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Tsallis's generalization of statistical mechanics is summarized. A modi�cation of this formalism

which employs a normalized expression of the q-expectation value for the computation of equilibrium

averages is reviewed for the cases of pure Tsallis statistics and Maxwell-Tsallis statistics. Monte

Carlo and Molecular Dynamics algorithms which sample the Tsallis statistical distributions are

presented. These methods have been found to be e�ective in the computation of equilibrium averages

and isolation of low lying energy minima for low temperature atomic clusters, spin systems, and

biomolecules. A phase space coordinate transformation is proposed which connects the standard

Cartesian positions and momenta with a set of positions and momenta which depend on the potential

energy. It is shown that pure Tsallis statistical averages in this transformed phase space result in

the q-expectation averages of Maxwell-Tsallis statistics. Finally, an alternative novel derivation of

the Tsallis statistical distribution is presented. The derivation begins with the classical density

matrix, rather than the Gibbs entropy formula, but arrives at the standard distributions of Tsallis

statistics. The result suggests a new formulation of imaginary time path integrals which may lead

to an improvement in the simulation of equilibrium quantum statistical averages.

I Introduction

Ten years ago, Tsallis published his seminal work

on a possible generalization of the standard Gibbs-

Boltzmann statistical mechanics [1]. His intriguing the-

ory began with a reexpression of the Gibbs-Shannon

entropy formula

c

S = lim
q!1

Sq = lim
q!1

k

q � 1

Z
pq(�)(1� [pq(�)]

q�1)d� (1)

= �k
Z

p(�) ln p(�)d� ; (2)

d

where d� = drNdpN is a phase space increment.

On the right of this expression, the identity lnx =

limn!0(x
n � 1)=n has been used to transform the log-

arithm and q is a real number [1,2]. A similar result

was previously presented in the context of generalized

information entropies but had apparently not been ap-

plied to describe the physical world [3]. Tsallis's bold

move was to do just that.



180 John E. Straub and Ioan Andricioaei

Tsallis noted a number of properties of Sq , which

he referred to as a \generalized entropy," and the

associated statistical distributions. He found that

much of the standard mathematical structure of Gibbs-

Boltzmann statistical mechanics is preserved. This is

interesting in itself. However, even more interesting was

what is not preserved. Thermodynamic state functions

such as the entropy and energy were no longer exten-

sive functions of the system. This prompted the use of

a generalized formalismbased on the non-additive func-

tion Sq to derive, for non-extensive systems, a variety

of results of the standard statistical mechanics (see [4]

and references therein).

II \Pure" Tsallis statistics

Tsallis derived the probability of �nding the system at

a given point in phase space � = (rN ;pN ) by extrem-

izing Sq subject to the constraints

Z
pq(�)d� = 1 and

Z
[pq(�)]H(�)d� = Eq (3)

where H(�) is the system Hamiltonian for N distin-

guishable particles in d dimensions. The result is

pq(�) =
1

ZqhdN
[1� (q � 1)�H(�)] 1

q�1 (4)

where

Zq =
1

hdN

Z
[1� (q � 1)�H(�)] 1

q�1 d� (5)

plays the role of the canonical ensemble partition func-

tion. Using the identity limn!0(1+an)1=n = exp(a), in

the limit that q = 1, the standard probability distribu-

tion of classical Gibbs-Boltzmann statistical mechanics

p(�) =
1

ZhdN
exp(��H(�)) (6)

is recovered. However, there is a problem. For certain

values of q and a harmonic potential, the distribution

pq(�) has in�nite variance and higher moments.

II.1 Introduction of the \q-expectation" value

To address this problem, Tsallis derived the statis-

tical probability by extremizing Sq subject to the mod-

i�ed constraintsZ
pq(�)d� = 1 and

Z
[pq(�)]

qH(�)d� = Eq (7)

where the averaged energy is de�ned using a \q-

expectation" value. The result is

pq(�) =
1

ZqhdN
[1� (1� q)�H(�)] 1

1�q (8)

with the \partition function"

Zq =
1

hdN

Z
[1� (1� q)�H(�)] 1

1�q d�: (9)

In the limit that q = 1 the classical canonical density

distribution is recovered.

To be consistent, the q-expectation value is also used

to compute the average of an observable A

c

hAiNNq =
1

(ZqhN )q

Z
A(�) [1� (1� q)�H(�)] q

1�q d�: (10)

d

However, since the averaging operator is not nor-

malized, in general h1iNNq 6= 1 for q 6= 1. Moreover, it

is necessary to compute Zq to determine the average.

To avoid this di�culty, a di�erent generalization of the

canonical ensemble average was proposed [5]

hAiq =
R
A(�)[1� (1� q)�H(�)] q

1�q d�R
[1� (1� q)�H(�)] q

1�q d�
: (11)

It is obviously normalized and convenient to apply.

II.2 Monte Carlo estimates of Tsallis statistical

averages

The question arises, how might we simulate systems

that are well described by the Tsallis statistical distri-

butions when q 6= 1? A point in phase space or con�g-

uration space can be said to have the probability

pq(r
N ) � exp[�� �U ] (12)
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where �U is the e�ective potential energy [1]

�U (rN ) =
1

�(q � 1)
ln
�
1� (1� q)�U (rN )

�
: (13)

From this expression it is possible to simply state a

Monte Carlo algorithm which samples the equilibrium

Tsallis statistical distribution. (1) A new con�guration

is chosen within a region with uniform constant proba-

bility. (2) The point in con�guration space is accepted

or rejected according to the criterion

p = min
�
1; exp[����U ]

�
(14)

where the change in the e�ective potential energy is

� �U . (3) Repeat the previous steps. This Monte Carlo

algorithm will satisfy detailed balance and eventually

sample the equilibrium Tsallis distribution.

II.3 Monte Carlo estimates of Gibbs-Boltzmann

statistical averages

While this Monte Carlo algorithm will sample the

generalized statistical distributions, it can also be used

to e�ectively sample the con�guration space that is sta-

tistically important to the standard canonical ensem-

ble probability density [6]. The �rst method of this

kind was the \q-jumping Monte Carlo" method. (1)

At random a choice is made to make a uniformly dis-

tributed \local" move, with probability 1 � PJ , or a

global \jump" move, with probability PJ . (2a) The lo-

cal trial move is sampled from a uniform distribution,

for example from a cube of side �. (2b) The jump trial

move is sampled from the generalized statistical distri-

bution

T (r! r0) = pq(r
0) (15)

at q > 1. (3a) The local move is accepted or rejected

by the standard Metropolis acceptance criterion with

probability

p = min
�
1; exp[����U ]

�
: (16)

(3b) The jump trial move is accepted or rejected ac-

cording to the probability

p = min

�
1; exp[����U

�
pq(r)

pq(r0)

�q
]

�
(17)

where the bias due to the non-symmetric trial move

has been removed. This algorithm satis�es detailed

balance. The delocalized Tsallis statistical distribu-

tions are sampled to provide long range moves be-

tween well-separated but thermodynamically signi�-

cant basins of con�guration space. Such long range

moves are randomly shu�ed with short range moves

which provide good local sampling within the basins.

However, the Monte Carlo walk samples the equilib-

rium Gibbs-Boltzmann distribution.

When q > 1, it has been shown that the gener-

alized q-jumping Monte Carlo trajectories will cross

barriers more frequently and explore phase space more

e�ciently than standard Monte Carlo (without jump

moves). (For a review of recent methods for enhanced

phase-space sampling see [7].) We have shown how

this property can be exploited to derive e�ective Monte

Carlo methods which provide signi�cantly enhanced

sampling relative to standard methods.

II. 4 Problems for many-body systems

Consider a system of N particles in d dimensions.

Using the standard procedure of integrating over the

momenta in Cartesian coordinates, we can write the

average of a mechanical property A(rN ) using Eq. (11)

as [5]

c

hAiq =
R
A(rN )

�
1� (1 � q)�U (rN )

� q

1�q
+ dN

2 drNR
[1� (1� q)�U (rN )]

q

1�q
+ dN

2 drN
: (18)

d

This de�nition of the normalized statistical average is

based on and proportional to the q-expectation value.

However, it is more useful since it is not necessary to

evaluate the partition function to compute the average.

Nevertheless, this result is unsatisfactory. It is poorly

behaved in the N !1 thermodynamic limit. We will
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address this problem in the next section in the context

of Maxwell-Tsallis statistics.

III Maxwell-Tsallis statistics

For many systems for which it is di�cult to de�ne ef-

fective Monte Carlo trial moves, Molecular Dynamics

methods can be used to compute equilibrium averages.

The desire to create such a molecular dynamics algo-

rithm to sample the Tsallis statistical distribution led

to the use of Maxwell-Tsallis statistics [6,5]. The equi-

librium distribution is taken to be a hybrid product of

(1) a Tsallis statistical distribution (for the con�gura-

tions) and (2) a Maxwell distribution (for the momenta)

as

pq(r
N ;pN) � exp[��(K(pN ) + �U (rN ))] (19)

where

�U (rN ) =
1

�(q � 1)
ln
�
1� (1� q)�U (rN )

�
(20)

is the transformed potential and

K(pN ) =
NX
k

1

2mk
p2k (21)

is the kinetic energy of the N-body system de�ned in

the usual way.

III.1 Ensemble averages

Consider a system of N particles in d dimensions.

Using the standard procedure of integrating over the

momenta in Cartesian coordinates, we can write the

average of a mechanical property A(rN ) using Eq. (11)

as

hAiq =
R
A(rN )

�
1� (1 � q)�U (rN )

� q

1�q drNR
[1� (1� q)�U (rN )]

q

1�q drN
: (22)

This de�nition is based on and proportional to the

q-expectation value. This result lacks the odd N-

dependence in the exponent of the con�gurational

weighting function found for the case of pure Tsallis

statistics in Eq. (18). While it is not clear which result

is \right," this expression is certainly more satisfying

in the N !1 thermodynamic limit.

III.2 Molecular Dynamics estimates of Maxwell-

Tsallis statistical averages

Standard Molecular Dynamics for an ergodic sys-

tem generates time averages which agree with averages

taken over a microcanonical distribution. To compute

averages such as Eq. (22) for the generalized canonical

ensemble probability density using MD, we will employ

a trick. We de�ne a molecular dynamics algorithm such

that the trajectory samples the distribution Pq(rN ) by

having the trajectory move on a temperature depen-

dent, but static, e�ective potential [6]. The equation of

motion takes on a simple and suggestive form

c

mk
d2rk
dt2

= �rrk �U =
�q

[1� (1� q)�U (rN )]
rrkU (rN ) (23)

d

for a particle of mass mk, at position rk, and �U de�ned

by Eq. (13). It is known that in the canonical ensemble

a constant-temperature molecular dynamics algorithm

generates samples from the con�guration space accord-

ing to the Boltzmann probability. As a result, this gen-

eralized molecular dynamics will sample the Tsallis sta-

tistical distribution Pq(rN ).

The e�ective force employed is the \exact" force for

standard molecular dynamics, �rrkU , scaled by

�q(r
N ; �) =

q

1� (1� q)�U (rN )
(24)

which is a function of the potential energy. This scal-

ing function is unity when q = 1 but can otherwise have

a strong inuence on the dynamics. Assume that the

potential is de�ned to be a positive function. In the

regime q > 1, the scaling function �q(r
N ; �) is largest

near low lying minima of the potential. In barrier re-

gions, where the potential energy is large, the scaling

function �q(r
N ; �) is small. This has the e�ect of reduc-

ing the magnitude of the force in the barrier regions. A

particle attempting to pass over a potential energy bar-
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rier will meet with less resistance when q > 1 than when

q = 1. At equilibrium, this leads to more delocalized

probability distributions with an increased probability

of sampling barrier regions.

III.3 Molecular dynamics estimates of Gibbs-

Boltzmann statistical averages

The generalized molecular dynamics described

above generates trajectories which, averaged over time,

sample the Tsallis statistical distribution. To com-

pute averages over the Gibbs-Boltzmann distribution

we reweight each measurement as

c

hAi =
*

A e��H(�)

[1� (1� q)�H(�)] q

1�q

+
q

*
e��H(�)

[1� (1� q)�H(�)] q

1�q

+�1
q

: (25)

d

Using this expression, the standard (q = 1) Gibbs-

Boltzmann equilibrium average properties may be cal-

culated over a trajectory which samples the generalized

statistical distribution for q 6= 1 with the advantage of

enhanced sampling for q > 1.

This method leads to an enhanced sampling of con-

formation space. However, it su�ers a bit from the ease

with which the trajectory moves through high energy

regions in the q > 1 regimes [6]. Most of those regions

of high potential energy are not thermodynamically im-

portant. It is good to visit them, as the q-jumping

Monte Carlo does, but only on the way to another

thermodynamically important region. The q-jumping

Monte Carlo method has the advantage that the tra-

jectory samples the Gibbs-Boltzmann distribution (no

reweighting is necessary). The walk is compelled to

spend time in thermodynamically signi�cant regions.

This equation of motion is consistent with Tsallis

statistics in as much as a long time dynamical aver-

age for an ergodic system will provide results identical

to the average over the Tsallis statistical distribution.

However, it cannot be said to tell us about the true dy-

namics of the system. In the next section, we present

an alternative interpretation of the origin of Maxwell-

Tsallis statistics.

III.4 From Newton's equation to Tsallis statis-

tics through a deformation of space

The Tsallis statistical distribution is typically de-

rived from an extremization of the reformulated Gibbs

entropy. As we have shown, it is possible to derive a mi-

croscopic dynamics that generates time averages which

are in agreement with statistical averages over the Tsal-

lis distribution. However, there is no unique way to

do this. We have presented one method based on the

Maxwell-Tsallis model. The momenta are treated in

the standard way and the dynamics is a normal Hamil-

tonian ow over an e�ective potential energy function
�U .

A second possibility is to begin with the Hamilto-

nian

HT =
X
k

1

2mk
(pTk )

2 + UT (r
T ) (26)

in the phase space �T = (rT ; pT ). We couple this ex-

pression with two de�nitions. First, the modi�ed po-

tential energy UT is de�ned through the equality

UT (rT ) = U (r): (27)

For example, if U (r) = r2 and rT = r2 then UT (rT ) =

rT . Second, the transformation between the coordinate

xk and xTk is de�ned 
@xTj
@xk

!
=

1p
q
[1� (1� q)�U (rN )]1=2 �jk; (28)

where �jk is the Kronecker delta, and similarly 
@pTj
@pk

!
=

1p
q
[1� (1� q)�U (rN )]1=2 �jk: (29)

As these de�nitions indicate, the Jacobian transforma-

tion matrix is diagonal and in fact can be written

M =
1p
q
[1� (1� q)�U (rN )]1=2I: (30)
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The determinant of this Jacobian matrix is simply

detM =
1

qdN
[1� (1� q)�U (rN )]dN =

�
dV T =dV

�N
(31)

where d is the dimension of the space in which the

N particle system is found. This determinant de-

scribes how the incremental volume of con�guration

space in the standard Cartesian coordinates (dV )N =

dx1dy1 : : : dyNdzN is transformed to the increment

(dV T )N is the Tsallisian space.

How does this metric deform the ordinary Cartesian

space? When q = 1, we recover the standard metric.

When q > 1, in regions of high potential energy, the

distance between two points will be e�ectively dialated.

This leads to a dialation of the barrier and saddle re-

gions relative to regions of lower potential energy and a

reduction in the associated force. Note that the usual

caveats apply. The degree of both the absolute and rel-

ative contraction will depend on the zero of energy, and

we must ignore those cases where the scaling factor is

negative.

With these de�nitions it is possible to rewrite the

Hamiltonian as

HT =
X
k

1

2mk

�
@xTk
@xk

�2

p2k + U (r): (32)

The equations of motion for the kth atom are

_xTk =
1

mk
pTk ; _pTk = � @U

@xTk
: (33)

which results in�
@pTk
@pk

�
_pk = �

�
@xk

@xTk

�
@U

@xk
: (34)

Rewriting this expression using the metric transforma-

tion de�ned above we obtain

c

1p
q
[1� (1� q)�U (rN )]1=2 _pk = �pq[1� (1� q)�U (rN )]�1=2

@U

@xk
(35)

d

which we can recognize as

_pk = � @ �U

@xk
: (36)

This is precisely Newton's equation that we found using

Maxwell-Tsallis statistics { the standard momentumfor

a particle moving over an e�ective potential �U . So this

coordinate transformation (r;p) ! (rT ;pT ) maps the

Hamiltonian dynamics of r on �U (r) onto a Hamiltonian

dynamics of rT on UT (rT ).

If we insert this Hamiltonian in our de�nition of the

expectation value of a property A(r) we �nd

hAiq =
R
A(r)[1� (1� q)�HT (�)]

q

1�q d�TR
[1� (1� q)�HT (�)]

q

1�q d�T
(37)

which, after a change of variables for the integration,

becomes

hAiq =
R
A(r)[1� (1� q)�HT (�)]

q

1�q detMd�R
[1� (1� q)�HT (�)]

q

1�q detMd�
: (38)

Performing the integral over the momenta we �nd

hAiq =
R
A(rN )

�
1� (1� q)�U (rN )

� q

1�q drNR
[1� (1� q)�U (rN )]

q

1�q drN
(39)

which we found earlier using Maxwell-Tsallis statis-

tics. However, the Maxwell-Tsallis statistics was an

\impure" application of the formalism since the kinetic

energy was assumed to have a Gaussian Maxwell dis-

tribution.

Recall that in the application of \pure" Tsallis

statistics we found

hAiq =
R
A(rN )

�
1� (1� q)�U (rN )

� q

1�q
+ dN

2 drNR
[1� (1� q)�U (rN )]

q

1�q
+ dN

2 drN
: (40)

This result was deemed to be unsatisfactory due to the

unwelcome dependence on N in the thermodynamic

limit (N ! 1). Our new result allows us to follow a

pure application of the Tsallis statistics using an e�ec-

tive Hamiltonian that both satis�es Newton's equations

of motion on the ordinary potential and leads to an in-

tuitively satisfying de�nition of a statistical average.
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IV Another path to the Tsallis

statistical distributions

We begin with the classical density matrix exp(��H).

Rather than writing

e��H =
�
e��H=P

�P
; (41)

as is commonly done in discussions of path integral rep-

resentations of the density matrix, suppose that we ex-

press the exponential as a limit

e��H = lim
P!1

�
1

1 + �H=P
�P

: (42)

Now suppose that we remove the kernel of the limit�
1

1 + �H=P
�P

(43)

and consider it for arbitrary P . If we substitute

P =
1

1� q
(44)

we �nd that P = 1; 2; 3; 4 : : :1 becomes q =

0; 12 ;
2
3 ;

3
4 : : :1 and

e��H � (1� (q � 1)�H) 1

q�1 : (45)

The right hand side of this expression is the Tsallis

statistical distribution which was originally derived by

extremizing the \entropy" Sq subject to the constraints

that the distribution is normalized and that the average

energy is computed in the standard way.

Now suppose that we instead de�ne

P =
1

q � 1
(46)

so that P = 1; 2; 3; 4 : : :1 becomes q = 2; 32 ;
4
3 ;

5
4 : : :1.

The resulting distribution is

e��H � (1� (1� q)�H) 1

1�q : (47)

The right hand side of the expression is precisely the

Tsallis statistical distribution pq(�) derived by extrem-

izing Sq subject to the constraints that the distribution

is normalized and the average energy is de�ned in terms

of the \q-expectation" value.

How can we interpret these results? Tsallis showed

how a generalized statistics can originate from the

Gibbs entropy formula and the identity p lnp =

limn!1
1
n
p(pn � 1). He then stripped away the limit

and interpreted the kernel where n = q � 1

p lnp! 1

q � 1
p(pq�1 � 1): (48)

However, it is possible to reach the same distribution

from a di�erent starting point { the equilibrium den-

sity matrix. We rewrite the density matrix using the

identity exp(�h) = limP!1(1 + h=P )�P . We then

strip away the limit and interpret the kernel where

P = 1=(q � 1)

e��H ! (1� (1� q)�H) 1

1�q (49)

in the spirit of Tsallis statistics.

For the later expression, derived using the con-

straint based on the q-expectation value, when P = 1

we have the interesting case of q = 2. In the limit that

P = 1, we recover the Gibbs-Boltzmann statistical

distribution. Intermediate values of P provide cases in

between these limits.

IV.1 Recovering Maxwell-Tsallis statistics

Think of the classical density matrix

e��H =
�
e��H=P

�P
=
�
e��K=P e��U=P

�P
(50)

where we have separated the kinetic energy and poten-

tial energy contributions. Now suppose that we carry

out the approximation described above for the Boltz-

mann factor alone. We �nd

e��H � e��K
�

1

1 + �U=P

�P
: (51)

This is precisely the expression for the Maxwell-Tsallis

statistical distribution considered earlier where P =

1=(q � 1).

IV.2 Tsallis statistics and Feynman path inte-

gral quantum mechanics

The quantum mechanical density matrix can be

written
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e��H =
�
e��(K+U)=P

�P
= lim

P!1

�
e��K=P e��U=P

�P
: (52)

If restrict ourselves to �nite P , the kernel is only approximate since K and U do not, in general, commute. In

the path integral formalism, P is interpreted as the number of pseudoparticles in the isomorphic classical system.

When P = 1, one recovers the fully classical system. When P = 1, one obtains an exact representation of the

quantum mechanical system. For intermediate values of P we have a semi-classical representation of the system.

Suppose that we write

e��H=P � e��K=P
�

1

1 + �U=P

�
= e��K=P e��

�U=P : (53)

d

This result provides us with a path integral repre-

sentation akin to the classical Maxwell-Tsallis statistics

where the pseudoparticle \necklace" of beads, each har-

monically restrained to its nearest neighbors, interact

in imaginary time through the logarithmic potential

�U (r) =
P

�
ln

�
1 +

�U (r)

P

�
: (54)

Since

e��H = lim
P!1

�
e��K=P

1

1 + �U=P

�P
(55)

this is an exact expression for the density matrix. It

is possible to employ this expression in path integral

simulations of condensed phase systems. Ordinarily,

in systems where quantum e�ects are most important,

one must approach large values of P before there is

convergence to the exact quantum mechanical average.

As we have shown, if the necklace samples the Tsallis

statistical distribution it should visit regions of higher

potential energy more frequently and the distribution

should be signi�cantly more delocalized than the stan-

dard representation for the same number of beads in the

necklace P . This implies that this representation might

provide faster convergence to the quantum mechanical

limit than the standard form.
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