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Fourth-order cumulants of physical quantities have been used to characterize the nature of
a phase transition. In this paper we report some Monte Carlo simulations to illustrate the
behavior of fourth-order cumulants of magnetization and energy across second and �rst-
order transitions in the phase diagram of a well known spin-1 Ising model. Simple ideas
from the theory of thermodynamic uctuations are used to account for the behavior of these
cumulants.

I Introduction

There are many attempts to characterize the order of

a phase transition on the basis of the analysis of nu-

merical data obtained from simulations of �nite spin

systems. One of the approaches to this problem con-

sists in the analysis of the behavior of fourth-order cu-

mulants of physical quantities (as the order parame-

ter and the energy) associated with the systems under

consideration[1, 2]. Properties of the fourth-order cu-

mulants of magnetization (and energy) have been in-

vestigated in the context of �nite-size e�ects in mag-

netically (and thermally) driven �rst-order transitions

in Ising and Potts models[3, 4, 5, 6] (as well as in the

case of some other systems[7, 8]).

In this paper, we perform Monte Carlo simulations

for the well known Blume-Capel model[9, 10] to il-

lustrate the behavior of the fourth-order cumulants of

magnetization and energy across �rst and second-order

transitions in the phase diagram of this system. We

show that it is possible to draw some conclusions from

the study of relatively small lattices. The general fea-

tures of the cumulants can be accounted for by simple

arguments from the theory of thermodynamic uctua-

tions. In particular, we emphasize the di�erences be-

tween the two types of cumulants, and the alternative

de�nitions of the cumulant of energy (which has not

been fully appreciated in previous investigations).

The layout of this paper is as follows. In Section 2

we de�ne the cumulants of a physical quantity. In Sec-

tion 3 we introduce some further de�nitions, and dis-

cuss some properties of the Blume-Capel model. Simu-

lations for the fourth-order cumulants of magnetization

and energy are reported in Sections 4 and 5, respec-

tively. We hope to have provided another example of

the use of these cumulants to characterize the order of

a phase transition.

II De�nition of the cumulants

The cumulants of a quantity x can be obtained from an

expansion of the form
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c

< exp (x) >= 1+ < x > +
1

2
< x2 > +

1

6
< x3 > +

1

24
< x4 > +::: ; (1)

where the brackets denote an average[11]. If we keep terms up to fourth order, the logarithm of this expansion may

be written as

lnf< exp (x) >g =< x > +
1

2
Q2 +

1

6
Q3 +

1

24
Q4 + ::: ; (2)

where the cumulants Q2, Q3, and Q4, are given by

Q2 =< x2 > � < x >2; (3)

Q3 =< x3 > �3 < x >< x2 > +2 < x >3; (4)

and

Q4 =< x4 > �3 < x2 >2 �4 < x >< x3 > +12 < x >2< x2 > �6 < x >4 : (5)

d

These cumulants can be rewritten in the more compact

form,

Q2 =< (x� < x >)2 >; (6)

Q3 =< (x� < x >)3 >; (7)

and

Q4 =< (x� < x >)4 > �3 < (x� < x >)2 >2 : (8)

Also, the fourth-order cumulant Q4 is more often writ-

ten as

Vx(L) = 1�
< (x� < x >L)4 >L

3< (x� < x >L)2 >2
L

; (9)

where L is the linear size of the lattice under consider-

ation.

III The Blume-Capel model

The Blume-Capel model is given by the spin Hamilto-

nian

H = �J
X
(i;j)

SiSj +D
NX
i=1

S2i �H
NX
i=1

Si; (10)

where Si = +1; 0;�1, on sites i = 1; :::; N of a Bravais

lattice, and the �rst sum is performed over all pairs of

nearest-neighbor sites. We consider the ferromagnetic

case, with positive exchange (J > 0) and anisotropy

(D > 0) parameters, which gives rise to a competition

between distinct spin orderings. In the D=J versus T=J

space, where T is the absolute temperature, the phase

diagram consists of an ordered and a disordered phase

separated by a transition line that changes character

from �rst to second{order at a well de�ned tricritical

point. We use this model to illustrate the behavior of

the fourth-order cumulants.

In zero �eld, the ordered phase is characterized by

symmetric magnetizations, +m0 and �m0, with the

same energy. In general, we have hHiL 6= 0, and even

hHniL 6= 0, for all n. Therefore, the fourth-order cu-

mulant of energy is written as

VE(L) = 1�
< (H� < H >L)4 >L

3< (H� < H >L)2 >2
L

; (11)

where L is the linear size of the lattice. As the magne-

tization is symmetric, that is, < mn >L= 0 for n odd,

the fourth-order cumulant of the magnetization is given

by

Vm(L) = 1�
< m4 >L

3< m2 >2
L

: (12)

It should be remarked that, as < En >L 6= 0 for all n

(including odd values of n), and < mn >L= 0 for odd

n, the energy and the magnetization give rise to distinct

expressions of the fourth-order cumulant.

Now we perform a preliminary Monte Carlo simula-

tion to look at the form of the distribution of probabil-

ities for the magnetization (and to motivate the choice

of the distributions of energy and magnetization to be

used in the forthcoming theoretical calculations). Let
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us de�ne the dimensionless variables

t �
T

J
; d �

D

J
; and h �

H

J
; (13)

and use a Metropolis algorithm to performMonte Carlo

simulations for the Blume-Capel model, in zero �eld, on

a simple cubic lattice of side L.

Figure 1. Histogram of the absolute values of the magneti-
zation, jmj, across a �rst-order phase transition.

In Fig. (1), we show the distribution of the absolute

values of the magnetization for t = 0:1667, L = 8, and

several values of d. In the top left graph, for d = 0:5000,

jmj has a unique maximum around jmj = 0:9, which

corresponds to an ordered phase. The bottom left

graph, for d = 0:5008, displays two peaks (around

m = 0 and jmj = 0:9), which indicate the coexistence

of phases (m = 0, and m = �m0 6= 0). Upon increas-

ing the value of d, the peak at jmj = 0 is enhanced,

while the peak around jmj = 0:9 is depressed (see the

top right graph, for d = 0:5017). For even larger val-

ues of d, there remains a single peak around jmj = 0,

which indicates that the system is in the paramagnetic

phase (see the graph for d = 0:5050). This set of graphs

represents a �rst-order transition.

Figure 2. Histogram of the absolute values of the magneti-
zation, jmj, across a second-order phase transition.

In Fig. (2), we show a histogram of jmj across a

second-order transition, for d = 0:35. The top left

graph, for t = 0:3667, corresponds to the ordered phase,

with a single peak of the absolute value of the magne-

tization at jmj = 0:5. As the value of t is increased,

this peak moves toward jmj = 0 and no other peak

arises (see the lower left graph, for t = 0:3833). For

higher values of t, jmj peaks at jmj = 0 (see the graphs

at right, for t = 0:4167 and t = 0:5000). This set of

graphs illustrates a continuous phase transition.

Figs. (1) and (2) provide the motivation for choos-

ing a Gaussian form for the probability of magne-

tization, p(m). Although we are showing data for

the magnetization, similar histograms can be built for

the energy, which also give support to a Gaussian-

shaped probability distribution, p(E). For large lat-

tices (L!1) these distributions are expected to tend

to Dirac delta functions. The thermodynamic consis-

tency of these assumptions has been discussed in detail

by Challa, Landau, and Binder[4] (see also the work of

Oitmaa and Fernandez[12]).

Now we present separate analyses of the fourth-

order cumulants associated with magnetization and en-

ergy across �rst and second-order phase transitions.

IV Cumulants of magnetization

In the ordered phase the distribution of probability of

the magnetization consists of two peaks around +m0

and �m0. For small lattices (L �nite), we assume the

Gaussian form
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c

p(m) =
1

2
C exp

�
�
(m +mo)2

2�2

�
+

1

2
C exp

�
�
(m �mo)2

2�2

�
; (14)

d

where C = (2��2)�1=2 is a normalization constant, and

the parameter � should be inversely proportional to the

lattice volume, L3. In the L ! 1 limit, we have two

Dirac delta functions,

p(m)!
1

2
�(m +mo) +

1

2
�(m�mo) : (15)

For �nite lattices, with p(m) given by Eq. (14), we

have < mn >= 0, for odd values of n, and

< m2 >=

Z
1

�1

m2p(m)dm = �2 +m2
o; (16)

and

< m4 >=

Z
1

�1

m4p(m)dm = 3�4+6�2m2
o+m

4
o: (17)

Thus, the fourth-order cumulant is given by

Vm(L) = 1�
3�4 + 6�2m2

o +m4
o

3(�2 +m2
o)

2
: (18)

In the disordered phase, p(m) has a single peak at

m0 = 0. Inserting m0 = 0 in Eq. (18), we have

Vm(L) = 0 for the disordered phase.

For in�nite lattices (� ! 0), it is easy to see that

Vm(L) ! 2=3 in the ordered phase. In the disordered

phase, Vm(L)! 0, regardless of the value of the param-

eter �. These limiting values for the in�nite lattice also

come from the double-delta distribution p(m), given by

Eq. (15). In this case, in the ordered phase, we have

< mn >= 0, for odd n, and < mn >= mn
o for even n.

Thus

Vm(L) ! 1�
m4
o

3(m2
o)

2
=

2

3
: (19)

In the disordered phase, < mn >= 0 for all n, hence

Vm(L)! 0.

Figure 3. Fourth-order cumulant of the magnetization ver-
sus temperature, tq, across a second-order phase transition.
Monte Carlo data were obtained for the Blume-Capel model
on a cubic lattice (q = 6) of side L = 8, for d = 0:15. Av-
erages were calculated from 50000 Monte Carlo steps after
thermalization.

In a second order phase transition, the two peaks

of the distribution of probabilities p(m) in the ordered

phase move towards each other and form a unique peak

at m = 0 as the system passes to the disordered phase.

Fig. (3) shows the cumulant of magnetization for the

Blume-Capel model in a second order phase transition.

These simulations were performed for a cubic lattice

of side L = 8 (and coordination q = 6), at d = 0:15.

We have run 5000 times through the lattice to reach

thermalization. Each average was then calculated us-

ing 50000 additional steps.

In a �rst-order phase transition we have the coexis-

tence of the ordered and disordered phases. The distri-

bution of probabilities p(m) has peaks at m = �m0 6=

0, and m = 0. For an in�nite lattice, we take the triple-

delta distribution,

p(m) = c�(m+mo)+c�(m�mo)+(1�2c)�(m) ; (20)

where c is a positive constant. We then have

< m2 >=

Z
1

�1

m2p(m)dm = 2cm2
o; (21)
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and

< m4 >=

Z
1

�1

m4p(m)dm = 2cm4
o: (22)

Therefore,

Vm(L) = 1�
2cm4

o

3(2cm2
o)

2
= 1�

1

6c
: (23)

For small values of c, namely c < 1=6, the cumulant

Vm(L) is negative. Similar results could have been ob-

tained from the L ! 1 limit of a Gaussian form of

p(m) for a �nite lattice. In Fig. (4), we show the fourth-

order cumulant of the magnetization across a �rst-order

phase transition. The simulations were performed for

a cubic lattice, with L = 8, at t = 0:15. We have run

5000 steps through the lattice to reach thermalization.

Each average was then calculated from 50000 additional

steps. In the ordered phase, we do have Vm(L) = 2=3.

In the disordered phase there are very small uctuations

around Vm(L) = 0. At the transition, Vm(L) assumes

a negative value.

Figure 4. Fourth-order cumulant of magnetization versus
anisotropy, dq, across a �rst-order phase transition. Monte
Carlo data were obtained for the Blume-Capel model on a
cubic lattice (q = 6) of side L = 8, at temperature t = 0:15.
Averages were calculated from 50000 Monte Carlo steps af-
ter thermalization.

V Cumulants of energy

In both ordered and disordered phases, the probability

distribution of energy has a unique peak at a certain

value, which we call E0. For small lattices, we can

write the Gaussian form

p(E) = C exp

�
�
(E � Eo)

2

2�2

�
; (24)

where C = (2��2)�1=2. For large lattices (L!1), we

have

p(E)! �(E � Eo): (25)

From Eq. (24), we obtain

< E >=

Z
1

�1

Ep(E)dE = Eo; (26)

< (E� < E >)2 >=

Z
1

�1

(E � Eo)
2p(E)dE = �2;

(27)

and

< (E� < E >)4 >=

Z
1

�1

(E �Eo)
4p(E)dE = 3�4:

(28)

Inserting these expressions into Eq. (11), we have

VE (L) = 1�
3�4

3(�2)2
= 0; (29)

for all values of the parameter � (that is, independently

of the size of the lattice used in the simulation). Using

the limiting distribution, given by Eq. (25), we also

have

< E >!

Z
1

�1

E�(E �Eo)dE = Eo; (30)

and

< (E� < E >)n >!

Z
1

�1

(E�Eo)
n�(E�Eo)dE = 0;

(31)

for all n. Hence, VE(L) ! 0, as we have already ob-

tained.

Figure 5. Fourth-order cumulant of energy versus temper-
ature, tq, across a second-order phase transition. Monte
Carlo data were obtained for the Blume-Capel model on a
cubic lattice (q = 6) of side L = 8, for d = 0:15. Aver-
ages were calculated from 50000 Monte Carlo steps after
thermalization.
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In a second-order transition the distribution p(E)

displays just a single peak, that moves from an initial

value E1 to a �nal value E2. Therefore, the cumulant of

energy across a second-order transition always vanishes,

independently of the lattice size. The Monte Carlo es-

timates of VE(L) for the Blume-Capel model, as shown

in Fig. (5), for d = 0:15 and lattice size L = 8, indicate

a small maximum next to a small minimum near the

second-order phase transition. This behavior suggests

that it becomes too simple to describe the probabilities

in the immediate neighborhood of a continuous transi-

tion by a symmetric Gaussian form. This is also hinted

by the bottom left graph of Fig. (2), which is already

quite asymmetric.

In a �rst-order phase transition there is a coexis-

tence between the ordered phase, associated with a dis-

tribution of energy peaked at E1, and the disordered

phase, with a distribution peaked at E2. Then, we can

write

c

p(E) = c�(E �E1) + (1 � c)�(E �E2); (32)

from which we have

< E >=

Z
1

�1

Ep(E)dE = cE1 + (1� c)E2; (33)

< (E� < E >)2 >=

Z
1

�1

[E � cE1 � (1� c)E2]
2
p(E)dE = c(1� c)(E1 �E2)

2; (34)

and

< (E� < E >)4 >=

Z
1

�1

[E � cE1 � (1� c)E2]
4
p(E)dE =

= c(1� c)(1� 3c+ 3c2)(E1 �E2)
4: (35)

d

The fourth-order cumulant is given by

VE(L) = 2�
1

3c(1� c)
; (36)

which becomes negative for small values of either c or

1 � c. In Fig. (6), for a cubic lattice of size L = 8,

at t = 0:15, we show the fourth-order cumulant associ-

ated with the energy of the Blume-Capel model across

a �rst-order phase transition.

In Figs. (7) and (8), we illustrate the fourth-

order cumulants of magnetization and energy across a

second-order transition. We see that the cumulants

Vm(L), for di�erent values of L, cross at a unique

point, which can be used to estimate the transition

temperature[2, 6, 7, 13]. However, it should be pointed

out that a precise location of the transition requires a

detailed study of �nite size scaling, which is beyond the

scope of this paper[2, 3, 4, 6, 14, 15, 16].

Figure 6. Fourth-order cumulant of energy versus the pa-
rameter of anisotropy, dq, across a �rst-order phase transi-
tion. Monte Carlo data were obtained for the Blume-Capel
model on a cubic lattice (q = 6) of side L = 8, at tempera-
ture t = 0:15. Averages were calculated from 50000 Monte
Carlo steps after thermalization.
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Figure 7. Fourth-order cumulant of magnetization ver-
sus temperature, tq, across a second-order phase transition
(d = 0:15), for the Blume-Capel model on a sequence of
cubic lattices (q = 6), of lattice sizes L = 4, 8, and 14. The
Monte Carlo averages were calculated from 50000 lattice
steps after thermalization.

Figure 8. Fourth-order cumulant of energy versus tempera-
ture, tq, across a second-order phase transition (d = 0:15),
for the Blume-Capel model on a sequence of cubic lattices
(q = 6), of lattice sizes L = 4, 8, and 14. The Monte Carlo
averages were calculated from 50000 lattice steps after ther-
malization.

Many authors use a fourth-order cumulant of the

energy given by the form

VE(L) = 1�
< E4 >L

3 < E2 >2
L

; (37)

instead of the connected expression of Eq. (11). Al-

though this may work for Ising and Potts models[17],

it is important to emphasize that for the Blume-Capel

model we have to use the correct de�nition, given by

Eq. (11), to be able to extract the order of the phase

transition (see also the recent works of Janke[18], and

of Borgs and collaborators[16]).

VI Conclusions

We have used the spin-1 Ising model of Blume and

Capel to illustrate the feasibility of characterizing the

order of a phase transition from a simple analysis of the

behavior of the fourth-order cumulants of energy and

magnetization. The general features of these cumulants

can be derived from simple arguments of the theory of

thermodynamic uctuations. In the literature, there

are two de�nitions of the fourth-order cumulant of en-

ergy. We have pointed out that, in the case of systems

as the Blume-Capel model, it is important to consider

the connected form of the cumulant of energy.
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