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It is shown that Tsallis's generalized statistics provides a natural frame for the statistical-
thermodynamical description of anomalous di�usion. Within this generalized theory, a maximum-
entropy formalism makes it possible to derive a mathematical formulation for the mechanisms that
underly L�evy-like superdi�usion, and for solving the nonlinear Fokker-Planck equation.

I Introduction: Di�usion pro-

cesses

Among the elementary processes that underly natural

phenomena, di�usion is certainly one of the most ubiq-

uitous. In an ensemble of moving elements {atoms,

molecules, chemicals, cells, or animals{ each element

usually performs, at a mesoscopic description level, a

random path with sudden changes of direction and ve-

locity. As a result of this highly irregular individual mo-

tion, which is microscopically driven by the interaction

of the elements with the medium and of the elements

with each other, the ensemble spreads out. At a macro-

scopic level, this collective behavior is {in contrast with

the individual microscopic motion{ extremely regular,

and follows very well de�ned, deterministic dynamical

laws. It is precisely this smooth macroscopic spreading

of an ensemble of randomly moving elements that we

associate with di�usion.

One of the �rst systematic observations of di�usion

was made by the botanist Robert Brown in 1828. He

noticed that pollen particles dispersed in water exhibit

a very irregular, swarming motion. In 1905, Einstein

conjectured that this \Brownian motion" is due to the

interaction of pollen with the water molecules and, in

fact, proved that microscopic particles suspended in

a liquid \perform movements of such magnitude that

they can be easily observed in a microscope, on account

of the molecular motions of heat" [1]. Since then, Brow-

nian motion is used as a synonym of di�usion.

A very suitable and very useful mathematicalmodel

for Brownian motion is provided by random walks [2].

In its simplest version, a random walker is a point par-

ticle that moves on a line at discrete time steps �t.

At each step, the walker chooses to jump to the left or

to the right with equal probability, and then moves a

�xed distance x. This stochastic process can be read-

ily generalized, �rstly, by allowing the walker to move

in a many-dimensional space. In addition, time can

be made continuous by associating a random duration

with each jump or by introducing random waiting times

between jumps. Finally, the length of each jump can

be also chosen at random from a continuous set with a

prescribed probability distribution.

Being a stochastic process, a random walk admits

a probabilistic description in terms of probability dis-

tributions for the relevant quantities [3]. In particular,

one is interested at studying the probability of �nd-

ing the walker in a certain neighborhood dr of point

r {in general, in a d-dimensional space{ at time t,

P (r; t) dr. Note that, besides its interpretation as a

probability distribution, P (r; t) can be related to the

density in an ensemble of noninteracting identical ran-

dom walkers. In fact, if the ensemble contains N walk-

ers, n(r; t) = NP (r; t) stands for the space density of

walkers.
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Suppose that the random walk is de�ned in contin-

uous time and space, with a waiting time probability

distribution  (� ) and such that the probability that

the walker jumps from any point r to r+ x is p(x) dx.

The normalization of probabilities imposes

Z
1

0

 (� ) d� = 1;

Z
p(x) dx = 1: (1)

If, moreover,  (� ) and p(x) satisfy

c

h� i =

Z
1

0

�  (� ) d� <1; hx2i =

Z
x2p(x) dx <1; (2)

d

(x � jxj) it can be proven that P (r; t) obeys the di�u-

sion equation [2]

@P

@t
= Dr2

rP; (3)

where D / hx2i=h� i is the di�usion constant, or di�u-

sivity. This equation has to be solved for a given initial

condition P (r; 0) with suitable boundary constraints.

The density n(r; t) of an ensemble of noninteracting dif-

fusing particles obeys the same equation.

A typical solution to the di�usion equation describes

a density pro�le that, as time elapses, is smoothed

out and broadens. In fact, it can be straightforwardly

shown from the general solution that the width of the

spatial distribution grows with time as

hr2i =

Z
r2P (r; t) dr = 2dDt; (4)

where d is the space dimension. Correspondingly, it can

be shown that the mean square distance between the

present position and the initial position of a random

walk that satis�es Eq. (2) is proportional to time. This

proportionality between mean square displacement and

time is the �ngerprint of di�usion, as it can be used ex-

perimentally, numerically, and theoretically to detect

this kind of transport mechanism in a given natural

process.

Though, being a form of transport, di�usion is

inherently a nonequilibrium process, the large-time

asymptotic dynamics of an ensemble of di�using par-

ticles can be described in the frame of equilibrium sta-

tistical mechanics. In fact, it is expected that, for very

large times, the system reaches a state of thermody-

namical equilibriumwith the medium {and between the

particles, if they interact. In such state, the di�using

particles and the medium participate of a balanced in-

terchange of momentum and energy, which mantains

the particles in their characteristic irregular motion.

Once this situation is reached, a connection between the

parameters that characterize thermodynamical equilib-

rium and particle dynamics should exist. Einstein in-

vestigated this problem in 1905 [1], and concluded that

di�usivity and temperature are proportional:

D = �kBT: (5)

Here kB is Boltzmann constant, and � is the mobility.

The mobility is de�ned as the inverse of the friction co-

e�cent, in the present case, of the di�using particles in

the medium [4]. The Einstein relation, Eq. (5), pro-

vides thus the expected connection between di�usion

and thermodynamical equilibrium.

Despite the omnipresence of di�usion as a trans-

port mechanism in natural processes, it is known that

a di�erent kind of transport underlies a selected {but

ever growing{ class of systems. Due to various moti-

vations most of these systems have recently attracted

very much attention. They range from turbulent 
u-

ids, to chaotic dynamical systems, to genetic codes (see

next section). In these systems, anomalous di�usion {a

mechanism closely related to normal di�usion, but with

some qualitatively di�erent properties{ drives transport

processes [5]. Over the last few years, it became more

and more clear that anomalous di�usion can be made

naturally compatible with equilibrium thermodynamics

if the Boltzmann-Gibbs formulationof thermodynamics

is replaced by Tsallis'. This compatibility generalizes

then the connection between normal di�usion and the

usual formulation of thermodynamics. The main aim
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of this paper is to review this generalization, comment-

ing on some additional related topics brought to light

in recent work.

II Anomalous di�usion and

L�evy 
ights

Any transport mechanismwhich, like di�usion, behaves

at mesoscopic level as an isotropic random process, but

which violates Eq. (4), is generally refered to as anoma-

lous di�usion. More speci�cally, most of the literature

on anomalous di�usion has been devoted to processes

where the mean square displacement hr2i varies with

time as

hr2i / t2=z; (6)

where z (6= 2) is the dynamic exponent, or random

walk fractal dimension, of the transport process. Nor-

mal di�usion corresponds to z = 2. For z > 2, the

growth rate of the mean square displacement is smaller

than in normal di�usion, and transport is consequently

said to be subdi�usive. On the other hand, for z < 2

the mean square displacement grows relatively faster

and transport is thus superdi�usive. In the following,

the attention will be mainly focused on this latter case.

II.1 Anomalous di�usion in Nature

As advanced above, anomalous di�usion occurs in

a wide class of natural systems and processes. In the

realm of physics, a paradigmatic example is given by

particle transport in disordered media. Consider the

motion of particles in a medium containing impurities,

defects, or some kind of intrinsic disorder, such as in

amorphous materials. Examples are disordered lattices,

porous media, and dopped conductors and semicon-

ductors. In these heterogeneous substrates, particles

are driven by highly irregular forces, which determine

a complex variation of the local transport coe�cients.

This heterogeneity can in fact induce anomalous di�u-

sion. For instance, it has been experimentally shown

that in quasi-one-dimensional ionic conductors such as

hollandite (K1:54Mg0:77Ti7:23O16), where transport is

very sensitive to the presence of impurities, the dynamic

exponent is given by

z � 1 +
1

�
; (7)

with � proportional to the temperature [6].

A reasonable model for transport in heterogeneous

media is provided by a random walk in a lattice with

quenched disorder [5]. This disorder applies to the

depth of the potential wells at each lattice site, and

to the potential barriers between sites. Randomness

in these parameters induces a distribution for the time

that the walker spends at each site before hoping to

a neighbor. Generally, this waiting time distribution,

 (� ), behaves as  (� ) � ��1�� for � !1. For � > 1,

the �rst relation in Eq. (2) holds, and normal di�usion

is observed. On the other hand, for � < 1 the mean

waiting time diverges and di�usion is anomalous. The

corresponding dynamic exponent for 0 < � < 1 is [7]

z = 2=� (d > 2); z = 2� d+ d=� (d < 2): (8)

A most important instance of anomalous di�usion

in physics occurs in turbulent 
ows. In fully developed

turbulence, 
uid particles exhibit very irregular motion

over a wide range of space and time scales. Based on

empirical motivations, L. Richardson proposed in 1926

that the probability P (R; t) that two 
uid particles ini-

tially close to one another have a separation R at time

t obeys the equation [8]

@P

@t
=

@

@R

�
D(R)

@P

@R

�
; (9)

with D(r) � R4=3. Comparing with (3), it is clear that

the Richardson equation is a di�usion equation with

space-dependent di�usivity. Its solution immediately

implies hR2i / t3, indicating that the relative motion

of particles in fully developed turbulence corresponds to

anomalous di�usion with a dynamic exponent z = 2=3,

which is well into the superdi�usive regime.

Richardson's law has to be modi�ed to take into

account the fact that the vorticity �eld in a turbulent


ow is intermittent [9]. This means that vorticity {and,

in particular, turbulent activity and dissipation{ is con-

centrated on a relatively small volume in the whole sys-

tem, which happens to be a fractal set. Experiments

[10] suggest that the fractal dimension of this set is

df = 2:8 � 0:05. Incorporating this correction, it can

be shown [11] that hR2i / t12=(1+df ), or

z =
1 + df

6
� 0:63: (10)
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A somewhat more abstract form of anomalous di�u-

sion is present in the evolution of chaotic Hamiltonian

dynamical systems in phase space. Hamiltonian sys-

tems are characterized by volume conservation in phase

space, as stated by the Liouville theorem. The domain

occupied by a given set of initial conditions in phase

space can be strongly distorted under the e�ect of evo-

lution, but its volume remains constant. Mechanical

processes that preserve energy are instances of Hamilto-

nian systems, but a huge host of systems {both continu-

ous and discrete in time{ is known to belong to the same

class. Since a single Hamiltonian system can exhibit

both regular and chaotic evolution by simply chang-

ing the initial condition, the dynamical geometry of its

phase space is usually extremely intrincate. Zones of

nested regular trajectories which alternate with chaotic

regions are typically found at many scales, displaying

selfsimilar structures. In the bulk of chaotic regions

trajectories are extremely irregular and resemble ran-

dom paths. On the other hand, when approaching the

boundary with a regular region, the same trajectory can

temporarily become much simpler and smoother. Con-

sequently, as it evolves in phase space along a chaotic

orbit, a Hamiltonian system alternates intermittently

between zones of highly complex behavior and a regime

of almost regular dynamics. Globally, this motion can

be thought of as a stochastic process, and turns out to

have the same statistical properties as anomalous dif-

fusion.

A case studied in detail in the literature is the so-

called Q-
ow [12]. It is de�ned as a three dimensional

velocity �eld

_x = @	=@y + � sin z
_y = @	=@x+ � cos z
_z = 	

(11)

with

	(x; y) =
kX

j=1

cos [x cos(2�j=k) + y sin(2�j=k)] : (12)

Here � is a parameter and k is an integer that deter-

mines the symmetry of the 
ow. The solution to Eqs.

(11) is a complex trajectory that wanders in an in�-

nite connected net of channels of width of order �, in-

side which the trajectory looks like a random contour

[13]. Numerical measurements of the statistical prop-

erties of these di�usion-like trajectories show that the

dynamic exponent z to be associated with them 
uc-

tuates strongly as a function of � [12]. For k = 6 and

0:8 < � < 1:8, z varies in the interval

1 < z < 2; (13)

making apparent that the motion is supperdi�usive, as

in turbulence. Anomalous di�usion has also been ob-

served in dissipative (non-Hamiltonian) dynamical sys-

tems, both in simulations and in experiments. For ex-

ample, a dynamic exponent z � 1:2 has been measured

in the Taylor-Couette 
ow[14].

As stated in the Introduction, anomalous di�usion

is not restricted to physical systems. This kind of trans-

port has in fact been detected to underly several biologi-

cal processes. Some sectors of genomic DNA sequences,

for instance, are known to exhibit statistical properties

analogous to anomalous di�usion. To stress this corre-

spondence, \DNA walks" have been de�ned [15]. DNA,

which codes genetic information, is a large molecule in

the form of a chain of nucleotides. Each nucleotide con-

tains either a purine or a pyramidine base. Two purines

{the adenine (A) and the guanine (G){ and two pyra-

midines {the cytosine (C) and the thymine (T){ are in

turn present in the DNA chain. Therefore, the informa-

tion code in DNA is a symbolic chain of four letters: A,

C, G and T. Amazingly, within DNA only a small por-

tion does code information for protein building (3% in

the human genome) whereas other zones are noncoding,

their speci�c role being unknown. A one-dimensional

DNA walk is constructed by sequentially running over

the chain of nucleotids. Each time a purine is found the

walker jumps rightwards, whereas when a pyramidine

is found the jump occurs leftwards. For instance,

� � �ACGCTGAGTG � � � ! � � �+�+��+++�+ � � �

where + stands for jumps to the right and � stands

for jumps to the left. In this DNA walk, systematic

deviations from normal di�usive behavior derive from

long-range correlations in the nucleotide sequence. It

has been found that the DNA walk is in fact statisti-

cally identical to normal di�usion in the zones of the ge-

nomic chain that code information. On the other hand,

in noncoding sequences the DNA walk is analogous to

superdi�usion. In the human beta-globin chromosomal

region the dynamic exponent is z � 1:4 [16].
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A less involved instance of anomalous di�usion in

biology appears in the 
ight patterns of certain birds.

In particular, it has been found [17] that in the foraging

behavior of the wandering albatross (Diomedea exulans)

the 
ight-time intervals exhibit a power-law distribu-

tion. This results in a anomalous di�usive-like motion

which, according to �eld measurements on the Bird Is-

land, South Georgia, has a dynamic exponent z � 1:2.

The kind of 
ight patterns observed in these seabirds

is supposed to re
ect a complex structure in the under-

lying ecosystem, especially, in the spatial distribution

of the exploited environment. It has been suggested

that albatrosses specialize in long journeys of random

foraging, searching for patchily and unpredictably dis-

persed prey over several million square kilometers. As

discussed in the next section, anomalous di�usion is in-

herently related with fractal geometry, scale-invariance,

and self-similarity, which in the present example seem

to drive the predator-prey dynamics.

Of course, the previous collection of examples of

anomalous di�usion in Nature is not at all exhaustive,

but only pretends to give a hint on the variety of sys-

tems driven by this kind of transport. For a more

detailed account, the reader is refered to the review

by Bouchaud and Georges [5]. This review is also an

excellent reference to the mathematical treatment of

anomalous di�usion, which is brie
y introduced in the

following.

II.2 Random-walk models of anomalous di�u-

sion

In view of the e�cacy of random walks in modeling

normal di�usion at a mesoscopic level, it is desirable

to �nd a similar stochastic model describing anoma-

lous di�usion. It has already been mentioned in Section

II.1 that introducing a waiting time distribution which,

for large waiting times, behaves as  (� ) � ��1�� with

� < 1, produces the anomalous dynamic exponent given

in Eq. (8). In this case z > 2 and, therefore, transport

is subdi�usive. Note that the source of anomaly in these

random walks is the divergency of the average waiting

time h� i. For � < 1, the long-tailed distribution  (� )

allows for very long waiting times with relatively high

probability, violating thus the �rst relation in Eq. (2).

These long waiting times produce an overall reduction

of e�ciency in the transport mechanism with respect

to normal di�usion, and leads to subdi�usive behavior.

Taking into account the previous argument, in can

be expected that the violation of the second of relations

(2) will lead, on the other hand, to superdi�usion. In

fact, having a divergent mean square displacement hx2i

requires the jump probability distribution p(x) to have

a long tail for large x, in a sense to be made precise

immediately. This long-tailed distribution would pro-

duce, with relatively high probability, very long jumps.

Globally, this transport mechanism should result more

e�cient than normal di�usion, and superdi�usive be-

havior is expected.

It can be easily shown that, in d-dimensional space,

the mean square displacement diverges if

p(x) �
1

xd+

(14)

for large x, with 
 < 2. Note that, for such distribu-

tion, normalization requires 
 > 0. It is therefore to be

expected that a random walk with a jump distribution

p(x) � x�d�
 with 0 < 
 < 2 does not model normal

di�usion, but some kind of superdi�usive motion. Of

course, a large score of functions satisfy Eq. (14), and

are thus candidates to play the role of a jump distri-

bution for a superdi�usive random walk. Among them,

L�evy distributions have been studied in detail.

L�evy distributions [18] are de�ned through their

Fourier transform, which reads

p(k) =

Z
exp(ik � x) p(x) dx = exp(�bk
); (15)

where b is a positive constant, and k � jkj. Although

the antitransform p(x) has no analytical expression, it

can be shown that it satis�es Eq. (14). Moreover, if


 < 2 the positivity of p(x) is insured. The relatively

simple form of this jump distribution in the Fourier rep-

resentation makes it an ideal tool for analytical manip-

ulation. However, the main interest of L�evy functions

in the mathematical theory of distributions comes from

the fact that they are stable. Essentially, this means

that two L�evy functions with the same L�evy exponent


 produce, upon convolution, a third L�evy function

with the same exponent. This can be readily proven

in the Fourier representation, where the convolution

transforms into ordinary product:



Dami�an H. Zanette 113

c

p1(k)p2(k) = exp(�b1k

) exp(�b2k


) = exp[�(b1 + b2)k

 ] = p3(k): (16)

d

L�evy functions are not the only stable distributions,

the Gaussian p(x) / exp(�x2) being probably the best-

known example. The (one-dimensional) Cauchy distri-

bution, p(x) / (1 + x2)�1, is another instance. Sta-

ble distributions play a fundamental role in probability

theory since according to the central limit theorem {

which is usually stated for the Gaussian function{ the

addition of random variables tends to one such distribu-

tion. In particular, as P. L�evy demonstrated through

his generalization of the Gaussian central limit theo-

rem [18, 19], adding random variables with a power-

law distribution as in (14) {whose second moment hx2i

diverges for 
 < 2{ leads asymptotically to a L�evy dis-

tribution.

Another important property of L�evy distributions,

which is re
ected in its power-law large-x asymptotic

behavior, Eq. (14), is the absence of characteristic

length scales. This implies that random walks with

L�evy jump distributions have self-similar properties. In

particular, it can be shown that the set of points vis-

ited by this kind of random walk is a fractal of dimen-

sion 
 [20]. As a consequence, these distributions are

ubiquitous in the realm of self-similarity geometry {the

geometry of fractals.

A discrete-time random walk whose jump distribu-

tion is given by a L�evy function as in Eq. (15) is called a

L�evy 
ight. It has been suggested [21] that the Fourier

transform P (k; t) of the probability distribution of �nd-

ing the walker at a given point at time t satis�es the

evolution equation

@P

@t
(k; t) = �D
k


P (k; t): (17)

This equation generalizes, in the Fourier representation,

the di�usion equation (3). A straightforward dimen-

sionality analysis shows that the anomalous di�usivity

is D
 / b=�t, where �t is the time step of the random

walk. In free space, equation (17) can be readily solved:

P (k; t) = P (k; 0) exp(�D
k

t): (18)

For a delta-like initial condition, P (r; 0) = �(r), one

has P (k; 0) = 1 and, thus,

P (r; t) = (2�)�d
Z

exp(�ik � r�D
k

t) dk: (19)

This function remains unchanged, except for a constant

factor, if both space and time are conveniently rescaled,

P (�1=
r; �t) = ��d=
P (r; t). Using this scale invari-

ance, one can write

P (r; t) = t�d=
�(r=t1=
); (20)

where � is a function of a single variable [22]. In turn,

this implies

hr2i / t2=
 ; (21)

for 0 < 
 < 2. This result, which has been here derived

for a delta-like initial distribution, can be generalized by

simple superposition to more general initial conditions.

It shows that a L�evy 
ight with 0 < 
 < 2 represents

superdi�usion with a dynamic exponent z = 
. On

the other hand, for power-law jump distributions with


 > 2 the dynamic exponent corresponds to normal

di�usion, z = 2 (Figure 1).

Figure 1. The di�usion dynamic exponent z as a function

of the L�evy exponent 
.

The fact that in L�evy 
ights the mean square dis-

placement hx2i of a single step diverges, implies {in



114 Brazilian Journal of Physics, vol. 29, no. 1, March, 1999

contrast with Eq. (21){ that the mean square displace-

ment of the walker after a certain time is, on the aver-

age over in�nitely many realizations, also in�nite. The

arguments used to derive Eq. (21) are therefore of lim-

ited validity [21, 22], and have to be taken cum grano

salis. The result (21) is expected to be valid for �nite

times, i.e. in a certain portion of the whole random

walk, and on averages over a �nite number of trajecto-

ries. The same result would be valid during a certain

time if the jump distribution p(x) is a L�evy function

in some (large) range of values of x, but has a cuto�

for su�cently large x [23]. In spite of this drawback,

L�evy 
ights provide a very powerful tool for model-

ing superdi�usion because of the mathematical proper-

ties of the L�evy distributions, summarized above. They

are thus a very satisfactory starting point as a model

for studying the statistical mechanics of superdi�usive

transport, generalizing the results outlined in the In-

troduction for normal di�usion.

Figure 2. The �rst 104 points visited by a two-dimensional
random walk generated by a power-law jump distribution
with exponent 
 = 1:5, starting at the center of the main
frame. The ampli�cation illustrates the self-similar proper-
ties of this process.

Before passing to the discussion of superdi�usion in

a statistical-mechanical frame, a comment is in order

on the numerical simulation of superdi�usive random

walks. Due to the cumbersome properties of L�evy dis-

tributions in real space [20], it is not convenient {in nu-

merical calculations{ to work directly with these func-

tions. Rather, power-law distributions with the same

asymptotic properties as L�evy's, Eq. (14), are used.

For instance, one can take

p(x) =
N

(1 + x)d+

; (22)

with N a normalization constant. The Fourier trans-

form of these distributions behaves precisely like a L�evy

distribution for small k, p(k) � 1�bk
 . Also, they show

the same scale invariance for large x, wich leads to self-

similar properties in the associated random walks. In

Figure 2 the �rst 104 points visited by a random walk

in two dimensions, with the jump distribution given

in (22) and 
 = 1:5, are shown. Note the clustered,

fractal-like structure of this set of points.

III Maximum-entropy formal-

ism for anomalous di�usion

Entropy plays a central role in the foundations of equi-

librium and nonequilibrium statistical mechanics. It is

well known from the work by L. Boltzmann and others

that entropy provides a natural link between nonequi-

librium processes and their asymptotic states of ther-

modynamical equilibrium. In addition, the whole the-

ory of equilibrium statistical mechanics can be derived

from a variational formalism for the entropy, as follows.

De�ne the entropy S as a functional of the probability

distribution pi over the states i of a given system,

S[p] = �kB
X
i

pi ln pi; (23)

where kB is Boltzmann constant. Find then the values

of pi that maximize S[p], taking into account the nor-

malization constraint,
P

i pi = 1, and {if required by

particular conditions of the system under study{ any

additional constraint on pi. The value of pi resulting

from this maximization procedure gives the probability

of �nding the system in state i when thermodynamical

equilibrium has been reached. For instance, introduc-

ing the canonical constraint
P
�ipi = E, where �i is the
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energy of state i and E is the thermodynamical energy,

the maximization of entropy produces the well-known

Boltzmann distribution pi / exp(���i) [4].

III.1 Traditional formalism

As a starting point for including normal di�usion

in the frame of equilibrium statistical mechanics, the

procedure of entropy maximization has been applied

to obtain the jump probability distribution p(x) in a

discrete-time random walk [24]. In this case, entropy is

de�ned as a straightforward generalization of (23),

S[p] = �kB

Z
p(x) ln[�dp(x)] dx: (24)

Here � is a characteristic length, whose meaning will

become clear immediately. The distribution p(x), in

fact, has units of length to the power �d. The maxi-

mization of S[p] is carried out taking into account the

normalization of p(x),Z
p(x) dx = 1; (25)

and imposing the additional constraintZ
x2p(x) dx = �2d; (26)

which is inspired in the second relation of Eq. (2). Ex-

cept for a dimensionality factor, �2 is thus the mean

square displacement associated with p(x).

Under these conditions, the maximization of en-

tropy yields

p(x) = (2��2)�d=2 exp(�x2=2�2); (27)

namely, a Gaussian jump distribution. Since, in view of

the constraint (26), the mean square displacement as-

sociated with p(x) is �nite, the maximum-entropy for-

malism applied as above to the jump distribution of a

random walk describes normal di�usion.

The question on whether anomalous di�usion can

be derived from a variational formalism for the entropy

arises now quite naturally. Montroll and Shlesinger [24]

have shown that this is in fact possible, but requires re-

placing the constraint (26) by a more complex condition

on p(x). In particular, L�evy 
ights, Eq. (15), are ob-

tained from the maximization of the entropy (24) if the

jump distribution satis�es, along with normalization,

c

Z
ln

�
(2�)�d

Z
exp(�ik � x � bk
) dk

�
p(x) dx = constant: (28)

d

This is however a quite unsatisfactory answer to the

above question. Indeed, besides its complexity, the

constraint (28) is anything but a natural condition

to impose to the jump distribution. In Montroll and

Shlesinger's words, \it is di�cult to imagine that any-

one in an a priori manner would introduce" such a

condition for maximizing the entropy with respect to

p(x). This remark would at once exclude L�evy 
ights

{and anomalous di�usion with them{ from the frame of

the maximum-entropy formalism and, therefore, from a

natural connection with equilibrium statistics.

In Ref. [25], a di�erent approach has been proposed

to tackle the problem of deriving anomalous di�usion

from the maximization of entropy. Since replacing the

constraint on the jump distribution implies imposing

unconventional, forced conditions on p(x), a possible

way out is to replace the form of the entropy instead.

In particular, it has been found that the form of the

entropy proposed by Tsallis [26, 27] produces, upon

maximization with the constraints prescribed by this

generalized theory, power-law jump distributions with

the asymptotic behavior given in (14). As described in

the following, random-walk models of anomalous di�u-

sion �nd thus a natural statistical-mechanical basis in

Tsallis' theory.

III.2 Generalized formalism

Inspired in the theory of multifractals, Tsallis [26]

proposed to generalize the traditional Boltzmann-Gibbs

statistical mechanics by introducing new forms for the

entropy and for the constraints to be applied in the
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maximization procedure. For a system whose i-th state

is occupied with probability pi, the generalized entropy

reads

Sq [p] = �
1�

P
i p

q
i

1� q
; (29)

where q is a real parameter. For the canonical ensem-

ble, where the energy of the i-th state is �i and the

average energy is Eq, the generalized constraint to be

imposed to pi, along with probability normalization, is

X
i

�ip
q
i = Eq: (30)

In this generalized formalism, in fact, the average of

any observable O is de�ned as hOiq =
P

iOip
q
i . This

average is usually refered to as the q-expectation value

of O [28].

The generalized statistical-mechanical formalism

based on Eqs. (29) and (30) has some remarkable

properties. First of all, it reduces to the traditional

Boltzmann-Gibbs formulation in the limit q ! 1. In

fact, Eq. (23) is recovered from (29) in that limit ex-

cept for the factor kB, which has here been convention-

ally put equal to unity. The canonical constraint (30)

reduces in turn to the traditional de�nition of mean en-

ergy. The new formalism preserves the full Legendre-

transformation structure of thermodynamics for all q

[27], leaving invariant in form the main results of statis-

tical thermodynamics, such as the Ehrenfest theorem,

the H-theorem, the von Neumann equation, the Bo-

golyubov inequality, and the Onsager reciprocity theo-

rem [28]. Its seems to be particularly useful in dealing

with systems involving long-range correlations and non-

extensivity, as the formalism itself is non-extensive for

q 6= 1. The Tsallis exponent q has thus been interpreted

as a measure of non-extensivity. Since its introduction

a decade ago [23] Tsallis statistics has found successful

applications to a large class of problems of high interest,

ranging from gravitational systems, to turbulent 
ows,

to optimization algorithms. Many of these applications

are described in detail in other papers of the present

issue, and are therefore no longer discussed here.

In order to apply Tsallis statistics to discrete-time

random walks in the spirit outlined in the previous sec-

tion, Eqs. (24) and (26) have to be generalized accord-

ing to (29) and (30), respectively. As a function of the

jump probability, the generalized entropy can be writ-

ten as [23, 25, 29]

Sq [p] = �
1

1� q

�
1� ��d

Z �
�dp(x)

�q
dx

�
; (31)

whereas the canonical constraint transforms into a con-

dition on the q-expectation value of x2:

hx2iq = ��d
Z
x2 [�p(x)]q dx = �2: (32)

Here, � preserves its identi�cation as a typical length

associated with the jump probability. However, for

q 6= 1, �2 does not coincide with the mean square length

of the jumps. For simplicity, the dimensionality factor

in the right-hand side of Eq. (26) has now been ab-

sorved by �.

It is shown in the following that the maximization of

S[p] as de�ned in (31) with the constraints (25) and (32)

{which, as in the case of the traditional formalism, is

carried out by the standard method of Lagrange multi-

pliers [26, 27]{ produces a power-law jump distribution.

The exponent of the power-law depends on the space

dimension and on the Tsallis exponent q. This jump

distribution is not a L�evy distribution like (15), but

has the same type of asymptotic behavior, Eq. (14).

For suitable values of d and q, this form of p(x) will

therefore de�ne a random walk with anomalous prop-

erties.

For the sake of clarity, the results in one dimension

are shown �rst [23, 29]. The jump distribution resulting

from the maximization procedure is, in this case,

p(x) = Z�1q

�
1� �(1 � q)x2

�1=(1�q)
(33)

where the partition function Zq is given by

Zq =

Z +1

�1

�
1� �(1 � q)x2

�1=(1�q)
dx: (34)

The positive constant � is one of the Lagrange multi-

pliers, which can be expressed as a function of � using

the constraint (32), as shown below. In the generalized

formulation of statistical mechanics � is related to the

temperature T in the standard form, � / 1=T .

It turns out from Eq. (33) that the normalization

of p(x) can be satis�ed for q < 3 only. The Tsallis ex-

ponent for random walks is therefore restricted to the

interval (�1; 3). Explicitly calculating the partition

function yields
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c

p(x) =

r
�(q � 1)

�

�
�

1
q�1

�

�
�

1
q�1 �

1
2

� �1 + �(q � 1)x2
�
�1=(q�1)

(35)

for 1 < q < 3, and

p(x) =

8><
>:

q
�(1�q)

�

�( 1

1�q
+ 3

2
)

�( 1

1�q
+1)

�
1� �(1� q)x2

�1=(1�q)
if x2 < 1

�(1�q) ;

0 otherwise

(36)

for q < 1. For q! 1, of course, the Gaussian (27) is reobtained. Note that the Tsallis exponent q is related to the

exponent 
 in Eq. (14) according to [25]


 =
3� q

q � 1
or q =

3 + 


1 + 

: (37)

Figure 3 shows the pro�le of p(x) for several values of q.

d

Figure 3. Jump probability distribution derived from Tsal-

lis statistics, for some values of the Tsallis exponent q. For

q = 1 the standard Gaussian is obtained. Note the cut-o�

for q < 1, and the long-tailed power-law distributions for

q > 1.

Regarding anomalous di�usion, thus, it is clear that

the case q < 1 is irrelevant. In fact, for such val-

ues of the Tsallis exponent p(x) exhibits a cut-o� at

jxj = 1=
p
�(1 � q), and vanishes for larger jxj, as shown

by Eq. (36). This implies at once that the mean square

displacement associated with p(x) is �nite and the re-

sulting random walk corresponds to normal di�usion.

The attention is consequently focused in the following

on the case 1 < q < 3, Eq. (35). In this case, the mean

square displacement is

hx2i =

8<
:

[�(5 � 3q)]�1 if q < 5=3,

1 if q � 5=3:
(38)

Therefore, for 1 < q < 5=3 � 1:67 the mean square

displacement is still �nite, and the random walk corre-

sponds to normal di�usion. On the other hand, anoma-

lous superdi�usion is obtained for 5=3 � q < 3.

It is interesting to calculate now the q-expectation

value of x2 which, in the frame of Tsallis statistics, re-

places {as an average quantity{ the mean square dis-

placement of the standard formulation. According to

the constraint (32) imposed to p(x) in the maximization

of entropy, this q-expectation value should be �nite. In

fact,

hx2iq =
1

2�

2
4
r
(q � 1)

2�

�
�

1
q�1

�

�
�

1
q�1

� 1
2

�
3
5
2(q�1)=(3�q)

;

(39)

for 1 < q < 3. The fact that, in contrast with the mean

square displacement, hx2iq is �nite, seems to indicate

that the constraint (32) is a natural one in the frame of

anomalous-di�usion random walks [25]. Note moreover

that Eq. (39) along with (32) gives the connection be-

tween the Lagrange multiplier � and the characteristic

length �,

� / ��2: (40)
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Equations (35) and (36) make clear that, as stated

above, the maximization of entropy within Tsallis' for-

malismdoes not lead to L�evy distributions for the jump

probability. Rather, a plain power-law function of the

jump length x is obtained. L�evy distributions are how-

ever reobtained when considering the temporal evolu-

tion of the random walk generated by p(x). In fact, the

displacement r of the walker after t time steps is given

by the sum of the successive jumps. By virtue of the

generalized central limit theorem [18, 19] discussed in

Section II.2 the probability distribution P (r; t) is thus

given, for large t and 
 < 2 (i.e. q � 5=3), by a stable

L�evy distribution with L�evy exponent 
. For 
 > 2,

on the other hand, the usual form of the central limit

theorem holds and the total displacement distribution

is a Gaussian. The dynamic exponent z of the random

walk { which coincides with 
 for 
 < 2 (see Section

II.2) { is then

z =

8<
:

2 if q < 5=3,

(3� q)=(q � 1) if q � 5=3:
(41)

This connection between the dynamic exponent and the

Tsallis exponent q { which is illustrated by the curve

d = 1 in Figure 4 { constitutes indeed the main re-

sult of the description of anomalous di�usion in the

frame of the Tsallis' formulation. It shows that a close

relation exists between the properties of a L�evy-
ight

process and the non-extensiveness of the involved statis-

tics. As far as the underlying statistical frame di�ers

from Boltzmann-Gibbs', the maximum-entropy formal-

ism produces a random walk which models superdi�u-

sion as a L�evy 
ight.

As in the case of the jump distribution, the total

mean square displacement hr2i associated with L�evy


ights diverges. On the other hand, the q-expectation

value of r2 is well de�ned for all relevant q (1 < q < 3),

cf. Eq. (39). This can be calculated taking into ac-

count the scaling properties of P (r; t), Eq. (20), and

reads

hr2iq =

8<
:

D(q)��1t(3�q)=2 if q < 5=3,

D(q)��1tq�1 if q � 5=3:
(42)

The proportionality factor D(q) depends on q only. In-

terpreting now the Lagrange multiplier � as the inverse

of the temperature {as prescribed in the frame of Tsal-

lis thermodynamics [27]{ the above equation can be

seen as a generalization of the Einstein relation (5) [30].

Equations (4) and (5) imply in fact that hr2i / ��1t for

normal di�usion, and Eq. (42) is the extension of this

result to Tsallis statistics. Again, the fact that hr2iq is

�nite for L�evy 
ights suggests that Tsallis' formalism

provides a natural frame for the statistical description

of such kind of anomalous di�usion.

Figure 4. The di�usion dynamic exponent z as a function of

the Tsallis exponent q, for di�erent spatial dimensions. The

dots stand for some of the instances of anomalous di�usion

discussed in Section II.1.

Though the algebra is more involved than above,

anomalous di�usion in more than one dimension can be

straightforwardly treated in the frame of Tsallis statis-

tics, and the main conclusions are qualitatively the

same as for the one-dimensional case. Maximazing the

entropy given in (31) in the d-dimensional space pro-

duces formally the same jump distribution as in (33),

where the partition function has however to be calcu-

lated as a d-dimensional integral. The jump probability

can be normalized if

q <
2 + d

d
; (43)

and the associated mean square displacement is �nite

if

q <
4 + d

2 + d
: (44)

Below this value, thus, the random walk generated by

the jump probability models normal di�usion, whereas

for (4+ d)=(2+ d) < q < (2 + d)=2 the walker performs

superdi�usion. In Figure 5 these di�erent regimes are

identi�ed in a phase diagram. The connection between

the dynamic exponent and the Tsallis exponent reads

now
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c

z =

8<
:

2 if q < (4 + d)=(2 + d),

2=(q � 1)� d if (4 + d)=(2 + d) < q < (2 + d)=d:
(45)

d

This connection is represented graphically in Figure 4.

Figure 5. Phase diagram in the (q; d)-plane, displaying the

zones of normal and anomalous di�usion, and the forbid-

den region where the jump probability distribution cannot

be normalized. The dots stand for some of the instances of

anomalous di�usion discussed in Section II.1.

IV Nonlinear di�usion and

Tsallis statistics

The di�usion equation,

@P

@t
= Dr2

rP; (46)

which governs the evolution of the probabilityP (r; t) dr

of �nding a Brownian particle in a neighborhood dr of

point r at time t, can be generalized to take into account

additional mechanisms acting on both the microscopic

dynamics of the particle and the mesoscopic dynamics

of an ensemble of such particles. A rather straightfor-

ward generalization introduces for instance the e�ect of

an external force �eld, F(r; t), acting on each particle

[3, 31]. This force �eld enters the di�usion equation as

a drift term, namely,

@P

@t
= �rr � (FP ) +Dr2

rP: (47)

This equation, which combines the e�ect of probability

drift {due to the force{ and of probability spreading {

due to di�usion{ can be seen to govern a huge class of

random processes, in a generic space of states r [3, 31].

It is generally refered to as the Fokker-Planck equation.

Further generalizations, mainly justi�ed on a phe-

nomenological basis, have lead to propose a nonlinear

version of the Fokker-Planck equation [32], namely,

@P�

@t
= �rr � (FP

�) +Dr2
rP

�; (48)

where � > 0 and � are suitable real constants. With-

out loosing generality, one can �x � = 1, by chang-

ing P� ! P and �=� ! �. In such case, Eq. (48)

can be phenomenologically interpreted as a Fokker-

Planck equation where, if � 6= 1, the di�usion coe�-

cent depends on the probability P (r; t). This density-

dependent di�usivity represents nonlinear e�ects aris-

ing, for instance, from interaction between the di�using

particles. Such kind of nonlinearities have been ob-

served in several real processes, such as transport in

porous media (� � 2) [33], surface growth (� = 3) [34],

liquid �lm spreading under gravity (� = 4) [35], and

Marshak radiative heat transfer (� = 7) [36], among

others [37].

The Fokker-Planck equation (47) is linear. This im-

plies that for many forms of the force �eld F(r; t) the

general exact solution can be found analytically. More-

over, even if analytical solutions are not available or

di�cult to obtain, very e�cient computationalmethods

can be implemented to obtain numerical solutions. In

contrast, exact solutions to the nonlinear equation (48)

are particularly scarce [38, 39], and numerical methods

are typically subject to instabilities when dealing with

nonlinear problems. It is therefore of great interest to

verify that, as shown in the following, Tsallis' formal-

ism provides a method to obtain special solutions to

Eq. (48) for general � and �, at least, in its one dimen-

sional version and for some special forms of the drift
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force. This problem has recently been treated by Tsal-

lis himself [40] and, in an alternate form, by Compte

and Jou [41].

Consider then the one dimensional version of Eq.

(48) for the probability density P (x; t),

@P�

@t
= �

@

@x
[F (x)P�] +D

@2P �

@x2
; (49)

with x � r, and with F (x) = k1 � xk2. This time-

independent, linear form of the drift force corresponds,

in general, to a quadratic potential {i.e. an Ornstein-

Uhlenbeck random process [3]{ whereas it reduces to a

linear potential {namely, a constant force{ for k2 = 0.

For � = � = 1, this equation can be straightforwardly

solved, for instance, by Fourier-Laplace transforming.

A special solution is

c

P (x; t) =
1

Z(t)
exp

�
�(t)[x� �x(t)]2

	
; (50)

where
�(t)

�(0)
=

�
Z(0)

Z(t)

�2
= [(1��) exp(�2k2t) + �]�1 (51)

with � = 2D�(0)=k2, and

�x(t) = �+ [�x(0)� �] exp(�k2t) (52)

d

with � = k1=k2. This particular solution has the impor-

tant property that, for t! 0 and �(0)!1, it reduces

to a delta-like distribution, P (x; 0) = �[x� �x(0)]. Since

Eq. (49) is linear for � = � = 1, and delta distributions

can be used as a base for the space of initial conditions

P (x; 0), a suitable linear combination of functions of the

form (50) provides the solution to the linear equation

for any initial condition in that space. In this sense, (50)

gives the general solution to the linear Fokker-Planck

equation with the above prescribed drift force.

Focus now the attention on the functional form of

the particular solution to the linear problem given in

Eq. (50). As a function of x, P (x; t) is a Gaussian,

essentially of the same type as (27). The di�erences

are, �rstly, that the spatial coordinate x is shifted by

an amount �x(t). The Gaussian is therefore centered

around a position which depends on time. Secondly,

the width of the Gaussian, which is proportional to

��1=2, depends also on time. Since the solution (50)

preserves normalization, the normalization factor Z�1

is time-dependent.

The Gaussian pro�le of P (x; t) in Eq. (50) sug-

gests that this solution can be formally derived from a

suitably extended maximum-entropy formalism, in its

standard Boltzmann-Gibbs version. In fact, it can be

shown [40] that such form of P (x; t) derives from the

maximization of

S[P ] =

Z +1

�1

P (x; t) lnP (x; t) dx; (53)

with the extended constrainsZ +1

�1

P (x; t) dx = 1; (54)

Z +1

�1

[x� �x(t)]P (x; t) dx = 0; (55)

and Z +1

�1

[x� �x(t)]2P (x; t) dx =
1

2�(t)
; (56)

for arbitrary �x(t) and �(t). The special forms of these

functions that make the probability distribution satisfy

the linear Fokker-Planck equation can be obtained by

simply replacing P (x; t) in the equation.

It should be by now clear that one is immediately

interested at which solutions are obtained if, instead of

the standard maximization principle, the Tsallis' for-

malism is used. Namely, take the generalized entropy

Sq [P ] = �
1

1 � q

�
1�

Z +1

�1

P (x; t)qdx

�
; (57)

and maximize it with respect to P (x; t) imposing the

generalized constrains

Z +1

�1

[x� �x(t)]P (x; t)qdx = 0; (58)
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and Z +1

�1

[x� �x(t)]2P (x; t)qdx =
1

2�(t)
: (59)

This produces [40]

P (x; t) =
1

Zq(t)

�
1� �(t)(1 � q)[x� �x(t)]2

	1=(1�q)
;

(60)

to be compared with Eq. (33). Remarkably enough,

this form of P (x; t) turns out to be a solution to the

one-dimensional nonlinear Fokker-Planck equation for

the linear drift force if

q = 1 + � � �; (61)

and
�(t)

�(0)
=

�
Zq(0)

Zq(t)

�2�
: (62)

As for L�evy-
ight anomalous di�usion, P (x; t) can be

normalized only if q < 3. This de�nes a forbidden re-

gion for � > 2 + � (Fig. 8).

The function Zq(t) is explicitely given by

Zq(t) = Zq(0) [(1��q) exp(�t=� ) + �q]
1=(�+�)

;

(63)

with

�q =
2�D�(0)Zq(0)���

k2
; (64)

and � = �=k2(�+ �). The function �x(t) is the same as

for the linear case, Eq. (52). Note that the normaliza-

tion constraint, Eq. (54), has not been imposed in the

maximization of Sq[P ]. In fact, the preservation of the

norm of P (x; t) is now not compatible with the other

two constraints. Rather, it turns out that the integral

of the probability density over the whole space varies

with time according to

Z +1

�1

P (x; t) dx =

�
Zq(t)

Zq(0)

���1 Z +1

�1

P (x; 0) dx:

(65)

This implies that the norm is conserved for all times

only if � = 1, or if �q = 1 {when Zq does not depend

on time. If �q > 1 the norm monotonically increases

for � > 1 and decreases for � < 1. If �q < 1, on the

other hand, the opposite behavior is observed. More-

over, for � < 0 the norm diverges or vanishes at a �nite

time. Figure 6 illustrates these di�erent regimes for

� = 1 and some values of �.

Figure 6. Evolution of the norm in the solutions to the non-

linear Fokker-Planck equation for � = 1 and some values of

�. These curves correspond to �q > 1.

The case of constant force, k2 = 0, can be analyzed

as the suitable limit of the above solution for k2 ! 0.

In particular, taking exp(�t=� ) � 1 � t=� in Eq. (63)

it is found that

Zq(t) = Zq(0)

�
1 + 2

�(� + �)

�
D�(0)Zq (0)

���t

�1=(�+�)
:

(66)

In this limit, the width of the distribution {which is pro-

portional to ��1=2{ exhibits a well-de�ned power-law

dependence on time. In fact, according to Eq. (62),

�(t)�1=2 / t�=(�+�). This makes possible to assign a

dynamic exponent to this kind of di�usion, given by

z = 1 +
�

�
: (67)

Whereas, as expected, the case � = � = 1 corresponds

thus to normal di�usion, �=� > 1 corresponds to sub-

di�usion and �=� < 1 corresponds to superdi�usion.

Note that if �=� < �1, z < 0 and the distribution

width decreases with time. This seemingly unphysical

situation [40] can however be associated with a kind

of \negative di�usivity", which has been observed in

some real nonequilibrium self-organizing systems [38].

Figure 7 shows the evolution of the distribution width

for � = 1 and various values of �. The phase diagram

of Figure 8 summarizes the various regimes obtained in

di�erent regions of the (�; �)-plane.
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Figure 7. Evolution of the width in the solutions to the non-

linear Fokker-Planck equation for � = 1 and some values of

�. For the case of \negative di�usivity," � = 1=2.

Figure 8. Phase diagram in the (�; �)-plane, displaying the

di�erent regimes of anomalous di�usion and norm evolution

in the solutions to the nonlinear Fokker-Planck equation. In

the forbidden region the probability distribution cannot be

normalized.

Equation (61) makes evident that the non-

extensivity inherent to Tsallis statistics is related, in the

frame of its application to the resolution of the nonlin-

ear Fokker-Planck equation (49), to the nonlinearity of

the equation itself. This nonlinearity translates, at the

level of the solutions, into anomalous properties of the

involved transport processes. Thus, a clear connection

between anomalous di�usion and the non-extensivity

of the underlying statistics arises again. It is impor-

tant to point out that, in contrast with Eq. (50), the

solutions (60) to the nonlinear Fokker-Planck equation

derived from Tsallis' formalism cannot be combined to

give a general solution. In fact, due to the nonlinear-

ity of Eq. (49), no superposition principle holds, and

(60) are particular solutions for special initial condi-

tions only. Nevertheless, the straightforward way in

which these solutions have appeared as an extension of

the linear case along the lines of Tsallis' generalization,

reinforces strongly the close relation between Tsallis'

formalism an anomalous di�usion.

V Conclusion

Though normal di�usion is ubiquitous in Nature, a

large {and still growing{ class of real systems is driven

by a di�erent kind of transport processes, namely, by

anomalous di�usion. In view of the current importance

of many of these systems {which range from turbulent


ows, to disordered media and chaotic dynamics, to


ight patterns in birds{ it is of high interest having at

hand a formulation able to place anomalous di�usion in

a statistical-thermodynamical frame, generalizing thus

Einstein's theory for normal di�usion. However, within

Boltzmann-Gibbs statistics \the wonderfull world of

clusters and intermittencies and bursts that is associ-

ated with L�evy distributions would be hidden from us

if we depended on a maximum entropy formalism that

employed simple traditional auxiliary conditions" [24].

It has been here shown that, instead, Tsallis general-

ized statistics is a strong candidate to succesfully yield

such a formulation.

Tsallis statistics provides a natural frame for the

mathematical foundations of anomalous di�usion in

two forms. In the �rst place, jump distributions of

random-walk models for L�evy-like superdi�usion can

be straightforwardly derived from a maximum-entropy

principle within the generalized theory. In fact, such

distributions exhibit power-law long tails, which are

an essential feature in the results of the theory. At

once, Tsallis statistics furnishes an elegant explanation

for the appearence of L�evy distributions in other nat-

ural phenomena, as the result of the superposition of

random variables with long-tailed distributions. In the

second place, the functional form of the distributions

resulting from Tsallis' formalism successfully suggests

the solution to the nonlinear Fokker-Planck equation,

which describes both subdi�usion and superdi�usion.

In order to widen the applications of Tsallis' theory

to the statistical foundations of anomalous di�usion,

further research should focus on some problems that
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still wait to be treated in the frame of the generalized

statistics. For instance, it would be important to ex-

tend the derivation of random-walk models of anoma-

lous di�usion to the case of subdi�usion. As explained

in Section II, this requires introducing suitable waiting-

time densities. Since power-law functions can ful�ll this

role, Tsallis statistics is again a natural stating point

to derive such densities. Another extension would re-

gard di�usion processes on fractals. In fact, L�evy-like

di�usion anomalies are the consequence of mechanisms

driving the dynamics of the di�using particles. An al-

ternative formulation, which is relevant to many appli-

cations, takes into account that such anomalies orig-

inate rather in the complex geometry of the medium

where particles di�use. The connection between frac-

tal geometry and Tsallis statistics has been identi�ed

early, and it can thus be expected that di�usion on frac-

tal substrates �nds a satisfactory statistical-mechanical

frame in such theory. Finally, it would be interesting to

descend a level further in the dynamical bases of anoma-

lous di�usion, and try to apply Tsallis' formalismto the

formulation of deterministic mechanical approaches to

this kind of transport.

As a �nal remark it is worth mentioning that, very

recently, Tsallis' formalism has been improved by re-

de�ning the normalization of q-expectation values [42].

This has solved, in a single step, two main drawbacks

of the theory. In fact, in its original formulation, Tsal-

lis statistical mechanics is not invariant under energy

shifts, and the q-expectation value of a constant de-

pends on the state of the system under study. Although

the correction to the theory does not involve important

changes in the qualitative results, it represents a major

improvement from a formal viewpoint. Here, Tsallis

statistics has been applied to anomalous di�usion in

its original form. A relevant step forward would be

to reanalyze this process in the frame of the corrected

theory.
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