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The �-expansion is a nonperturbative approach for �eld theoretic models which combines
the techniques of perturbation theory and the variational principle. Di�erent ways of imple-
menting the principle of minimal sensitivity to the �-expansion produce in general di�erent
results for observables. For illustration we use the Nambu{Jona-Lasinio model for chiral
symmetry restoration at �nite density and compare results with those obtained with the
Hartree-Fock approximation.

The standard application of the linear �-expansion

[1] to a theory with action S starts with an interpola-

tion de�ned by S(�) = (1� �)S0(�) + �S, where S0(�)

is the action of a solvable theory. The action S(�) in-

terpolates between the solvable S0(�) (when � = 0) and

the original S (when � = 1). Since S0 is quadratic in

the �elds, arbitrary parameters (�) with mass dimen-

sions are required for dimensional balance. At the end

one sets � = 1 �xing � according to the principle of

minimal sensitivity (PMS) [2] which requires a physical

quantity �(�) to satisfy

@�(�)

@�

���
��
= 0: (1)

Within this method, the general procedure is to ap-

ply the PMS directly to each di�erent quantity of inter-

est so as to adjust � to the di�erent energy scales of the

theory [2]. A natural question which arises at this point

is the uniqueness of the value of � since di�erent phys-

ical quantities might generate di�erent values for the

optimal �. Of course this would not be catastrophic if

the spread of the values of � determined from di�erent

observables were not too large.

Alternatively, one could select only one among those

observables to optimize the theory. This selection could

be done by using some physical criterion or constraint

(for example, in the case were only one of the calcu-

lated quantities satis�es the PMS equation). However,

this strategy (referred as PMS1) does not completely

specify a unique procedure and, as we shall see, can be

misleading. One of our goals is to show that all these

potential uncertanties could be avoided by demanding

that fundamental quantities, such as the energy den-

sity, be used to �x � whose optimal values are then

used to calculate other observables. Using the energy

momentum tensor of the original theory one can obtain

the exact energy density written in terms of full ver-

tices and propagators. Next, one uses the interpolated

theory to evaluate self energies as well as vertex correc-

tions perturbatively in powers of �. These �-dependent

quantities are then plugged back into the energy density

to which the PMS is applied. This approach (referred

as PMS2) has been succesfully applied to the Walecka

model for nuclear matter [3]. The fact that it is natu-

ral to demand stationarity of the energy with respect

to unknow parameters uniquely selects this quantity as

�
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the generator of �� so that all physical observables are

determined from the same propagator.

In this paper we illustrate the problem with the

PMS1 prescription by using the Nambu{Jona-Lasinio

(NJL) model [4] for chiral symmetry restoration in a

medium of �nite density. Conventionally, the �nite

density chiral symmetry restoration problem within the

NJL model has been tackled with the Hartree-Fock

(HF) approximation. For the SU(2) case, this analyt-

ical approach shows that chiral symmetry is restored

through a �rst-order phase transition at a critical den-

sity whose values depend on the choice of the parame-

ters [5, 6]. We then follow the two alternatives, PMS1

and PMS2, and compare results with the traditional

HF approach.

Some physical quantities of interest, whose values

characterize the chiral symmetry restoration, are the

quark condensate


�qq
�
, the pion decay constant f� and

the constituent quark mass Mq. We calculate these

quantities both with PMS1 and PMS2 and compare our

results with the ones obtained in Ref. [5] with the HF

approximation, where vertex corrections are neglected.

Therefore, we shall also neglect vertex corrections. Of

course, since the NJL model is essentially phenomeno-

logical, we shall pay more atention to the qualitative

results (like the order of the phase transition) than to

the quantitative ones (like the precise value of the crit-

ical density for which the phase transition takes place).

In the limit of zero current quark masses, the two-

avor Lagrangian density of the Nambu{Jona-Lasinio

model is given by

LNJL = �q(i@/)q + G
h
(�qq)2 � (�q5�q)

2
i
; (2)

where the quark �eld operators q = q(x) represent the

doublet of u and d quarks.

Let us start by deriving the energy density from the

energy-momentum tensor of the original theory since

this quantity will be necessary when using the PMS2.

Using the Lagrangian density, Eq. (2), we have the

energy-momentum tensor,

c

T��
NJL = i�q�@�q � g��LNJL = i�q�@�q � g��

n
�q(i@/)q +G

h
(�qq)2 � (�q5�q)

2
io

: (3)

Note that we have not used the equation of motion for the quark �eld operator. Neglecting vertex corrections, the

energy density is given by

ENJL =
1

V

Z
d3x < T 00 >

= �i

Z
d4q

(2�)4
q0Tr

�
0S(q)

�
+ i

Z
d4q

(2�)4
Tr [6qS(q)] � G

(
�

�Z
d4q

(2�)4
Tr [S(q)]

�2

+

Z
d4q

(2�)4
d4k

(2�)4
Tr [S(q)S(k)] +

�Z
d4q

(2�)4
Tr [�5S(q)]

�2

�

Z
d4q

(2�)4
d4k

(2�)4
Tr [5�

aS(q)5�
aS(k)]

�
; (4)

where S(q) represents the dressed quark propagator.

The quark condensate, which is taken to be the parameter of order of the phase transition, is given by



�qq
�
= �i

Z
d4p

(2�)4
tr[S(p)] ; (5)

where the trace is taken over spinor and color indices. As in Refs. [5, 6] we employ the Pagels-Stokar formula [7] to

evaluate the pion decay constant (f�),

iq�f��
ab =

Z
d4p

(2�)4
tr

�
S(p + q)(g�q

5�a)S(p)(
1

2
� b�5)

�
; (6)
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where the trace is now over spinor, avor and color. The quark-pion coupling can be obtained from the Golberger-

Treiman relation. Of course, we could use other, perhaps more precise formulas for f� , but for our purposes of

comparing PMS1 and PMS2 results, Eq. (6) is su�cient.

To de�ne the interpolated Lagrangian one needs to choose a solvable theory. Since we are looking for solutions

which break chiral symmetry, the natural choice for L0 is

L0 = �q(i@/ � �)q ; (7)

where � is an arbitrary mass parameter. Therefore, the interpolated NJL Lagrangian density can be written as

LNJL(�) = (1 � �)
�
�q(i@/ � �)q

�
+ �

n
�q(i@/)q +G

h
(�qq)2 � (�q5� q)

2
io

= �q(i@/ � �)q + �
n
G
h
(�qq)2 � (�q5�q)

2
i
+ ��qq

o
: (8)

Expressed in terms of self energy ��(p) the quark propagator reads S�1(p) = S�10 (p) � ��(p) where S�10 (p)

is the inverse of the quark propagator corresponding to L0 (S�10 (p) = 6p � �), and the quark self-energy ��(p) is

calculated as a power series in �.

At zeroth order in �, one is treating the free Lagrangian and hence �(0)(p) = 0. The bare (zeroth order)

in-medium quark propagator is then given by

S(0)(p) =
6p+ �

p2 � �2 + i�
+ �i

6p+ �

E0(p)
�
�
p0 �E0(p)

�
� (PF � jpj) ; (9)

where E0(p) =
�
p2 + �2

� 1
2 , and PF is the Fermi momentum which, for Nf = 2, relates to the quark density � via

PF = (�2�=2)1=3.

At this order in �, no dynamical content from the model has been used. The dynamics of the model starts to

show up at order �. To O(�) the self-energy (�(1)(p)) is given by

�(1)(p) = � ��

+ 2i�G

Z
d4q

(2�)4

n
Tr
h
S(0)(q)

i
� S(0)(q)� 5�

aTr
h
�aS(0)(q)5

i
+ 5�

aS(0)(q)�a5
o
; (10)

where a sum over the isospin index a is implied. Substituting Eq. (9) into this equation, we obtain for �(1) the

expression

�(1)(p) = ���+M1 � 0�0 ; (11)

where

M1 = �
G

�2
�

�
NcNf +

1

2

�8<
:�

�
�2 + �2

� 1
2 � PF

�
P 2
F + �2

� 1
2 � �2 ln

2
4 �+

�
�2 + �2

� 1
2

PF + (P 2
F + �2)

1

2

3
5
9=
; ; (12)

and

�0 = �4�G

Z
d3q

(2�)3
�(PF � jqj): (13)

One should note that, at this order, direct and exchange terms are treated at equal footing as implied by the factor

(NcNf + 1=2) in Eq. (12). Since the e�ect of �0 is just to shift the chemical potential [6], one may write the

constituent quark mass to O(�) as

Mq = �� ��+M1 : (14)

Substituting Eq. (9) into Eqs. (5) and (6), one gets for the order parameter per avor and for the pion decay

constant the following lowest order expressions,
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�qq
�
0
= �

Nc

2�2
�

(
�(�2 + �2)

1

2 � pF (p
2
F + �2)

1

2 � �2 ln

"
�+ (�2 + �2)

1

2

pF + (p2F + �2)
1

2

#)
; (15)

and

f2� =
NcNf�

2

4�2

(
ln

"
�+ (�2 + �2)

1

2

pF + (p2F + �2)
1

2

#
�

�
1 +

�2

�2

�
�

1

2

+

�
1 +

�2

p2F

�
�

1

2

)
; (16)

where the lowest order Goldberger-Treiman relation (g�q = �=f�(0)) has been used.

d

Figure 1. PF dependence of �� obtained with the PMS ap-
plied to f� (solid line - PMS1) and to (dashed line - PMS2).

Figure 2. PF dependence of f�. The solid and dotted lines
give respectivelly the PMS1 and the PMS2 solutions.

We now have the three quantites of interest (Mq ,

�qq
�
0
and f�) obtained at lowest order in � and the next

step is the optimization procedure. Let us start with

the PMS1. Of the three calculated quantities the only

one which satis�es the PMS condition (the one which

has extremum points) is f� . Moreover, at zero density,

this quantity has a well established empirical value and

can be chosen to �x �. A direct application of the PMS

condition to f� gives �� = 0:97��. Using the zero den-

sity empirical value f� = 93 MeV one gets the non-

covariant cut-o� � = 571 MeV. In principle, the fact

that the cut-o� can be �xed (with a value which agrees

with the ones used in the literature) without any pre-

vious knowledge of the quark mass could be seen as an

advantage of the method. However, one must be careful

with the interpretation of this result since it has been

obtained without any information about the model, be-

cause the coupling constant G does not appear at this

lowest order evaluation of f� . If one takes this value for

� and proceeds blindly by applying the PMS to f� for

di�erent values of PF one obtains �� as a function of the

density as shown by the continuous line of Fig. 1. We

note that �� obtained with the PMS1 has a very peculiar

behavior increasing with the density. This odd behav-

ior is reected in Fig. 2 where one sees that f� goes

smoothly to zero, indicating chiral symmetry restora-

tion, through a second-order phase transition, contrary

to the HF predictions. The same values of �� can be

used to evaluate the quark condensate and quark mass.

The numerical zero density results for these quantities,

�qq
�
0
= �(250 MeV)3 and Mq = 574 MeV ( where

the value G = 8:86�10�6 MeV�2 was used in Eq. (12)

for Mq) are not far from the ones predicted in the lit-

erature when a noncovariant cut-o� is used. However,

the �nite density behavior of these two quantities again

points out towards a smooth second-order phase tran-

sition.

Let us now evaluate the same quantities using the

PMS2 to generate the density dependent optimal values

for ��. Substituting the lowest order quark propagator

given by Eq. (9) into Eq.(4), we obtain
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c

E
(0)
NJL = �2NcNf

Z �

PF

d3q

(2�)3
q2

E0(q)
� 2GNcNf (2NcNf + 1)

"Z �

PF

d3q

(2�)3
�

E0(q)

#2
: (17)

The requirement that E be stationary with respect to variations in � leads to

�� = 4G

�
NcNf +

1

2

�Z �

PF

d3q

(2�)3
��

E0(q)
; (18)

from where we immediately see that, even at zeroth order in �, the value of � depends on G, in contrast to the

result obtained with PMS1. Note that this is the familiar Hartree-Fock gap equation of the model, where �� has the

interpretation of the dynamically generated mass as can also be seen from its behavior at �nite densities displayed

in Fig. 1 (dashed line). As expected, when these optimal values are injected in f�,


�qq
�
0
and Mq, one predicts the

restoration of chiral symmetry through a �rst-order phase transition in agreement with the HF results as can be

seen by the dotted line in Fig. 2.

Next, one could try to improve these results by using the O(�) quark propagator in the evaluation of the energy

density. Inversion of Dyson's equation leads to

S(1)(p) =
6p1 +M1

p21 �M2
1 + i�

+ �i
6p1 +M1

E1(p)
�
�
p01 � E1(p)

�
� (PF � jpj) ; (19)

where

p�1 = (p01;p) = (p0 + �0;p) ; E1(p) =
�
p2 + (M1)

2
� 1
2 ; (20)

with �0 given by Eq. (13). The superscript (1) in S(1) indicates that the propagator has been obtained with a

self-energy calculated up to �rst-order in � (note that the term � � �� appearing in Eq. (14) has already been

discarded in Eq. (19)). Using the �rst-order quark propagator in the evaluation of the energy density one gets

E
(1)
NJL = �2NcNf

Z �

PF

d3q

(2�)3
q2

E1(q)
� 2GNcNf (2NcNf + 1)

"Z �

PF

d3q

(2�)3
M1

E1(q)

#2
: (21)

An application of the PMS to E
(1)
NJL,

dE
(1)
NJL

d�
=

dE
(1)
NJL

dM1

dM1

d�
= 0 ; (22)

leads to

M1 = 4G

�
NcNf +

1

2

�Z �

PF

d3q

(2�)3
M1

E1(q)
: (23)

Again, we have obtained the familiar Hartree-Fock gap equation for the dynamically generated mass.

d

Higher-order corrections will in general introduce a

momentum dependence for the dynamically generated

mass. However, if one proceeds to higher orders in �

but neglect those graphs that correspond to vertex cor-

rections, the higher-order quark propagator will always

be of the form of Eq. (19), withM1 replaced by another

constant, sayM , which is a function of �. However, be-

cause of the PMS condition on E , M at each order will

always be given by the same value. This value is the

one that satis�es the usual gap equation

M = 4G

�
NcNf +

1

2

�Z �

PF

d3q

(2�)3
M

E(q)
; (24)

where

E(q) =
�
q2 +M2

� 1
2 : (25)

Therefore, the PMS condition on the energy density
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(PMS2) is equivalent to the usual Hartree-Fock solu-

tion for the dynamically generated mass, when vertex

corrections are neglected.

To conclude, in this paper we have used the NJL

model to illustrate potential problems with the applica-

tion of the PMS in the � expansion. In order to specify

a unique prescription to �x arbitrary parameters intro-

duced by the � expansion, we have studied two ways of

introducing the PMS procedure. We have applied the

PMS directly to f� following the standard procedure

(PMS1) [2]. We found that PMS1 leads to results for

chiral symmetry restoration that disagree with the HF

results. Having a close look in the way the PMS1 trades

� by the model parameters (the cut-o� in this case) and

its �nite density behavior, we were able to identify the

origin of this misleading result. We have also applied

the PMS to the energy density (PMS2). We have shown

that this prescription reproduces, already at lowest or-

der, the HF results for chiral symmetry restoration at

�nite density within the NJL model. Moreover, this re-

sult can be reproduced at any order in � provided that

one ignores vertex contributions. This result should be

compared with the one presented in Ref. [8] where, in

the context of the e�ective potential, it was found that

the � expansion and the 1=N expansion are identical in

the large N limit. Therefore, the PMS2 seems to be

an adequate way of �xing the arbitrary parameters to

generate nonperturbative results, and it is a promiss-

ing procedure since it allows the introduction of vertex

corrections in a very direct way. Work in this direction

is in progress [9].
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