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A hybrid approach is described, which combines stochastic classical molecular dynamics and
�rst principles Density Functional theory to model the atomic and electronic structure of
large molecular and solid-state systems. The stochastic molecular dynamics using Gener-
alized Simulated Annealing (GSA) is based on the nonextensive statistical mechanics and
thermodynamics. Examples are given of applications in linear-chain polymers, structural
ceramics, impurities in metals, and pharmacological molecule-protein interactions.

I Introduction

In complex materials and biophysics problems the num-

ber of degrees of freedom in nuclear and electronic coor-

dinates is currently too large for e�ective treatment by

purely �rst principles computation. Alternative tech-

niques which involve a hybrid mix of classical and quan-

tummethodologies can provide a powerful tool for anal-

ysis of structure, bonding, mechanical, electrical, and

spectroscopic properties. In this report we describe an

implementation which has been evolved to deal specif-

ically with protein folding, pharmacological molecule

docking, impurities, defects, interfaces, grain bound-

aries in crystals and related problems of 'real' solids.

As in any evolving scheme, there is still much room

for improvement; however the guiding principles are

simple: to obtain a local, chemically intuitive descrip-

tion of complex systems, which can be extended in

a systematic way to the nanometer size scale. The

computational scheme is illustrated in Fig. 1, show-

ing classical Molecular Dynamics (MD), Monte Carlo

(MC-GSA) stochastic sampling, and Discrete Varia-

tional (DV) Density Functional (DF) quantummechan-

ics procedures coupled together. We next brie
y de-

scribe each of the component procedures.

Figure 1. Flowchart describing the hybrid MD+DV+GSA
approach.
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II Classical Dynamics, Stochas-

tic Methods, and Quantum

Clusters

II.1 Classical Methodology: Molecular Dynam-

ics

The idea of molecular modeling is an attempt to de-

scribe the quantum chemical bonds in terms of a clas-

sical force �eld in Newton's equations. In a Molecular

Mechanics (MM) model the atomic bonds are repre-

sented by springs joining the atoms; i.e., the molecule

is assumed to be a collection of masses and springs.

In this case is necessary �nd a set of parameters, for

this force �eld, that �t the quantum atomic interac-

tions with su�cient accuracy. Ideally one hopes that

such re�nements will eventually lead toward a uni�ed

computational model that can successfully mimic ob-

served molecular properties. Academic research e�orts

and the pharmaceutical industry interest in developing

new compounds in biological molecular systems have

stimulated the appearance of di�erent computational

codes based on classical force �elds.

The �rst molecular dynamics applications was per-

formed by Alder and Wainwright, [1] who used a per-

fectly elastic hard sphere model to represent the atomic

interactions. One of the most widely used force �eld

ones is called MM1 (Molecular Mechanics), proposed

by Allinger [2]. At the moment there are an uncount-

able number of MM computational codes using a classi-

cal force �eld. Each one of these uses a particular force

�eld to describe di�erent molecular properties and to

�t some experimental results.

Reasons which justify the increasing use of MM can

be listed, as for example:

- Possibly the chief reason is the relatively short

computational time, which for MM methods increases

as M2, where M is the number of atoms in the molecule.

In contrast, the use of the ab-initio quantum methods

in such molecular systems is computationally impracti-

cable because the computer time to evaluate the inter-

electronic repulsion integrals increases as N4 (or more

rapidly, when correlation is taken into account), where

N is the number of basis orbitals. Normally, there are

at least several basis functions per atomic orbital shell-

1s, 2s, 2p, etc..

- The MM method and its results are conceptually

easier to understand than quantum mechanical (QM)

methods.

- In MM, it is very simple to introduce time evolu-

tion;

- In MM, it is possible to introduce the temperature

as an external perturbation, and trace its e�ects.

Two important questions arise which are unfavor-

able to the MM methods: First, there do not exist well-

de�ned rules to evaluate the force constants; and sec-

ond, in order to choose the best force �eld is necessary

to have a priori some considerable knowledge about the

molecular system. In molecular mechanics the atom is

represented by a spherical body with a particle mass

equal, in general, to the respective atomic mass. In

today's molecular mechanics, several force �eld models

have been proposed. In general the molecular energy

(potential function) related with the classical force �eld

can be expressed by the following sum [3],[4];

V = VH + Vb + Vtor�i + Vtor�p + VC + VvdW (1)
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Where, in summary, the �rst term of eq. (1) VH

represent the energy necessary to stretch or compress

the atomic bond; Vb is the potential contribution that

represents the bond-angle bending interaction; Vtor�i,

Vtor�p are the torsional contributions that represent

the harmonic dihedral bending interaction and the si-

nusoidal dihedral torsion interactions. The last terms
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VC and VvdW represent the non-bonded interactions

such as Coulombic repulsion, hydrogen bonding and

van der Waals interactions. Each of these potential en-

ergy functions represents a molecular deformation from

a reference geometry. The interactions given in equa-

tion (1) are available in our Molecular Mechanics code,

and are typical of other currently available codes. To

study molecular properties in solid systems, additional

potentials have been introduced, including Born-type

exponential repulsion and Morse potentials.

Molecular dynamics (MD) calculations consist of

analyzing the evolution of the molecular system with

time. In this case the atoms are continuously moving,

the bonds are vibrating, the angles are bending and

the whole molecule is rotating. In MD, successive con-

�gurations of the system are generated by integrating

Newton's equations of motion. The result is a trajec-

tory that speci�es how the positions and velocities of

the atoms vary with time. The trajectory is obtained

by solving the following di�erential equations;

d2
!

ri
dt2

=

!

F i

mi
(2)

where
!

F is the force over atom i along the
!

r i coordinate

and mi is the atomic mass.

Equation (2) is solved by a di�erence �nite tech-

nique with continuous potential models (1), which are

generally assumed to be pairwise additive. The essen-

tial idea is that the integration is broken down into

many small stages, each separated in time by a �xed

increment dt. For each step the total force on each

atom is calculated as the vector sum of the interactions

with some or all atoms belonging to the molecular sys-

tem. The force is calculated by taking the gradient of

the potential function represented by eq. (1). Using

the forces and accelerations, all atomic positions and

velocities are determined using Newton's equation at

the time t + �t. In the same procedure the forces and

the new velocities are used to calculate the new atomic

position at time t + �t, and so on.

Once the force on each atom has been calculated for

time t, the position of each atom at some later time t

+ �t is then given by

!

r t+�t=
!

r t +
!

vt �t+
!

at �t
2 (3)

where
!

a =
!

F/m . Here t = n�t, and �t � 0.001 pico

seconds. The initial coordinates
!

r t=0 may be taken

from experimental data or may be randomized; the

initial velocities
!

v t=0 are derived from the Maxwell-

Boltzmann distribution, in general, and temperature T

is controlled by a dynamic scaling procedure. A cooling

or annealing procedure of modifyingT provides one way

to approach stationary points, and possibly the equi-

librium state of the system. Once the potentials are

calculated for each new geometry, the new forces and

positions of each atom can again found. This procedure

is repeated until convergence in the energy is reached.

There are di�erent algorithms or numerical methods

available to solve di�erential equation (2). All meth-

ods are based on �nite di�erences and solve the equa-

tion step by step in time. Often the step size is taken

constant, but adaptive methods have sometimes been

found useful.

The simplest and most straightforward (but unfor-

tunately not su�ciently accurate) approach is to use

the Taylor expansion based on equation (2).
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Another method sometimes used (but computation-

ally very expensive) is the Taylor predictor;
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This algorithm contains no explicit velocities, and

we see that also the third derivative terms can be made

to cancel. In this case the velocities can be approxi-

mated by

!

v t= (
!

r t+1 �
!

r t�1)=2�t (6)

Another very well known algorithm is the Verlet

leap-frog scheme given as;

!

v t+�t=2=
!

v t��t=2 +Ft�t (7)

!

r t+�t=
!

rt +
!

v t+�t=2 �t

One consideration for molecular dynamics that im-

mediately invalidates a number of these methods is the

cost of calculation of the force, or gradient of the poten-

tial. Computation of the force is extremely laborious

compared to any manipulation involved in updating the

variables to take one step forward in time. This means

that any method that involves more than one force eval-

uation per step cannot be a good choice. This rules out

the well-known Runge-Kutta method and its variants,

that require up to four force evaluations per step, so

the simple Verlet scheme is generally preferred.

The MD procedure can be brie
y summarized in the

following steps:

i- Guess the initial molecular geometry, the initial

atomic velocities and environment temperature.

ii- Calculate the force, as the gradient of the poten-

tial (1).

iii- Calculate the new atomic position or molecu-

lar geometry using one of the algorithms to integrate

Newton's equations.

iv- Rede�ne the atomic velocities using the virial

theorem

3
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Where kB is the Boltzmann's constant, To is the ini-

tial or \bath" temperature and T is the local tempera-

ture. vold and vnew are the velocities of two consecutive

steps in the MD procedure.

v- Save intermediate information for statistics and

go back to step (i) until the stabilization of the molec-

ular energy is reached. At the end of the MD proce-

dure the total energy (kinetic and potential contribu-

tion) must be constant.

This methodology, though pedagogically correct, al-

lows the system to get \trapped" in local energy min-

ima. There is no guarantee that this geometry corre-

sponds to the global minimum energy. So the usual

MD procedure may not be the best way to search for

the global minimum point on the complex energy hy-

persurface.

In this context, if the molecular hypersurface en-

ergy is non-convex, stochastic molecular dynamics of-

fers a more e�cient way of �nding both local minima as

well as the global one. Thus we next discuss the more

important concepts needed to implement a stochastic

molecular dynamics procedure.

II.2 Stochastic Dynamics: Generalized Simu-

lated Annealing

Simulated Annealing [5][6] methods have been ap-

plied successfully in the description of a variety of global

extremization problems. Simulated Annealing methods

have attracted signi�cant attention due to their suit-

ability for large scale optimization problems, especially

for those in which a desired global minimum is hidden

amongmany local minima. The basic aspect of the Sim-

ulated Annealing method is that it is analogous to ther-

modynamics, especially concerning the way that liquids

freeze and crystallize, or that metals cool and anneal.

At high temperatures, the molecules move freely with

respect to one another. If the system is cooled slowly,

thermal mobility is lost. The atoms are often able to

line themselves up and assume a molecular geometry

that is in general a local equilibrium state. The simu-

lated annealing procedure is actually more complicated

than the combinatory one, since the familiar problem of

long, narrow potential valleys again asserts itself. Sim-

ulated annealing, as we will see, tries random steps, but

in a long, narrow valley, almost all random steps are up-

hill. The amazing fact is that, for a slowly cooled sys-

tem, nature is able to �nd this minimum energy state.

So the essence of the process is slow cooling, allowing

ample time for redistribution of the atoms as they lose

their mobility. This is the technical de�nition of an-

nealing, and it is essential for ensuring that the lowest

energy state will be achieved.

The �rst nontrivial solution along this line was pro-

vided by Kirkpatrick et al. [5],[6] for classical systems,

and also extended by Ceperley et al. [7] to quan-

tum systems. It strictly follows the quasi-equilibrium
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Boltzmann-Gibbs statistics using a Gaussian visiting

distribution, and is sometimes referred to as Classical

Simulated Annealing (CSA) or the Boltzmann machine.

The next interesting step in this subject was Szu's pro-

posal [8] to use a Cauchy-Lorentz visiting distribution,

instead of a Gaussian distribution. This algorithm is

referred to as the Fast Simulated Annealing (FSA) or

Cauchy machine.

On the other hand, a Generalized Simulated An-

nealing (GSA) approach which closely follows the

recent Tsallis statistics [9],[10] has been proposed

[11],[12],[13],[14]; GSA includes both the FSA and CSA

procedures as special cases. We have implemented the

GSA algorithm as a method to calculate the mini-

mum energies of conformational geometries for di�er-

ent molecular structures. This technique can be ap-

plied in either quantum [12] or classical [13] methods.

The GSA method is based on the correlation between

the minimization of a cost function (conformational en-

ergy) and the geometries randomly obtained through a

slow cooling. In this technique, an arti�cial tempera-

ture is introduced and the system is gradually cooled in

complete analogy with the well known annealing tech-

nique, frequently used in metallurgy when a molten

metal reaches its crystalline state (global minimum of

the thermodynamic energy). In our case the temper-

ature is intended as an external noise, which acts as

a convenient stochastic source for eventual detrapping

from local minima. Near the end of the process the sys-

tem hopefully is within the attractive basin of the global

minimum. The challenge is to cool the system as fast

as possible and still have the guarantee that no irre-

versible trapping at any local minimum has occurred.

More precisely, we search for the quickest annealing (ap-

proaching a quenching) which maintains the probability

of �nishing within the global minimum equal to one.

The procedure to search the minima (global and

local) or to map the energy hypersurface consists in

comparing the conformational energy for two consecu-

tive random geometries xt+1 and xt obtained from the

GSA routine. xt is a N- dimensional vector that con-

tains all atomic coordinates (N) to be optimized. The

geometries, for two consecutive steps, are related by

xt+1 = xt +�xt (8)

where �xt is a random perturbation on the atomic po-

sition.

To generate the random vector �xt the present GSA

routine uses an extension of the procedure given in Ref.

[13]. We have calculated �x = g�1(!) using a numer-

ical integration of the visiting distribution probability

gqv(x). Where ! is a random vector [0,1] obtained from

an equiprobability distribution and g�1 is the inverse

of the integral of gqv(x) given by

g�1(!) = inverse

Z x

�1

gqv(x)dx (9)

Mathematical details of the structure of the distri-

bution function g and its inverse g-1 are given in the

reference [13]. In summary, the complete algorithm for

mapping and searching for the global minimum of the

energy is:

(i) Fix the parameters (qA;qv). We note that

(qA;qv) = (1;1) and (1;2) respectively correspond to the

Boltzmann and Cauchy machines. Start at t = 1, with

arbitrary internal coordinates and high enough value

for visiting temperature Tqv(1) and cool as follows:

Tqv(t) = Tqv(1)
2qv�1 � 1

(1� t)qv�1 � 1
(10)

where t is the discrete time corresponding to steps of

computer iteration.

(ii) Next, randomly generate the new atomic coor-

dinate xt+1 from xt as given by the visiting distribution

probability gqv as follows:

xt+1 = xt + g�1(!) (11)

For su�ciently long time simulations this procedure

assures that the system can both escape from any local

minimum and can explore the entire energy hypersur-

face. This equation is used in the GSA routine and

di�ers from the general proposal given in [11]; instead

we build a minimization vector using (8).

(iii) Then calculate the conformational energy

E(xt+1) from the new molecular geometry using the

classical force �eld [3]. The new energy value will be

accepted according to the following rules:

if E(xt+1) � E(xt), replace xt+1 by xt; if

E(xt+1) > E(xt), run a random number r 2[0,1];

if r > PqA (acceptance probability) retain

xt; otherwise, replace xt by xt+1.

The acceptance probability is given by
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PqA = (xt ! xt+1) =

(
1

1 + [1 + (qA � 1)(E(xt+1)�E(xt))� E(xt)=Tqv(t)]
1

qA�1

if E(xt+1) � E(xt)
if E(xt+1) > E(xt)

(12)

d

(iv)- Calculate the new temperature Tqv(t) using

Eq. (12) and go back to (ii) until the convergence of

E(xt) is reached within the desired precision.

In order to make clear the procedure to construct

the presently used computational code, we present the

following 
owchart as Fig. 2:

Figure 2. Schematic diagram of Generalized Simulated An-
nealing process.

II.3 QuantumMethodology: Density Functional

Embedded Cluster Scheme

The Density Functional (DF) theory is a standard

tool for describing electronic structures, which is �rst-

principles in concept and 
exible in execution. DF the-

ory has become a major tool for analyzing electronic

structure of molecules and solids, with high intrinsic

accuracy and reasonable computational e�ort. For ex-

tended systems with no periodicity to exploit, a clus-

ter approach o�ers many advantages, providing that

a reasonable embedding scheme is used. De�nition of

'reasonable embedding' depends upon the nature of the

system- while a point charge environment is accept-

able for a highly ionic compound, it is quite poor in

treating localized covalent interactions where there is

hybridization of orbitals with neighboring atoms. The

embedded cluster density functional (ECDF) scheme

permits analysis of wavefunctions and their derived

properties in a restricted volume, with interactions to

the extended host included by e�ective potentials and

boundary conditions. The present implementation of

the ECDF scheme employs 'guard atoms' on the surface

of the cluster to saturate interior bond structures, and

synthesis of total charge and spin densities including

the environment, to determine e�ective cluster poten-

tials. Scanning algorithms by which the 'view window'

of the cluster is moved over the volume of interest, per-

mit treatment of extended systems. A key concept in

obtaining self-consistency of the multiple overlapping

views of a complex system like a heterogeneous inter-

face, is that of equilibration of the chemical potential,

or Fermi energy EF, among the component clusters.

This methodology has been developed in several forms

over the years, and successfully applied to a variety of

molecules and extended solids, including metals, semi-

conductors, and insulators; see for example [15].

In outline, the following main steps are performed

in ECDF calculations:

i) Charge and spin densities of the extended sys-

tem are constructed by summing component atom-like

densities for the cluster and host:

�(
!

r ) = �cluster +
hostX
�

(13)

ii) LCAO-type basis functions are generated by nu-

merical solution of DF equations for atoms/ions in

a potential well, determined from the previous self-

consistent-�eld iterations; the basis is thus iterated as

part of the overall optimization procedure.

iii) Form matrix elements of the e�ective Hamilto-

nian

h� = t+ VC + Vxc;� (14)
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and overlap operators over the AO basis �j , pos-

sibly transformed into symmetry orbitals, and orthog-

onalized against a frozen core. Here t, VC , and VxC

are kinetic energy, nuclear and electronic Coulomb po-

tential, and exchange-correlation potential respectively.

The index � refers to spin orientation. The DF poten-

tial is formed from the densities, and boundary condi-

tions are applied to force localization of solutions to the

cluster.

iv) Solve the Schr�odinger (nonrelativistic) or Dirac

(relativistic) equation, to obtain a variational expansion

of the one-electron wavefunctions as

 n�~r) =
X
j

�j(
!

r )Cj;n� (15)

v) Project the cluster densities onto a localized 'ef-

fective atom' expansion as

�cluster =
X
n�

fn� j n�j
2 =

X
�

�� (16)

Here fn are Fermi-Dirac occupation numbers and �

enumerates atoms within the cluster.

vi) Analyze the interior `seed atom' region of each

cluster to extract component atomic densities. New

atomic densities for the next iteration are obtained

after equilibration of the system and application of

constraints such as electroneutrality of crystalline unit

cells. Equilibrate the various clusters selected to span

the region of interest, either by matching Fermi energies

or spectral features, and iterate steps i-vi until adequate

convergence of charge and spin distributions, spectral

features, and total energy is obtained.

vii) Extract densities of states, optical and X-ray

absorption coe�cients, electron energy loss spectra

(EELS), cohesive energies, and other desired properties.

Compare charge distribution and cohesive energies with

data assumed in construction of MD/GSA potentials.

Update MD/GSA potentials as required.

III Examples of Applications

Each of the components of the hybrid scheme: MD,

MC/GSA, and ECDF have been developed indepen-

dently and has a considerable history of successful ap-

plications. The linkage between these components, with

the capability of feeding information between the com-

ponents provides us with a powerful new tool for study-

ing materials properties. An area of intense develop-

ment in our laboratories is design and construction of a

graphical user interface which will permit the use of this

system of programs by non specialists, and particularly

by experimentalists wishing to analyze new materials.

In the remainder of this report, we give four illustra-

tive examples related to current problems in materials

design and optimization.

Beyond the general procedures outlined above, suc-

cessful applications depend upon some degree of expe-

rience and 'art'. For example; when is it most e�cient

to use MD and when is it better to use MC/GSA to de-

termine the minimum-energy con�guration of a system

as complex as a ceramic grain boundary containing im-

purities? In practical terms, we observe an initial rapid

convergence with the MC/GSA approach, followed by a

long 'tail' of sampling in which only small incremental

improvements are found. Thus an optimal scheme in-

volves switching from GSA to MD-gradient based pro-

cedures at a rather well de�ned point in the simulation,

when an accurate energy minimum is desired. Further

details will be given elsewhere; here we only wish to

comment brie
y on another important practical aspect:

the use of boundary conditions and tight constraints to

permit e�cient sampling of regions of interest. In tradi-

tional MD/MC one often tries to work with the largest

possible simulation volume, to minimize boundary ef-

fects, and distortions due to imposed periodicity. Here,

we deliberately choose quite restricted simulation vol-

umes, with tight boundary conditions, in order to focus

upon system response to perturbations related to de-

fects, surfaces, and interfaces. Of course, too tight con-

trol completely prejudices the outcome of simulation,

so convergence and stability tests have to be made as

in any local scheme.

During the dynamic process the MD/MC proce-

dures may call the SCF-DV procedure to rede�ne the

atomic charges. In case of ionic interactions, e.g.

molecules docking with ionic lattices, this o�ers the

opportunity to determine polarization and dynamic

charges 'on the 
y' as a function of geometry. In gen-

eral, the DV quantum results produced can be used to

adjust the classical force �eld (See 
owchart in Fig.1);

however, the interaction among various potential pa-
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rameters has to be considered. For example, in a typ-

ical Born-type ionic interaction with point-charge long

range terms, exponential repulsion, and inverse power

short range attraction, modi�cation of point charge val-

ues also implies some modi�cation of short-range pa-

rameters to maintain correct bond lengths and cohesive

energies.

III.1 Applications Using a Coupled DVM-GSA

Method

III.1.1 A Stacked Linear Porphyrin Chain

The chemical bonding of metal porphyrins, por-

phyrazines, and phthalocyanines is of importance in

understanding biophysical and catalytic processes. The

crystalline materials like copper phthalocyanine (CuPc)

form stacked chains, and when partially oxidized by io-

dine (CuPcI) for example, become interesting 'molec-

ular wire' conductors. Doped systems like Cu(1-

x)Ni(x)PcI show quasi-one dimensional magnetic inter-

actions of considerable theoretical interest. Component

molecules (monomers) like CuPc are quasiplanar and

small enough to be treated by standard quantum chem-

ical approaches; however, understanding the electronic

coupling between monomers requires a DF approach,

and understanding the dynamics of coupling requires

a MD/MC classical treatment. An ECDF/MD/MC

study of a CuPc stack has been recently carried out

[16]; here we wish to give a few highlights of the re-

sults.

Fig.3 represents the electrostatic potential in a 3D-

mapped isosurface of a porphyrin chain. The molecular

equilibrium conformation was obtained using a GSA

technique, coupled to a classical force �eld. We have

carried out semi- empirical Hamiltonian (PM3) calcu-

lations to draw the electrostatic potential isosurface.

One of the signi�cant conclusions drawn from this work

is that standard force �elds are capable of reproduc-

ing both monomer and intermolecular interactions with

considerable accuracy. Thus, while the underlying elec-

tronic interactions (porphyrinic-ring pi versus metal-d;

sigma bonding in-plane versus pi-interaction between

molecules) are complex and require detailed analysis,

a simple classical parametrization captures the main

structural results. This observation helps to justify and

motivate the mixed classical/quantum methodology.

Figure 3. Electrostatic potential in a 3D isosurface.

Figure 3a. Linear stacking of a Porphyrin Chain.

III.1.2 Carbon Interstitials in Copper

In metallic conductors like copper, small particle

precipitates are found to improve hardness and wear

resistance of contacts. For high temperature applica-

tions, matrix-embedded carbon �bers have also been

considered, to provide sti�ness and prevent ductile fail-

ure, and may be useful to reduce sliding friction [17].

An understanding of C di�usion in Cu, and its behav-

ior at the Cu/C interface is fundamental to developing

successful strategies for improving �ber-matrix compos-

ite performance. Wettability-enhancing e�orts based

upon alloying elements bene�t by connection between

the fundamentals of the wetting of solids by liquid met-

als and the practice of the preparation of metal-matrix

composites (MMC) [18]. In [19] it was shown that

the interfacial energy in a metal-carbon �ber system
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is modi�ed by the interfacial adsorption of the alloying

elements which are added to the metal matrix.

High-resolution scanning electron microscopy

(HRSEM) shows the existence of a 50nm solid so-

lution zone at the copper-carbon interface, after an-

nealing. After heat treatment of one hour at 1000 oC

the interface faded and we can see a copper-carbon

solid solution region of width 50 nm. Formation

of a very dilute Cu-C interstitial solid solution at the

interface may be di�usion- controlled. To predict the

di�usion behavior of carbon atoms we have to study the

structure and interatomic interactions in such alloys.

Phenomenological studies of these phenomena have

been augmented by quasi-continuum models [20] which

re
ect some aspects of the underlying electronic struc-

ture. Now the analysis is extended to the atomic scale,

using a combination of GSA/MD atomistic simulations

and embedded cluster DF schemes.

Our MD simulations [20] are here deliberately con-

strained to small displacements of the Cu host atoms,

for which the framework of elastic Hooke's- law Cu-Cu

interactions is quite adequate. As follows from sim-

ple pseudopotential calculations, the Cu-C interaction

is repulsive at least to several coordination shells sur-

rounding the carbon atom. The repulsive part of in-

teraction may be �tted by any functional form, and we

normally choose Lennard-Jones (LJ) parameters to re-

produce the experimentally measured properties. Un-

fortunately, experimental data on dilute Cu-C solid so-

lutions are absent, so we use the results of the previ-

ously mentioned pseudopotential studies.

The expression used for the classical system energy

is thus

c

E(r) =
1

2

X
i;j

Kij(rij �R0ij )
2 +

X
i<j

"
C12(i; j)

r12ij
�
C6(i; j)

r6ij

#
+E0

d

The last term, E0, represents the volume-dependent

part of the energy and includes information about elec-

tronic density redistribution, which is gathered from

the embedded cluster density functional scheme, or

may be obtained from other electronic structure cal-

culations. The parameter values are: R0=2.475�A,

K=6.920 eV/�A2, E0=-0.875 eV, C6=41.548 eV/�A6,

C12= 2989.105 eV/�A12.

Among the major conclusions of this work we �nd

the following:

i. Carbon strongly prefers the octahedral intersti-

tial site over tetrahedral sites, as predicted from earlier

works. We have determined the relative site energies

and the (rather long range) relaxation of the Cu host

around the impurity.

ii. Surface sites (incomplete octahedral interstitials)

are at lower energy than volume sites, consistent with

the extremely low solubility of C in Cu.

iii. Carbon dimers and hints of clustering appear at

higher impurity densities.

iv. The graphite-Cu interface region appears to be

disordered to a depth of several Cu atomic layers.

Figure 4. Two carbon atoms in a fcc-cell of Cu.One carbon

atom is located in a substitutional position and the other

one belongs to a tetrahedral interstitial position.

III.1.3 Scheelite, a Candidate Host for Matrix-

Fiber Composites

Calcium tungstate, CaWO4, also known as scheel-

ite, is a prototype for a large class of naturally occurring
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minerals of the same structure [22]. The WO4 tungstate

group exhibits strong bonding of mixed ionic and cova-

lent character of great rigidity; as a result the scheel-

ite lattice has a rather anisotropic response to pres-

sure, with compression along the c-axis (see Fig. 5)

being �1.2 times that in the a-b plane. The W-O bond

length is 1.75�A ; in contrast, the Ca-O bond length is

2.41�A and the Ca environment may be described best

as an eight-fold coordinated cage, formed from oxygens

of eight di�erent surrounding WO4 tetrahedra.

Figure 5. Lattice structure of scheelite.

The contrasting bond structures are the underly-

ing reason for the apparently contradictory high melt-

ing temperature and low fracture strength of the ma-

terial. These are precisely the characteristics which

make scheelite interesting as a host matrix for ceramic

matrix-�ber composites (CFC). A useful CFC should

be air stable to T > 1300 oC, and under stress, crack-

ing should take place in a controlled manner along the

matrix-�ber interface, allowing the �bers to pull out

and minimize structural damage. A typical �ber can-

didate would be �-Al2O3 and and so the surface struc-

tures of scheelite and alumina, and their interfaces are

of primary importance. Various crystallographic sur-

faces of alumina have been characterized by experiment

and theory; however, very little is known about the low

energy surface structures of CaWO4. Simple consider-

ations suggest that oxygen-terminated surfaces which

preserve the WO4 units should be of relatively low en-

ergy; thus we have carried out GSA modelling of the

(001) oxygen terminated scheelite surface. A portion of

the hemispherical (001) surface volume model is shown

in Fig. 6; rigid embedding atoms included in the force

�eld are not shown.

Figure 6. Hemispherical dynamical volume representing
scheelite (001) oxygen terminated surface in two di�erent
views.

The potential parameters used are given in Table 1.

Note that the strong W-O `bond spring' and angular

spring constants are chosen to reproduce the observed
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rigidity of the WO4 structural unit. The expected re-

sult is that the greatest response to crystal cleavage will

be some rearrangement of the Ca ions with respect to

the tungstate network. The surface relaxation energy is

calculated to be 17 meV/�A2 with respect to the cleaved

unrelaxed crystal, with tungstate angles held �xed, and

20 meV/�A2 when 
exure is permitted.

The (001) oxygen-terminated cleavage plane, with

its intact WO4 groups, appears as the most obvious low

energy surface. There are several other cleavage planes

parallel to the c-axis which may be of relatively low

energy. Interestingly, simulations of these surfaces by

MD techniques suggest that cleavage along such places

will result in spontaneous rupture along the (001) plane

[23].

We have carried out ECDF calculations on the bulk

and surface environments to determine major features

of the electronic structure. The simplest analysis of

the results can be made in terms of Mulliken atomic

orbital populations and densities of states (DOS) dia-

grams. In Table 2 we give the self-consistent orbital

populations and charges for bulk and surface regions,

noting that the formal valencies are Ca+2, w+6, O�2.

Consistent with our qualitative discussion above, we see

that calcium is near its nominal ionic value, indicating

the relatively weak and long-range nature of its inter-

actions. In contrast, the e�ective charge of �+3 on

tungsten emphasizes the covalent charge sharing in the

(WO4)2- group. As is generally found in metal oxides,

the oxygen 2p band, while formally fully occupied, has

in fact 0.5e vacancies per atom, due to charge transfer

from the metals. The bonding-antibonding gap in en-

ergy levels of the crystal-embedded (WO4)
2- complex

is found to be �5.0eV, indicative of its great stabil-

ity. The occupied valence band region shows W 5d, 6sp

structures spanning �6eV and forming two distinct

sub-bands with the O 2p, which can be qualitatively

labeled as �- and �-type or equivalently denoted as e-

and t- symmetry of the Td local point group.

In order to begin to explore the oxide-oxide in-

terfaces critical for understanding matrix-�ber inter-

actions, we have generated a preliminary model for

CaWO4 (001): MgO(001). To induce steps and irreg-

ularities, the two surfaces have been made to intersect

at an angle of �25 degress. The volume between the

two perfect bulk crystals was 'regrown' using the GSA

scheme with variable atomic composition and positions.

ECDF studies were made of selected interface regions

to examine rearrangement of electron densities associ-

ated with changes in coordination and bond lengths.

A preliminary report on this work has been presented

[24]; a detailed analysis of cohesion and bonding e�ects

will be given elsewhere. A general conclusion that can

be drawn from the surface and interface studies is that

reduction in cation coordination and concomitant re-

duction in average metal-oxygen bond lengths leads to

reduced ionic charges at solid-vacuum and oxide-oxide

interfaces. In the case of scheelite and related tetrahe-

drally bonded materials like monazite, LaPO4, the ro-

bust tungstate (phosphate) groups resist deformation

and reduction processes, leading to special fracture be-

havior and high temperature chemical stability.

Finally, we mention results of recent simulations

on the scheelite (100): �- Al2O3 (0001) interface [23].

Rather large unit cells were used in slab geometry with

two-dimensional periodicity, using a gradient-search

MD scheme. It appears that relaxation is essentially

localized to a few atomic layers on either side of the

interface, due to the considerable rigidity of the Al-O

and W-O bonds. The main relaxation mechanism is

the rotation of the WO4 groups to accommodate inter-

face strain. ECDF calculations have been undertaken

to verify the local electronic structure and to reconcile

this structure with the force �eld model.

III.2 Molecular Modeling in New Drug Devel-

opment

The development of a new pharmaceutical is a long

and expensive process. A new compound must not only

produce the desired response with minimal side- e�ects,

but must be demonstrably better than existing thera-

pies, and produced at a reasonable cost. Finding novel

compounds with desirable properties can be a di�cult

problem, and one where molecular modeling has much

to o�er. The development of molecular modeling tech-

niques is contributing to the understanding of biological

processes at the atomic-molecular level and to the pro-

posal of new molecular structures with high biological

e�ciency. The action of many drugs, hormones and

membrane proteins is dependent on the spatial con-

formation adopted by the molecules in the inhomoge-

neous environment formed by the cell membrane and

its neighborhood.

The modeling of biological molecules has led to

great progress in the design of new molecular struc-

tures with desired speci�c properties. Such products

could be obtained synthetically or by genetic engineer-

ing procedures. Molecular modeling can lead to the
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understanding of the dynamic circumstances compati-

ble with experimental observations, permitting a formal

de�nition of the conditions that would be expected to

produce the observed behavior and therefore to infer

patterns of behavior for situations of interest.

Bond W-O Bond Ca-O L-J W-Ca
Ro 1:750�A Ro 2:440�A C6 25:152eV�A6

Kij 26:019eV=�A2 Kij 0:300eV=�A2 C12 710:646eV�A12

Bond I-J-K K� 0:300eV=�A2 �n deg rees
O-W-O 5.204 103.80
W-O-Ca 5.204 125.17
O-Ca-O 4.336 138.52

Bond X-I-J-Y K� (eV=rad2) �n deg rees
X-O-Ca-Y 0.039 138.5
X-O-W-Y 0.039 103.8
O-X-Y-O 3.469 35.0

Table 1 - Hook's law, Lennard-Jones, Covalent bond angle, proper and improper dihedral parameters of GSA

simulations for CaWO4:

Bulk Surface
W 5d 2.51 3.10
6s 0.08 0.06
6p 0.11 0.17

net charge 3.35 2.72

Ca 3d 0.03 0.02
4s 0.01 0.01
4p 0.06 0.04

net charge 1.92 1.94

O 2s 1.96 1.98
2p 5.33 4.88

net charge -1.29 -0.86

Table 2 - Self-consistent Mulliken atomic orbital pop-
ulations and net atomic charges for di�erent sites of
(001) oxygen terminated scheelite.

III.2.1 Conventional Molecular Dynamics Pro-

cedure Applied to Biomolecular Systems

Our computational code, based on the classical force

�eld presented in section (2A), has an additional ca-

pability of modeling molecules of biological interest in

aqueous and apolar media, as well as at their inter-

face. The software establishes two media with di�er-

ent continuous dielectric constants, separated by a cy-

toplasm/membrane environment. The approach used

to simulate the membrane interface is expressed by a

discontinuity in the dielectric constant, taking into ac-

count the di�erent electrical polarizability of the aque-

ous and the hydrocarbon phases. Then, the electro-

static interaction between non bonded atoms at this

interface will be renormalized by the in
uence of the di-

electric discontinuity. The polarization �eld produced

at the surface of discontinuity by a point charge can be

calculated by the method of images. A �ctitious charge

is placed in the opposite phase: the distance and the

value of the image charge are �xed by taking the ap-

propriate electrical boundary conditions at the surface.

When two charges i and j are on the same side of

the interface, the potential on i due to j will have a

contribution due to the image of j (i.e., j'), so that the

Coulomb potential on i will be expressed by

V =
1

4��1
qij

 
1

rij
+
�1 � �2
�1 + �2

1

r0ij

!

where

rij =
�
(xi � xj)

2 + (yi � yj)
2 + (zi � zj)

2
�1=2

r0ij =
�
(xi � xj � 2xs)

2 + (yi � yj)
2 + (zi � zj)

2
�1=2

and where rij and r0ij are the distance between i and

j, and i and j' respectively. Xs is the position of the

surface between the two media. When two charges are

at di�erent sides of the interface the method of image

gives the following result:

We have applied this MD approach to study to

study a new mutant sequence of E. Coli. , modeling

a 21 amino acid peptide, a mutant sequence from E.
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Coli maltoporian [3],[4]. An important aspect of pep-

tide simulation is the great number of degrees of free-

dom for linear conformations, which can lead to sev-

eral conformations with equivalent values of minimum

energy. In this investigation we have studied a mutant

signal sequence (�78r1) of the LamB gene product, also

called � receptor or maltoporin, a protein of the exter-

nal membrane of E. coli. The mutant sequence contains

21 residues and shows a deletion of four residues in the

hydrophobic region relative to the wild sequence. Such

a deletion should abolish its capacity for helix formation

and therefore its functionality. These e�ects were con-

�rmed experimentally. However, 50 was re-established

by replacing a Gly residue with a Cys residue at residue

13 of the mutant peptide. The relevant sequences are

c

Wild type: MMITLRKLPLAVAVAAGVMSAQAMA

�78r1 : MMITLRKLP|||VAAGVMSAQAMA

d

Polarization e�ects on the peptide conformations

have been investigated through the electrostatic charge

image method as described above. A similar technique

to simulate polarization e�ects in peptide conforma-

tions has been proposed by some of the authors in Ref.

[25]. These authors carried out a classical force �eld

simulation containing electrostatic image charge cal-

culations to investigate the conformations of peptides

characterized by di�erent hydrophobicities at a water-

membrane interface model. The interface is represented

by a surface of discontinuity between two media with

di�erent dielectric constants, taking into account the

di�erence between the polarizabilities of the aqueous

medium and the hydrocarbon one.

III.2.2 Stochastic Molecular Dynamics Proce-

dure Applied to Biomolecular Systems

The biological function of a protein or peptide is

often intimately dependent upon the conformation(s)

that the molecule can be adopt. X-ray crystallogra-

phy and NMR are two methods used to provide de-

tailed information about protein structures. Unfortu-

nately, the rate at which new protein sequences are de-

termined experimentally is much greater than that for

determination of structures. There is thus consider-

able interest in theoretical methods for predicting the

three-dimensional structure of a protein from its amino

acid sequence; this is called the protein folding problem.

Prediction of protein folding is a case where the usual

MD is not a good theoretical method, since the real

physical time of a folding process may be on the scale

of minutes. To solve the time evolution of Newton's

equation in MD it is necessary to discretize the time in

steps of �t �1 femtosecond, due to the intrinsic vibra-

tional frequencies. This means that about 6x1016 MD

steps would be needed to simulate the protein folding

process, which is beyond computational possibility.

Figure 7. Ico-alanine polypeptide in a linear- and helix-
con�guration.

An alternative solution to this problem is to use

stochastic simulation procedures such as GSA. Re-

cently, Moret [26] has discussed the e�ciency of

stochastic simulation to study protein folding by the

GSA method. The author simulated �-helix con�gura-

tion of the ico-alanine polypeptide (Fig. 7) and found

the necessary conditions for GSA parameters to ob-

tain adequate computational e�ciency in protein fold-

ing simulation. The GSA procedure with visiting index

qV =1,05 was shown to be more e�cient than the usual

simulated annealing method of Kirkpatrick (qV = 2)

and the fast simulated annealing method of Szu (qV =

1) for calculation of an �-helix conformation equilib-

rium structure.
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IV Conclusions:

A nearly optimum procedure to search for minimum-

energy structures is to initially scan using the MC/GSA

scheme. As the slow-convergence region is attained, we

switch to the MD/annealing scheme. The algorithms

are coupled together in such a way as to permit this

strategy, in a uni�ed and convenient manner.

To extract electronic structure information in 'in-

teresting' nuclear con�gurations, and not only in the

state of lowest potential energy, we have the capacity

to activate the Embedded Cluster Density Functional

components of the codes from within the running dy-

namics procedures. This permits generation of 'snap-

shots' of electronic states during a process of molec-

ular interaction or docking of a molecule with a sur-

face, wall of a molecular sieve, or macromolecule. An

important application which helps in dynamically re-

parametrizing the interatomic potentials, is the deter-

mination of atomic charges 'on the 
y'.

With the concept of self-consistent embedding, we

have gained the ability to resolve large-size structures,

containing thousands of atoms, and a size scale of at

least 10 nm, as we have illustrated in the examples given

here. Studies in progress on oxide surfaces, molecule-

zeolite interactions, and grain boundaries in metals will

help to determine future evolution of the hybrid clas-

sical/quantum procedure. Although GSA/MD/ECDF

is already a powerful tool for the study of complex sys-

tems, it is not optimized for processes which are essen-

tially dynamic, such as di�usion of atoms and molecules

along interfaces and surfaces. It will be important to

develop the capability for treating the longer time scales

implied by di�usion processes; it is encouraging that the

protein folding problem (which has a long time scale)

has already been shown to be amenable to the GSA

approach.

Graphical interfaces are essential now for controling

and monitoring the models of complex systems. On the

'output side' we have various tools, which use commer-

cial programs to visualize the results. Currently, we are

working in the direction of increasing the `input side'

to help the user de�ne and set up the model system.

Appendix

To generate the random vector �xt the present GSA

routine use an extension of the procedure used in ref-

erence [12]. We have calculated the �x = g�1(!) us-

ing a numerical integration of the visiting distribution

probability gqV (x). Where ! is a random vector [0,1]

obtained from an equi-probability distribution and g�1

is the inverse of the integral of gqV (x) given by

c

g�1(!) = inverse

0
@ xZ
�1

gqV (x)dx

1
A = inverse(!); (17)
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where qA (qV ) is the acceptance index (visiting index), and

gqv (4xt) =
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The integral of gqV (x) has an analytical solution only if (qA; qV ) = (1; 1) or (qA; qV ) = (1; 2). For the general

case it is necessary to make a numerical integration. In this paper, g�1 has been calculated using a series integration

and taking the inverse of a polynomial series, whose expansion is cut o� at the 17th order.

The integral in equation 17 can be written as

! = !(x) =

�
qv � 1

�

�1=2 �
�
1� 1

2
(qv�1)
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�
�
�

1
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� 1
2

� xZ
�1

dx
a

(1 + bx2)c
; (19)
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where a = [TV
qv (t)]

�
1

3�qv , b = (qv�1)

[TVqv (t)]
2

3�qv

, c = 1
qv�1

� 1
2 .

Solving equation 19 using power series, we have;

! =
1

2
+ ax�

1

3
abcx3 +

1

5
(
1

2
ac2b2 +

1

2
acb2)x5 + � � � (20)

or

!(x) = !o + A1x+ A2x
3 + A5x

5 + � � � = !o +
1X
n=1

An(x � xo)
n (21)

We look for an inverse function g�1 = x = x(!) , such that x(!)�x = 0. From Eq.(21), we see that the inverse

function may be expressed in terms of a power series,

x(!) = xo +
1X
n=1

Bn(! � !o)
n : (22)

This is guaranteed by a theorem: Let !(x) be analytic at x = xo, and
d
dx!(xo) 6= 0, then the inverse of !(x)

exists and is analytic in a su�ciently small region about !(xo) and its derivative is 1
d
dx
!(xo)

.

The coe�cients Bn may be expressed in terms of An. However, it is possible to derive the coe�cients more

elegantly by employing Cauchy's formula. In this case, Bn takes the general form

Bn =
1

nAn
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The �rst few Bn coe�cients can be expressed as

B1 =
1
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This last inversion was introduced in the GSA package, while the original proposition [11] uses a L�evy-Flight

distribution as the visiting distribution.

d
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