
44 Brazilian Journal of Physics, vol. 28, no. 1, March, 1998

Vector Supersymmetry of Three

Dimensional Cohomological Field Theories

C. Linhares de Jesus, C.A. Sasaki, S.P. Sorella

UERJ, Universidade do Estado do Rio de Janeiro

Departamento de F��sica Te�orica

Instituto de F��sica, UERJ

Rua S~ao Francisco Xavier, 524

20550-013, Maracan~a, Rio de Janeiro, Brazil

Received September 10, 1997

The existence of the vector supersymmetry for three dimensional cohomological �eld theories
is discussed. The example of the three dimensional topological model of Baulieu-Grossman
[1] is considered in detail.

Introduction

Almost all known topological �eld theories (TFT)

[2], of both Schwartz and cohomological type, turn out

to be characterized by an additional invariance whose

generators possess a Lorentz index and give rise, to-

gether with the BRST generator, to a supersymmetric

algebra of the Wess-Zumino type.

This additional invariance, usually called vector su-

persymmetry, has been �rst detected in the case of the

three dimensional Chern-Simons theory [2, 3] and later

on has been extended to others TFT as, for instance,

the BF models in di�erent space-time dimensions [4],

the bosonic string and its supersymmetric version [5],

the W3�gravity [6] and the Witten's topological eu-

clidean Yang-Mills theory in four dimensions [7].

The vector supersymmetry has been proven to be

an important tool in the characterization of the rele-

vant BRST cohomology classes as well as in the un-

derstanding of the ultraviolet �niteness properties of

TFT [2, 4]. It is also worthwhile to mention here that,

recently, the existence of the vector susy has been re-

lated to the twisted version of extended supersymme-

tries, strengthening thus the deep relationship between

TFT and supersymmetric models [7].

The aim of this work is to investigate the presence of

the vector susy for the three dimensionalTFT of the co-

homological type. As a prototype of this class of TFT

we shall consider in detail the model proposed by L.

Baulieu and B. Grossman [1] in order to describe topo-

logical invariants related to three dimensional magnetic

monopoles.

The work is organized as follows. In Sect.II we

present the model and we discuss the existence of the

vector susy. Sect.III is devoted to the derivation of a

generalized Slavnov-Taylor identity which collects to-

gether both the BRST and the vector susy transforma-

tions. Finally, in Sect.IV we discuss the cohomology of

the generalized Slavnov-Taylor operator and we present

the renormalization of the model.

II. The action and its supersymmetric structure

The model proposed by L. Baulieu and B. Gross-

man is a three dimensional cohomological theory of the

Yang-Mills type. Following [1], the �eld content of the

model is given by the set (A�; ';  �; ��; �; �; �; � ), re-

spectively a gauge connection A�, a real scalar ', two

anticommuting vector �elds ( �,��), two anticommut-

ing scalar �elds (�; �) as well as a pair of complex com-

muting scalars (�; �). Moreover, introducing the usual

Faddeev-Popov ghosts (c; c) and a pair of Lagrange

multipliers (B; b�) , for the BRST transformations we

have

sA� = D�c+  � ;

s � = �D��� g fc;  �g ;
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s� = g[�; ']� gfc; �g ;

s' = � � g[c; '] ;

s� = �g[c; �] ;

sc = �� gc2 ;

s� = � ; s� = 0 ;

sc = B ; sB = 0 ;

s�� = b� ; sb� = 0 ; s2 = 0 ;

(2:1)

where D� is the covariant derivative, de�ned as

D�� = @� � +g[A�; �] ; (2:2)

g being the gauge coupling constant with mass dimen-

sion 1=2. Notice that the BRST variation of the gauge

connection A� is characterized, besides the usual pure

gauge term (D�c), by an additional shift transforma-

tions ( �) which is typical of the TFT of the cohomo-

logical type [2, 7]. The quantum numbers of all the

�elds are assigned as follows:

Table 1

0 A� '  � �� � � � � c c B b�
dim : 1=2 1=2 1 1 1 1 1=2 1=2 0 1 3=2 3=2
gh. numb. 0 0 1 �1 1 �1 2 �2 1 �1 0 0

(2:3)

As one can expect due the cohomological nature of the model, the classical invariant gauge �xed action can be

expressed as a pure BRST variation, namely

Sinv = s

Z
d3x tr

�
��D�' + "�����F�� +

1

2
��b�

+c(@A+
B

2
) + �(D� 

� + g[�; '])

�
;

(2:4)

where a Feynman like gauge-�xing condition has been adopted [1]. Expression (2.4) is easily worked out and yields

Sinv = tr

Z
d3x (b�D�'� ��D�� + g�� [c;D�']� g�� [ �; ']

+"���b�F�� + g"����� [c; F��]� 2"����� [c; F��] +
1

2
b�b�

�2"�����D� � +B(@A +
B

2
)� c@�D�c� c@ 

+�(D� 
� + g [�; '])� �D�D��� g� fc;D� �g

+g� f �;  �g � g2� fc; [�; ']g � g� f�; �g+ g2� [[�; '] ; ' ]
�
:

(2:5)

Let us also notice that the term

tr

Z
d3x

�
b�D�'+ "���b�F�� +

b�b�
2

�
; (2:6)

is equivalent to a standard Yang-Mills action

�tr

Z
d3x

�
1

2
D�'D�' + F��F

��

�
; (2:7)

upon elimination of the Lagrange multiplier b�. In order to detect the supersymmetric structure of the classical

action (2.4), (2.5) we introduce the following vector type operator �� with negative ghost number, de�ned as



46 Brazilian Journal of Physics, vol. 28, no. 1, March, 1998

��c = A� ;

��� = � � ;

��A� = 0 ;

�� � = F�� ;

��' = 0 ;

��� = D�' ;

��� = @�� ;

��� = 0 ;

��B = @�c ;

��c = 0 ;

��b� = @��� ;

���� = 0 :

(2:8)

The operator �� acts nonlinearly on the �elds and gives rise, together with the BRST operator s, to the following

anticommutation relations

fs; ��g = @� ;

f��; ��g = 0 :

(2:9)

We see therefore that the algebra between s and �� closes on the space-time translations, allowing thus for a

supersymmetric interpretation.

Having identi�ed the supersymmetric structure we were looking for, let us now check if the ���transformations

of eq. (2.8) leave the action (2.4) invariant. After a little algebra we easily obtain

��Sinv = sO� ; (2:10)

with

O� = �tr

Z
d3x

�
�(D�F�� + g[D�'; '])�

1

2
��@��� �

1

2
c@�c

�
; (2:11)

showing thus that the vector transformations (2.8) do not actually correspond to an exact symmetry of the action

Sinv. However, since the breaking term appearing on the right hand side of eq. (2.10) is a pure BRST variation

and since

��O� = 0 ; (2:12)

we can use a very useful trick in order to turn �� an exact symmetry of a suitable modi�ed action. Following indeed

a well known procedure [4, 7], we �rst collect all the generators entering the algebra (2.9) into a unique generalized

nilpotent operator Q.

Introducing then two constant ghosts ("�; #�), associated respectively to the vector generators �� and to the

space-time translations @�,
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Table2

"� #�

dim. 0 �1=2
gh. numb. 2 1

(2:13)

it is easily veri�ed that the generalized operator Q de�ned as

Q = s+ "��� + #�@� � "�
@

@#�
; (2:14)

turns out to be nilpotent,

Q2 = 0 : (2:15)

From eq. (2.14) it is apparent that the operator Q collects together all the generators entering the relations (2.9).

Acting now with Q on the classical invariant action Sinv, we get

Q Sinv = s("�O�) : (2:16)

Recalling now that the breaking term O� is left invariant by ��, ( i.e. ��O� = 0), we can rewrite the right-hand

side of eq. (2.16) as

QSinv =

�
s+ "��� + #�@� � "�

@

@#�

�
"�O� = Q("�O�) ; (2:17)

i.e.

Q (Sinv � "�O�) = 0 ; (2:18)

which means that the modi�ed action

eSinv = Sinv � "�O� ;

is left invariant by the generalized operator Q. In other

words, the properties (2.10) and (2.12) allow to suitably

modify the initial action (2.4) so that the generalized

operator Q becomes an exact symmetry, while collect-

ing together both operators (s; ��). We are now ready

to built up the Slavnov-Taylor identity and to discuss

the quantum properties of the model. This will be the

task of the next Section.

III. The Slavnov-Taylor identity

In order to obtain the Slavnov-Taylor identity we

introduce, following a standard procedure [8], a set of

anti�elds (A�

�;  
�

�; �
�; '�; ��; c�) coupled to the nonlin-

ear Q-transformations of the �elds (A�;  �; �; '; �; c);

Sext = tr

Z
d3x (A��QA� +  ��Q � + ��Q� + '�Q'+ ��Q�+ c�Qc) : (3:19)

De�ning then the complete action � as

� = eSinv + Sext ; (3:20)

for the classical Slavnov-Taylor identity we get

S (�) = 0 ; (3:21)

with
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S (�) = tr

Z
d3x

�
��

�A��

��

�A�

+
��

� ��

��

� �
+
��

���
��

��
+

��

�'�
��

�'
+
��

���
��

��

+
��

�c�
��

�c
+ (� + #�@��)

��

��
+ ("�@��+ #�@��)

��

��

+(B + #�@�c)
��

�c
+ ("�@�c+ #�@�B)

��

�B
+ (b� + #�@���)

��

���

+ ("�@��� + #�@�b�)
��

�b�

�
� "�

@�

@#�
:

(3:22)

Furthermore, introducing the so called linearized operator B� [8] de�ned as

B� = tr

Z
d3x

�
��

�A��

�

�A�

+
��

�A�

�

�A��
+

��

� ��

�

� �
+

��

� �

�

� ��
+
��

���
�

��

+
��

��

�

���
+

��

�'�
�

�'
+
��

�'

�

�'�
+
��

���
�

��
+
��

��

�

���

+
��

�c�
�

�c
+
��

�c

�

�c�
+ (� + #�@��)

�

��
+ ("�@��+ #�@��)

�

��

+(B + #�@�c)
�

�c
+ ("�@�c+ #�@�B)

�

�B
+ (b� + #�@���)

�

���

+("�@��� + #�@�b�)
�

�b�

�
� "�

@

@#�
;

(3:23)

one has

B�B� = 0 : (3:24)

The relevance of the nilpotent operator B� is due to the fact the possible invariant counterterms and anomalies

which may a�ect the Slavnov-Taylor at the quantum level can be identi�ed as cohomology classes of the operator

B� with ghost-number 0 and 1, respectively [8]. Let us turn therefore to the study of the cohomology of B�: To

this purpose we introduce the �ltering operator [8]

N = "�
@

@"�
+ #�

@

@#�
; (3:25)

which counts the number of global constant ghosts. Accordingly, the linearized operator B� decomposes as

B� = b+ "�W� + #�P� ; (3:26)

P� being the Ward operator corresponding to the space-time translations. From the nilpotency condition (3.24)

the operators b, W�, P� are seen to obey the following relations

b2 = 0 ; (3:27)

fb;W�g = P� ; (3:28)

fW�;W�g = 0 ; [P�P� ] = 0 : (3:29)
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Observe that, as a consequence of the algebraic relations (2.9), the anticommutator between the operator b andW�

closes on the space-time translations. Let us also give, for further use, the explicit expression of the two operators

b, W�, namely

b� = s� ; � =
�
A�;  �; �; '; �; �; c; �; c; B; ��; b�

�
;

b#� = �"� ; b"� = 0 ;

(3:30)

and

bA�

� = g ['; b] + g f�; ��g+ g2 ['; f��; cg] + 2"���D
� (b� + g f��; cg)

+2g"��� f 
���g � @�B � g fc; @�cg � g f �; �g+ g

�
�;D��

�
�g

�
D��;�

�
+ g2

�
 �;

�
�; c

�	
� g

�
�;  �

�

�
� g

�
c; A�

�

	
;

b �� = g ['; ��] + 2"���D
��� � @�c+D�� � g

�
D��; c

�
� g

�
D�c; �

�
+2g

�
 �; �

�
�A�

� + g
�
 �

�; c
�
;

b�� = �D��� � g ['; �] + g2
�
';
�
�; c

��
� 2g

�
�; �

�
� g fc; ��g � '� ;

b'� = �D�b� � g fD���; cg � g f��; D�cg+ g f�; �g+ g2
�
�;
�
c; �

�	
�2g2

�
�;
�
'; �

��
� g fc; '�g � g f��;  �g � g [�; ��] ;

b�� = �D2�+ g2
�
';
�
'; �

��
+D� �� + c� � g fc; ��g+ g ['; ��] ;

bc� = �g [D�'; ��]� g"��� [F��; ��]� g
�
D� �; �

�
�g2

�
[�; '] ; �

�
+D�A�

� +D�@�c + g [c; c�] + g [ �;  �]

�g [�; ��] + g ['; '�] + g [�; ��] ;

(3:31)

and

W�� = ��� ; � =
�
A�;  �; �; '; �; �; c; �; c;B; ��; b�

�
W�"� = 0 ; W�#� = 0 ;

W�A
�

� = g
�
�; F��

�
�D�D��+ ���D

2�+ g���
�
';
�
'; �

��
�D� 

�

� + ���D
� �

� + g��� ['; �
�] + ���c

� ;

W� 
�

� = ����
� ;

W��
� = 0 ;

W�'
� = �2g

�
D�'; �

�
�D��

� ;

W��
� = 0 ;

W�c
� = 0 :

(3:32)

IV. BRST Cohomology and Renormalizability

We face now the problem of characterizing the coho-

mology of the linearized operator B�: To this purpose

let us �rst compute the cohomology of the operator b,

whose relevance relies on a very general theorem on the

BRST cohomology stating that the cohomology of the

complete operator B� is isomorphic to a subspace of the

cohomology of the operator b [8]. To compute the co-

homology of b we introduce a second �ltering operator

N�
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N� =
X

�

Z
d3x

�
�
�

��
+ ��

�

���

�
;

� =
�
A�;  �; �; '; �; �; c; �; c;B; ��; b�

�
;

�� =
�
A�

�;  
�

�; �
�; '�; ��; c�

�
;

(4:33)

according to the which the operator b decomposes as

b = b0 + b1 + b2 ; (4:34)

with

b0' = � ; b0� = 0 ;

b0c = � ; b0� = 0 ;

b0� = � ; b0� = 0 ;

b0c = B ; b0B = 0 ;

b0�� = b� ; b0b� = 0 ;

b0A� = @�c +  � ;

b0 � = �@�� ;

b0A
�

� = 2"���@
�b� � @�B ;

b0 
�

� = �A�

� + 2"���@
��� � @�c+ @�� ;

b0�
� = �@��

� � '� ;

b0'
� = �@�b

� ;

b0�
� = �@2�+ @� 

�� + c� ;

b0c
� = @�A�

� + @2c :

(4:35)

Making then the following linear changes of variables

 � 7�! b � =  � + @�c ;

A�

� 7�! bA�

� = �
�
A�

� � 2"���@
��� + @�c

�
;

 �

� 7�! b �

� =  �

� � @�� ;

'� 7�! b'� = � ('� + @���) ;

c� 7�! bc� = c� + @� �

� � @2� ;

(4:36)

it is easily veri�ed that b0�transformations of all the

�elds, ghosts and anti�elds can be cast in the form of

BRST doublets (u; v) [8]; i.e.

b0u = v ; b0v = 0 ; (4:37)

with

u = ('; c; �; c; �;A; b �; ��; ��) ;

v = (�; �; �; B; b; b ; bA�; b'�; bc�) ;
(4:38)

It is known that the doublets do not contribute to the

BRST cohomology [8], meaning that the cohomology of

b0 is empty. Therefore the cohomology of the operator b

in eqs. (3.30), (3.31) vanishes as well, implying in turn

that the cohomology of the complete operator B� of eq.

(3.23) is empty too. From this result we infer that the

Slavnov-Taylor (3.21) identity is anomaly free and that

the possible invariant counterterms which can be freely

added to the classical action � of eq. (3.20) can be al-

ways written as pure B��variations. As expected, this

means that the quantum corrections will preserve the

topological character of the Baulieu-Grossman model.

V.Conclusion

The existence of the vector supersymmmetry for the

three dimensional cohomological �eld theory proposed

by Baulieu-Grossman [1] has been investigated. We

have been able to show that the model is anomaly free

and that the quantum corrections preserve its topo-

logical character. Let us also notice that the model

of Baulieu-Grossman has the same �eld content of the

N = 4 supersymmetric twisted three dimensional Yang-

Mills theory [9]. This property suggests a deeper rela-

tionship between N = 4 three-dimensional Yang-Mills

and topological theories of the cohomological type. As

in the case of the Witten's four dimensional topological

Yang-Mills [7], this could provide a conventional �eld

theory framework for the so called equivariant cohomol-

ogy proposed by [10] in order to identify the topological

observables of the theory. This aspect as wall as the

relationship of the Baulieu-Grossman model with the

Witten's topological Yang-Mills through dimensional

reduction are under investigation.
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