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The Du�n-Kemmer-Petiau (DKP) relativistic equation has been recently uded to study the
interactions of spinless mesons with nuclei. In view of this interest and also the interest
to determine the phase space picture for hadronic quantum theory, we present a derivation
of the DKP equation on the generalized phase space proposed by Bohm and Hiley. Our
development is based on the algebraic calculus introduced by Sch�onberg and uses the idea
of algebraic spinors due to Riesz and Cartan. The free DKP particle and the more general
case of the DKP particle in a prescribed external electromagnetic �eld are considered, and
we obtain the DKP Liouville type equations for these cases.

I Introduction

The description of quantum systems using a general-

ized form of the Liouville equation is apropriate in the

context where one wants to use a classical formalism to

understand the nature of physical attributes usually as-

sociated with quantum mechanics. Quantities like spin,

for instance, can be given a formulation in terms of a

Liouville type equation in a relativistic phase space [1].

In such cases the spinorial character of the theory is

contained essentially in the algebraic structure of the

Liouville superoperator. Therefore, it is important to

know how the spin algebras are combined with the dif-

ferential operators involved in the Liouville equation as

well as the domain of these operators . This combined

structure is then what we mean by a generalized Liou-

ville equation. In the relativistic case the role played

by the so-called geometric algebras has been given at-

tention as a way of understanding the nature of the

relativistic phase space [1]. Following suggestions of

Sch�onberg and Bohm[1][2], Holland [3] derived relativis-

tic phase space equations for a massive spin 1
2 particle

in an external electromagnetic �eld. In his develop-

ment, Holland takes the complex Dirac algebra C4 and

obtains the phase space representation of the Dirac and

Feynman-Gell-Mann equations.

Recently [4, and Refs. cited therein] the �rst-

order relativistic Du�n-Kemmer-Petiau (D.K.P) equa-

tion has been analyzed as part of a program to study the

interactions of spinless mesons with nuclei. Simultane-

ously (and independently) the D.K.P algebras which

are associated to D.K.P equation have been studied

from a modern perspective [5].

In view of this recent interest in the use of the D.K.P

relativistic equation, the study of D.K.P algebras and

also the interest to determine the phase space formula-

tion for hadronic quantum theory [6], we propose in this

paper a derivation of the phase space representation of

the D.K.P equation for scalar particles. We will fol-

low the algebraic calculus introduced by Sch�onberg[2]

and the mathematical development of Bohm and Hiley

[1] based on the idea of algebraic spinors [7]. In doing

so, we show that it is also possible to write relations

of classical type in a relativistic phase space by means



of the D.K.P. algebra. The paper is organized as fol-

lows. In section 2, along the lines of Sch�onberg [2] , we

begin with the D.K.P equation for the algebra in the

sense that the D.K.P operator acts on a subspace of the

algebra. This allows us to suggest a broader meaning

for this operator aiming to generalize the equation for

further integer spins. This will also yields a relation

with the Dirac algebraic spinors. We will then take

from that and use a relativistic version of the Wigner-

Moyal transformation to make the passage to a phase

space equation. Section 3 will follow with an interpreta-

tion of our D.K.P Liouville type equation corresponding

to scalar particles in an external electromagnetic �eld.

Section 4 closes with some conclusion remarks.In the

Appendix the notation and some formal de�nitions re-

lated to spinor spaces, Grassmann, Dirac and D.K.P.

algebras are presented.

II Phase space formulation of

the D.K.P relativistic equa-

tion

In this section, following Sch�onberg [2], we begin with

the D.K.P equation in the algebra in order to give a

broader meaning to this relativistic equation in terms

of the algebraic spinors [7]. This will allow us to use the

techniques introduced in [1] further on in the paper.

The D.K.P operator in the algebra combines the

covariant vector @=@x� � @� with the generator of the

D.K.P algebra ��. The evolution D.K.P operator is the

contraction

@��
�; � = 1; 2; 3; 4:

The free D.K.P particle of mass m is described by

the following equation:

(@��
� +m)	 = 0: (1)

This is an equation de�ning the eigenstates 	 of

@��
�. This equation is being seen here as a generaliza-

tion of the usual D.K.P equation [2] in the sense that

the 	 is an element of the minimum left ideal of an

extended Grassmann algebra. Following the Appendix,

this 	 takes the explicit form:

	 =

nX
q=0

(q!)�1 Ak1:::kq (P
k1:::kq ); 	 2 CP(W) (2)

Now, from the general form

�(p)� = (�p)(e�) + g��(e
�)(�p) (3)

= (e�)(�p+1) + g��(e
�)(�p): (4)

it is easy to see that the action of a �
(p)
� on a spinor 	

projects it down to the space of antisymmetric tensors

of order p+1 and p. This then shows the di�erence be-

tween the Dirac algebraic spinors and D:K:P spinors

in this algebraic context.

In the present work, we restrict our analysis to the

scalar particles, i.e we take p = 0. Thus

�(0)� = �� = (e�)(�1) + g��(e
�)(�0) (5)

= (e�)(�1) + g��(e
�)(P ): (6)

The 	 which are elements of the space of represen-

tation of the operators above have the general form

	 = f(P )� f�(P
�): (7)

They are expressed as a direct sum of scalars and

vectors. This corresponds in the usual D.K.P. theory

to the column representation0
BBBB@

f
(f1)
(f2)
(f3)
(f4)

1
CCCCA

where f is a scalar function proportional to the pro-

jector (P) onto the scalars (see appendix) and the (f�)

are vector functions. In this case the D.K.P algebra

coincides with the total matrix algebra of the (4 + 1) -

dimensional space (see Appendix for more details).

We now aim to arrive at a phase-space D.K.P equa-

tion. Following [1] we �rst regard the free particle equa-

tion

@�
!

�
�

	 = 0 (8)

and its adjoint

@�
 

�
�

	 = 0 (9)

where



!

�
�

	 = ��	1 (10)

and
 

�
�

	 = 1	�� (11)

We de�ne two sets of elements in the algebra:

+

��= (P )(e�) + g��(e
�)(P ) (12)

and

�� = (P )(e�)� g��(e
�)(P ): (13)

It can be veri�ed that these are generators of two

D.K.P algebras satisfying the relations

+

��
+

��
+

�� +
+

��
+

��
+

��= g��
+

�� +g��
+

�� (14)

and

�� �� �� + �� �� �� = �g�� �� � g�� ��: (15)

It is convenient to relate the
+

�� and the �� to the
!

�� and
 

��. For we de�ne

!
� 5=

!
� 1

!
� 2

!
� 3

!
� 4 (16)

 
� 5=

 
� 1

 
� 2

 
� 3

 
� 4 (17)

where

 
!
� �= 2(

 
!

��)
2 � 1:

The relations we want are

+

��=
!

�� and
�

��= !
 

� � (18)

where

! =
 
� 5

!
� 5=

!
� 5

 
� 5; !2 = 1; (19)

and it is veri�ed that the element ! anticommutes with

all the

 
!

�� :

From these relations we can write

by� =
1

2
(
+

�� �
�

��); b� =
1

2
(
+

�� +
�

��) (20)

where we have adopted the convention

(P )(e�) �! b� (21)

g��(e
�)(P ) �! by�: (22)

The construction of the above relations amounts to

apply the techniques introduced in [1] to derive a Liou-

ville type equation in the generalized phase space. The

relations (20) are analogous to the relations between the

Grassmann algebra and the Cli�ord algebra shown in

[1]. Here, however, they have a di�erent interpretation.

III D.K.P equation on the gen-

eralized phase space

The above algebraic calculus is based on an algebra

for vectors and covectors (see Appendix). Therefore it

gives rise to a structure similar to the momentum phase

space i.e the image of a local chart of a cotangent bundle

[8]. It should be noted that the bilinear form B(see Ap-

pendix) used to construct the D.K.P algebra is not the

symplectic bilinear form but a pseudo-euclidean form

on phase space W. The space W enters the theory of

the relativistic D.K.P particle in the usual (X; p) phase

space in the following way: let M be the phase space of

continuous variables (X�; p�) de�ned by the relativistic

version of the Wigner-Moyal transformation [1].

F(X�; p�) =
1

2�

Z
V (x;�; x�)e�ip��

�

d4� (23)

where

X� =
x;� + x�

2
; �� = x� � x;�:

The generalized relativistic phase space of the

D.K.P particle can modulo relativistic constraints be

viewed as the product space

T
def
= M 
Dp+1

p (W)

where Dp+1
p (W) is the spin space of the D.K.P particle

in W. T is the total space. A state of the particle is

represented by the Wigner function de�ned on T . The

set of these states will then form the domain of the

operators (X; p; @
@X

; @
@p
; by�; b�) that will be involved in

the Liouville equation. Next, we derive this equation

for the free D.K.P scalar particle. We begin with the

D.K.P equation with no mass. The following steps serve

to give a brief summary of the techniques used in [1] to

obtain the Liouville operator. We go back to equations

(8) and (9) and write it down for the density matrix V

in the usual x-representation:



@

@x0�

!

�
�

V (x;�; x�) = 0 (24)

@

@x�
V (x;�; x�)

 

�
�

= 0: (25)

V is a function de�ned on the space T . The depen-

dence on the spin indices has been dropped for conve-

nience. Multiplying (25) by ! and using the de�nitions

(18) we get

@

@x0�

+

�
�

V (x0�; x�) = 0 (26)

@

@x�

�

�
�

V (x0�; x�) = 0: (27)

Now we use the relations (20) to write:

(b� + by�)@0�V = 0 (28)

(b� � by�)@�V = 0: (29)

We change variables according to

X� =
x;� + x�

2
; �� = x� � x;�: (30)

Thus (28) and (29) become

(b� + by�)

�
1

2

@

@X�
�

@

@��

�
V = 0 (31)

(b� � by�)

�
1

2

@

@X�
+

@

@��

�
V = 0: (32)

The addition and subtraction of the above equations

give

�
1

2
b�

@

@X�
� by�

@

@��

�
V = 0 (33)

�
1

2
by�

@

@X�
� b�

@

@��

�
V = 0: (34)

Under the Wigner-Moyal transformation (23) these

equations become

�
1

2
b�

@

@X�
� iby�p�

�
F (X�; p�) = 0 (35)

�
1

2
by�

@

@X�
� ib�p�

�
F (X�; p�) = 0: (36)

These are the massless free-particle D.K.P equa-

tions on the generalized phase space T . The functions

F (X�; p�) has the following module structure

F = F 
 �; � 2 Dp+1
p (W ) (37)

where F(X�; p�) is the Wigner function de�ned on the

continuous variables only.

The square of the operator

�
1

2
by�

@

@X�
� ib�p�

�
(38)

is the Liouville operator on F . In fact, we have

�
1

2
by �

@

@X�
� ib�p�

�2

F = 0

or

1

4
by�by �

@

@X�

@

@X�
F � i

1

2
by�b�

@

@X�
p�F

�
1

2
b�by �p�

@

@x�
F � b�b�p�p�F = 0:

And, by using the relations

[by�; b� ]+ = ���(P ) + by�b�

[by�; by � ]+ = 0

[b�; b� ]+ = 0;

where [A;B]+ = AB +BA, we obtain

(���(P ) + by �b�)p�
@

@X�
F = 0: (39)

This is the classical Liouville equation for a free par-

ticle. Notice that the equation has two terms. The �rst

one accounts for the scalar part of F and the second for

the vector part of F . The operator

[by�; b� ]+ = ���(P ) + by�b� (40)

leaves the space of states stable which makes the equa-

tion algebraicaly consistent. It is noteworth to point

out that besides the scalar part, there is also a term

involving by�b� . This is because the D.K.P is a ma-

trix algebra of the tensors of order p and p+ 1. In the

case in consideration, we are taking p = 0 which justify

the term by�b� corresponding to p + 1. The making

of the equation (39) opens the possibility of deriving

the Liouville operator in a more general situation; we



shall regard the D.K.P particle with mass m in an ex-

ternal electromagnetic �eld (in units ~ = 1 and metric

(1,-1,-1,-1)). The equations for V are:

!

�
�
�

@

@x;�
�
ie

c
A�(x

;�)

�
V +mV = 0 (41)

 

�
�
�

@

@x�
+
ie

c
A�(x

�)

�
V +mV = 0: (42)

Multiplying (42) by ! and using (18) we get:

+

�
� �

@

@x;�
�
ie

c
A�(x

;�)

�
V +mV = 0 (43)

�

�
� �

@

@x�
�
ie

c
A�(x

� )

�
V + !mV = 0: (44)

We now use the relations (20) to write

(b� + by �)

�
@

@x;�
�
ie

c
A�(x

;�)

�
V +mV = 0 (45)

(b� � by �)

�
@

@x�
�
ie

c
A�(x

�)

�
V + !mV = 0: (46)

Changing the variables to X� and ��, according to

(30), and further expanding in the potentials yields

A�(X
� � ��=2) ' A�(X

�)�
��

2

@

@X�
A�(X

�):

Following the same steps which led to (33) and (34)

one gets

c

�
b�
�

@

@X�
+
ie

c
��

@

@X�
A�

�
� 2by�

�
@

@��
+
ie

c
A�

�
+m(1� !)

�
V = 0

�
by�

�
@

@X�
+
ie

c
��

@

@X�
A�

�
� 2b�

�
@

@��
+
ie

c
A�

�
+m(1 + !)

�
V = 0

which under the Wigner-Moyal transformation become

�
b�
�

@

@X�
+
e

c
��

@

@X�
A�

@

@p�

�
� 2iby�(p� �

e

c
A�) +m(1� !)

�
F = 0 (47)

�
by�

�
@

@X�
+
e

c
��

@

@X�
A�

@

@p�

�
� 2ib�(p� �

e

c
A�) +m(1 + !)

�
F = 0: (48)

These are the D.K.P equations in the generalized phase space. The corresponding Liouville operator is the

square of the operator on F given in (47). The square of(48) leads to the same equation. In order to compute the

square of the above operator we �rst rewrite (48) taking into account the fact that !2 = 1. Thus,

�
�
by�

2

@

@X�
+

e

2c
by�

@A�

@X�

@

@p�
+ ib�(p� �

e

c
A�)

�
F = mF: (49)

This equation is an eigenvalue equation for F . The Liouville operator LDKP is the square of the operator

�
by�

2

@

@X�
+

e

2c
by�

@A�

@X�

@

@p�
+ ib�(p� �

e

c
A�) (50)

with m2 as the eigenvalue. In order to compute the square we de�ne the following notation

L[�] := �
by�

2

@

@X�
+

e

2c
by�

@A�

@X�

@

@p�
+ ib�(p� �

e

c
A�):

Now we compute

�
L[�]L[�] + L[�]L[�]

2

�
F = m2F



which gives

LDKP = ((P )��� + by �b�)(p� �
e

c
A�)

@

@X�

�
e

2c
(by �b� � by�b�)

�
@A�

@X�
�

@A�

@X�

�

+
e

c
(by �b� + ���(P ))(p� �

e

c
A�)

@A�

@X�

@

@p�
� 2im2:

Clearly one can distinguish two terms. Firstly, the scalar part, i.e,

LsDKP = (P )���(p� �
e

c
A�)

@

@X�
+
e

c
(P )���(p� �

e

c
A�)

@A�

@X�

@

@p�
(51)

and secondly, the vector part

LvDKP = by �b�(p� �
e

c
A�)

@

@X�
+
e

c
by �b�(p� �

e

c
A�)

@A�

@X�

@

@p�
(52)

�
e

2c
(by �b� � by�b�)

�
@A�

@X�
�

@A�

@X�

�
: (53)

d

The total Liouville operator is LsDKP + LvDKP �

2im2. Due to the presence of the projector �0 � P

(see Appendix) in (51), LsDKP operates only on the

scalar part of F . We can leave P out of LsDKP since

it is just a unit on its range. Thus (51) can be read

without P . Hence LsDKP is just the Liouville operator

for the Klein-Gordon equation with Euclidean metric

��� [3]. The two terms in LsDKP represent: the modi-

�ed contribution to LDKP coming from the motion of

the trajectory in phase space and the electromagnetic

force, respectively.

In (53) we have the vector part of F being modi�ed

by two similar terms. Contrary to (51), these terms

operate only on the vector part since they vanish on

the scalar part. The third term shows the e�ect of the

spin of the DKP particle which appears coupled with

the electromagnetic �eld only in the vector part. Here

there is a complete similarity with the Liouville oper-

ator for the Dirac equation derived in [1]. The term

(by �b� � by�b�) is just the spin operator S�� exhibited

in [9]. Notice that despite we are analyzing the scalar

case (p = 0), there is always the p + 1 term involved.

As aforementioned, this is because the D:K:P algebra

gives rise to a total matrix algebra of order p and p+1.

IV Conclusions

We have shown how to apply the phase space approach

proposed by Bohm and Hiley [1] in order to �nd a for-

malism describing bosonic particles. In such an ap-

proach the physical property of spin appears in a classi-

cal relativistic algebraic formalism in phase space. This

space can be viewed as a product space which natu-

rally embodies new kind of algebraic operators besides

the usual di�erential operators that feature in the plain

Liouville formalism. The generators of the D.K.P alge-

bras are constructed in the standard fashion used for

deriving Cli�ord algebras out of bilinear forms.

Via a relativistic version of the Wigner-Moyal trans-

formation we have arrived at two Liouville type equa-

tions. One for free particles and the other for particles

in the presence of an electromagnetic �eld. In previous

works on this subject Bohm and Hiley studied the Dirac

equation and its non-relativistic case [10]. Therefore

our results add to the program since we were able to ex-

hibt an algebraic development for the relativistic phase

space describing bosons as well. As a consequence, the

interpretation of the solutions of the Liouville equation

as spin �elds having certain independence of motion,

and the phase trajectories as whole depending on the



interaction of these �elds with the electromagnetic �eld

has also been veri�ed for bosonic systems.

So far we have obtained the Liouville equation for

D.K.P particles corresponding to p = 0 in the D.K.P

algebra. However it is possible to generalize this result

for any allowed values of the label p. A further work in

this direction is in progress and should be published in

a forthcoming paper.

V Appendix

V-I The extended Grassmann algebra of a phase

space

Let V be a n-dimensional vector space and V� its

dual space. A phase space W is de�ned as

W = V�V� = f(v; u); v 2 V; u 2 V�g: (54)

Let B be a bilinear form de�ned on W, i.e. B :

W�W �! R or C (Real or Complex �eld) given by

2B ((v; u); (v0; u0)) = hu; v0i+ hu0; vi (55)

where h�; �i is the natural pairing of vectors and covec-

tors. This bilinear form is non-singular and establishes

an isomorphism betweenW andW*; the choice of this

bilinear form on W embeds it into a Cli�ord algebra

but in this case a Cli�ord algebra of the phase space

W.

The standard way to construct the algebra from B

is as follows: Let T(W) be the tensor algebra over W

i.e.

T(W) =

1M
i=0

T(i)(W)

where T(i) = W 
W 
 � � � 
W (i times) and W is

identi�ed with the 1-piece T(1)(W) of T(W).

From the universal property of T(W) one has

where C(W) is an associative algebra. Let I be the

two-sided ideal

w 
 w0 + w0 
 w � 2B(w ;w 0)1T(W):

in T(W). De�ne C(W) = T(W)=I. Therefore one has

�
�
w 
 w0 + w0 
 w � 2B(w;w0)1T (W )

�
= 0;

since � is an homomorphism. This implies that

[�(w); �(w0)]+ = 2B(w;w0)1C(w) (56)

Writing w as w = v � u, v 2 V and u 2 V� one

gets the extended Grassmann algebra of vectors and

covectors

[�(u); �(u0)]+ = [�(v); �(v0)]+ = 0 (57)

[�(v); �(u)]+ = hu; vi1C(w) (58)

where one may have the identi�cations �(v) = v,

�(u) = u.

Writing v and u in a basis i.e.

v = viei; u = uie
i

and using linearity of � one gets

[ei; e
j ]+ = �ji 1C(w) (59)

[ei; ej ]+ = [ei; ej ]+ = 0 (60)

Therefore C(W) is an algebra generated by vectors

and covectors with basis comprised by the 22n elements

(e1)
r1 � � � (en)

rn(en)sn � � � (e1)s1 ; r; s = 0; 1

In order to build up a canonical basis for C(W) one

de�nes the following primitive idempotent

P = N1 � � �Nn; n = dimV (61)

and

Nj = eje
j ; no sum:

It is easily veri�ed that P 2 = P . The canonical

basis for C(W) is written as

P
k1���kq
j1���jp

= ek1 � � � ekqPejp � � � ej1

which implies



�
P
k1���kq
j1���jp

��
P
i1���iq
h1���hp

�
= �p;q�

i1���iq
j1���jp

�
P
k1���kq
h1���hp

�
(62)

Hence these 22n elements are linearly independents

and a general element of C(W) can be expressed as a

linear combination

� =

nX
p;q=0

(p!q!)�1A
j1���jp
k1���kq

P
k1���kq
j1���jp

(63)

or

� =

nX
p;q=0

(p!q!)�1A
Jp
Kq
P
Kq

Jp
(64)

where we have adopted the multi-index notation

Jp = j1 � � � jp

Kq = k1 � � � kq

and sum in repeated indices is also understood.

V-II The spinor spaces of C(W)

We shall now consider the regular representation of

C(W) [11]. The regular representaion of an algebra is

a representation of the algebra on itself. An irreducible

representation of C(W) can be constructed on its mini-

mum left ideals [7]. According to Cartan [12], the min-

imum left ideal of the Cli�ord algebra can be taken as

the space of spinors of the algebra. The group of inner-

automorphisms of the algebra acts irreducibly on the

minimum left ideals thus yielding a spinorial represen-

tation. A way to construct minimum left ideals in an

algebra is to use a primitive idempotent. In our case the

element P introduced in (61) happens to be a primitive

idempotent[13] since,

P 2 = P; P � = P; P�P = cP ; � 2 C(W); c 2 C:

Hence a minimum left ideal of C(W) can be formed

by the projection

�P

for every � 2 C(W). We denote the projected space by

CP(W).

Analogously one can form the space P� denoted by

CP(W), which is a minimun right ideal of C(W). It

turns out that C(W) is a matrix algebra and has a rep-

resentation on the subspaces CP(W) and CP(W). Let

us see how this result works in terms of components.

For take

� =

nX
p;q=0

(p!q!)�1A
Jp
Kq
P
Kq

Jp

and project it down into CP(W);i.e

�P =

nX
p;q=0

(p!q!)�1A
Jp
Kq
P
Kq

Jp
(P )

By taking into account the relations ei(P ) =

(P )ej = 0 as well as rules (62) we get

	 := �P =

nX
q=0

(q!)�1AKq
PKq ;

	 2 CP(W):

Now the space CP (W) of elements 	 plays the role

of the space of representations of C(W). Indeed it can

be easily veri�ed that

� : 	 �! 	0

�	 = 	0; � 2 C(W); 	; 	0 2 CP(W):

V-III The Dirac algebra

The algebra C(W) developed above is an a�ne alge-

bra since it is generated by a set of vectors and covectors

de�ned independently. When a metric is available one

can distinguish two metric subalgebras in C(W) gener-

ated by

(�)� = e� � g��e
� ;

one for each sign of the metric.

Using relations (60) it follows that

[(�)� ; (�)� ]+ = �2g��1C(W) (65)

[(+)
� ; (�)� ]+ = 0 (66)

Here an important point on the notation is in

order[2]. The element noted by g��e
� does not mean

to lower the indices � with the metric. We just mean

that there is a sum on � thus leaving free the indice � to



balance the equality. In this regard we should point out

that the multiplication rules of the algebra depend on

the covariant or contravariant nature of the generators.

The elements +� generates a Cli�ord algebra corre-

sponding to the positive metric g�� . When n = 4 and

g�� is the Minkowski metric, we have the Dirac algebra

of space-time.

V-IV The Du�n-Kemmer-Petiau algebras

The elements

�p = (p!)�1P JPJP

are idempotent elements of C(W). The unity of the

algebra has an idempotent decomposition

1C(W) =

nX
p=0

�p; �0 := P

The elements �p satisfy some important properties,

namely,

(�p)(�q) = �p;q(�p)

(ej)(�p) = (�p+1)(e
j)

(�p)(ej) = (ej)(�p+1)

The generators of the D.K.P algebra which is de-

noted by �
(p)
� satisfy the following fundamental rela-

tions:

�(p)� �(p)� �(p) + �(p) �(p)� �(p)� = g���
(p)
 + g��

(p)
� (67)

These generators have an expression within C(W)

as follows

�
(p)
j = (�p)(ej) + gji(e

i)(�p) (68)

= (�p)(ej) + gji(�p+1)(e
i) (69)

= (ej)(�p+1) + gji(e
i)(�p) (70)

where \p" is the order of the linear space into which �p

projects the 	 2 C(W).

The element (�p) + (�p+1) is idempotent and com-

mutes with all the �
(p)
j . Thus (�p)+(�p+1) is the unity

of the D.K.P algebra.

Despite one has a metric in the de�ning relations

(67), the D.K.P algebra is not always a metric subal-

gebra of C(W). In fact,one can introduce the a�ne

algebra Dn;p [2] generated by

(�p)(ej); (ej)(�p) and (�p+1) + (�p)

It is clear that Dn;p contains D.K.P as a subalge-

bra. In fact, Dn;p coincides with D.K.P algebra when

p 6= n�1
2 [2]. In this case, D.K.P is an a�ne algebra

even if the components of the �
(p)
j are de�ned in terms

of the components of the metric tensor. As far as C(W)

is concerned the algebraDn;p is the total matrix algebra

of the direct sum of the linear subspaces of CP(W) cor-

responding to covariant antisymmetric tensors of order

\p" and \p+1". This total matrix algebra is the D.K.P

algebra when p 6= n�1
2 . We shall denote the space of

matrices of order p and p+ 1 by Dp+1
p (W)
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