties of

stability and we could ask about the stability of other

entropic forms. The answer is rather more general then

one could expect from the analysis of the two other

entropic forms presented in this paper. In fact, we

will analyse the stability of the general entropic form

given by eq.(5), where the functions s(pi) are concave

or convex, under the presence only of the constraintPW

i=1 pi = 1. The stability of this general entropic

form under this constraint could be made by analysing

the coe�cients of the powers of � that appear from the

determinant of the matrix M given by

S11 � � S12 � � � S1W 1
S21 S22 � � � � � S2W 1
...

...
...

...
...

SW1 SW2 � � � SWW � � 1
1 1 � � � 1 0

where Sij = @2S
@pi@pj

. If the coe�cients of � have the

same sign we have a maximum; otherwise, if the coef-

�cients are alternately positive and negative there is a

minimum [11]. For entropic forms like eq.(5) we have

that Sij = 0 whenever i 6= j. Also, calculating this

determinant for the equiprobability con�guration, we

can see that all Sii have the same value, say a. The

determinant of this matrix for a system with W states

can then be written in a general form as:

det(M ) = �W (a � �)W�1 ;
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showing that, for this type of entropic form, the

equiprobability is an extremum of the entropy regard-

less of its speci�c function. The only requirement is

that the functions s(p) be concave or convex. This con-

vexity condition �xes the value of a: concave functions

s(p) give a < 0 - corresponding to a situation of maxi-

mum - and convex functions give a > 0 - corresponding

to a situation of minimum. So, if we choose the func-

tion s(p) to be a concave function, the entropic form

S =
PW

i=1 s(pi) will have a maximum at equiprobabil-

ity! A relevant question here is if this is a global maxi-

mum or only a local one. We can proove that this is a

global maximum by noting that the property of (any)

concave function g(x)

g(
1

n

nX
i=1

xi) �
1

n

nX
i=1

g(xi)

where the fxig are points, applied to the concave func-

tions s(p) leads us to

s(
1

W

WX
i=1

pi) = s(
1

W
) �

1

W

wX
i=1

s(pi) ;

implying that

Ws(
1

W
) �

wX
i=1

s(pi) ;

and by then showing that any con�guration fpig must

satisfy the inequality

S(fpi =
1

W
g) = Ws(

1

W
) � S(fpig) =

wX
i=1

s(pi) :

So, if we write the entropic form S as in eq.(5) and

assume that the function s(p) is concave, then this en-

tropic form has a global maximum for equiprobability.

The Khinchin axiom of the maximum of the entropy

for equiprobability is obtained here as a consequence

of the symmetry of permutation of the probabilities.

Another question of lower importance remains: is this

the only maximum or there are other local (not global)

maxima? A strong negative argument to this question

can be given, again, by the symmetry of permutation of

probabilities in the entropic forms. Let us suppose, for

example, that there are other maxima, besides that of

equiprobability, and let us consider the situation where

the number of other maxima is the minimum. This

lower number of (hypothetic) maxima will occur when

only one probability is di�erent from all the others, that

are all equal among themselves. Due to the symmetry

of permutation of the probabilities we can see that there

are W more maxima besides the maximum associated

with the equiprobability. But as the form of the entropy

does not depend on the number of states of the system,

we can easily see that an entropic form like eq.(5) that

admits other maxima than the maximum of equiprob-

ability, will have to admit an in�nite number of them

(when W ! 1), which is unacceptable, even if these

maxima are not global maxima. Note that other con-

�gurations of fpig di�erent from those discussed above

actually have even more maxima than W, because the

number of permutations is greater. So, there is only one

(global) maximum (or minimum if the function s(p) is

convex) - namely that obtained for equiprobability.

V Complex Entropic Forms

The previous results can be extended if we have, in-

stead of an entropic form as above, entropic forms like

S0 = F (S) where S can be written as S =
PW

i=1 s(pi).

If the function F is monotonically increasing (or de-

creasing), then the extremization of S0 with some con-

straints, gives a probability distribution with the same

behaviour as the extremization of S does. This is so be-

cause, for example, for mean value constraints we have:

dS0

dpi
� �� ��i = 0 :

But as dS0

dpi
= dS0

dS
dS
dpi

and dS0

dS
6= 0 (because we have as-

sumed that the function F was monotonically increasing

or decreasing), we get

s0(p) =
�+ ��i

dS0

dS

implying that we have only a renormalisation of the

parameters � and �. For example the Renyi entropy

SR = 1
1�q log (

PW

i=1(pi)
q) can be seen as a monotonic

function of the Tsallis entropy (or the enstrophy for

q = 2). So, the extremization of this entropy with the

same constraints leads to a power law probability dis-

tribution as the Tsallis entropy would provide. The

parameters of the probability distribution are changed

but the behaviour of the distribution is the same. In

particular, the new parameters are not anymore the

Lagrange parameters, but are related to them.

With respect to the stability conditions, we can im-

mediately see that an increasing function F (S) has the

same maxima that S has. Then, S0 = F (S) also has

only one maximum at equiprobability, just as S has.

Therefore, for this large class of entropic forms, includ-

ing all entropic forms of the type F (S), where F is
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a monotonic increasing function, the Khinchin axiom

for the maximum of the entropy at equiprobability is

obtained as a consequence. The only basic initial as-

sumption is that the entropic forms are symmetric with

respect to the permutation of the probabilities, contin-

uous, di�erentiable and monotonous functions of the

basic entropies. The axiom of Khinchin related to the

invariance of the entropy if a null event is added is triv-

ially satis�ed here by adopting a function s(p) such that

s(0) = 0. To satisfy the condition that the entropy S

will be zero if we have one event with probability one,

it is enough to add a global constant to the previous

de�nition of the entropy. So, these two axioms are, in

some sense, trivially satis�ed here.

A di�erent approach in the direction of more com-

plex nonextensive thermodynamics could be tried using

for example, instead of arbitrary constraints as done in

section (III.2), a normalized constraint of the type (see

[13]):

U =

PW

i=1 s(pi)�iPW

i=1 s(pi)
;

where in fact the new probability distribution

Pi �
s(pi)PW

i=1 s(pi)
; (34)

is being used. This procedure is equivalent to assume

a new entropy SP , given by

SP (fPig) = S(fpi(fPjg)g)

(where we have inverted the relation given by eq. (34)),

and to adopt constraints of type mean value. To get

this new entropy, we have, �rst, to consider the inverted

equation (34),

pi = s�1(Pi

WX
j=1

s(pj)) ;

which, after summing up, gives us a relation betweenPW

i=1 s(pi) and
PW

i=1 s
�1(Pi). This relation can be

written in general form as:

WX
i=1

s(pi) = f(
WX
i=1

s�1(Pi)) ;

where f is some function (related to s). Then, the new

entropy could be written as:

S ! S
0

= f(
WX
i=1

s�1(Pi)) :

If the function f is monotonous and the function s�1

has a de�nite concavity, then the previous comments

are valid. In general, this new entropic form does not

lead to an explicit evaluation of the probability distri-

bution (even if the previous entropy does), because it

does not satisfy the requirements type sum or product.

But, again, even if this explicit evaluation does not

happen, this entropic form can easily satisfy the three

Khinchin axioms and, if the function f is monotonous

and s�1 has a de�nite concavity, also the stability at

equiprobability is guaranteed.

Other symmetric entropic forms

There is another general entropic form that trivially

satis�es the symmetry of permutation of probabilities.

This form could be written as:

S =
WY
i=1

s(pi) ; (35)

with s(0) = 1. But taking the logarithm on both sides,

we come back to an entropic form like eq.(5). Therefore

the new entropies that appear using eq.(35) are essen-

tially exponentials of the entropies already obtained.

These strange entropies are, for example,

c

S /

8<
:
Q
i exp (p

�
i ) = exp (

P
i p

�
i )Q

i exp (exp (�bpi)) = exp (
P

i exp (�bpi))Q
i exp (pi log (pi)� pi) = exp (

P
i pi log (pi)) ;

d

that correspond, respectively, to the exponentials of the

Tsallis (and enstrophy too), exponential and Shannon

entropies. These forms are then reduced to the previ-

ous one, and because the exponential is a monotonous

function, all the comments made in the beginning of

the section (V) are valid here.
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VI Conclusion

We have shown some new results concerning general

aspects of the thermodynamical formalism and exhib-

ited some general properties of entropic forms based, es-

sentially, on the symmetry of permutation of probabili-

ties that an entropic form must satisfy. This symmetry

indicates the simplest way to write general entropies,

and the requirements of simplicity and explicitly allow

us to derive some basic entropic forms that satisfy the

whole thermodynamical formalism and where all \ther-

modynamical" functions, probability distributions and

partition functions can be explicitly calculated. Two

of these entropies are already well known, one of them

being the Boltzmann-Gibbs-Shannon entropy and the

other one being the Tsallis entropy. Two more basic en-

tropies were derived, one of them being essentially the

enstrophy. Each one presents di�erent types of decay

of the probability distribution with respect to the pa-

rameters (\ energy levels", for example). The stability

of these basic forms was studied and the existence of a

maximum at equiprobability was proved to be of gen-

eral validity for these forms. This stability should also

be valid for monotonic functions of these basic forms. In

fact, the Khinchin axioms are satis�ed here in an almost

trivial way (the axiomof null event is really trivially sat-

is�ed). So, we have analysed, on theoretical grounds,

the way an entropic form could be written, established

some, in this sense, \basic" entropies and the condi-

tions (monotonicity) that more complex entropic forms

should obey. The entropic forms that satisfy these re-

quirements automatically satisfy the three remaining

Khinchin axioms, are stable and satisfy the whole struc-

ture of transformations and relations of thermodynam-

ics. It will be very interesting to complete some proofs

indicated here and, in future works, to establish clearly

the real important properties an entropic form should

have to be successfully applied in nonextensive thermo-

dynamics. The connection with real problems will be

given, always, by the way probability distributions will

decay with the parameters associated with the existing

constraints (energy for example).
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